Δ	MD02C1104700	MD11C1211000	MD00C1112200	MD17C1102000	MD05C1172700	MD10C1161600	
21 R1	MD0501194700	MD1101211000	MD09G1115800	MD1/G1105900	MD05G1175700	MD1001101000	
R1 D2							
K2							
R3							
R9							
R10							
R11							
R15							
R16							
R17							
R18							
R10							
R17 D25							
R25							
K20							
R27							
R29							
R30							
R31							
R32							
R4							
R5							
R6							
R8							
R12							
R13							
R15 R14							
K14							
R3/							
R44							
R33							
R41							
R73							
R74							
R78							400
R82							200
R22							300
R24							200
R24 R34							100
D29							100
N30 D52							50
R32							40
R56							40
R60							30
R67							00
R70							20
R72							10
R76							10
R81							0
R35							
R40							
R49							
R54							
R58							
R63							
R65							
D64							
K00 D60							
R09							
R36							
R42							
R51							
R55							
R59							
R64							
R39							
R48							
R53							
R57							
NJ/ D40							
K02							
R68							
R20							
R77							
R79							
R80							

Fig. S1. Expression patterns of apple *SUMO2s.* (A) Expression patterns of apple *SUMO2s* in *Malus fusca.* MD03G1194700 and MD11G1211000, SUMO2A; MD17G1103900 and MD09G1113800, SUMO2B; MD5G1173700 and MD10G1161600, SUMO2C. The detailed information for various tissues was provided in Appendix S1. (B)-(I) Ectopic expression of *MdSUMO2A::GUS* in Arabidopsis flower (B), stoma (C), root (D), stem (E), silique (F), cotyledon (G), rosette leaf (H), and cauline leaf (I). At least six independent transgenic lines were examined.

Fig. S2. Protein alignment (A) and phylogenetic analysis (B) of SUMO2A from different species.

Long-term drought

Long-term drought for 3 months, then withholding water for 10 days

Fig. S3. Phenotypes of *MdSUMO2* transgenic plants and GL-3 under prolonged drought stress. (A) Phenotypes of *MdSUMO2* transgenic plants and GL-3 under control and prolonged drought stress for 3 months. Bar = 10 cm. (B) Phenotypes of *MdSUMO2* transgenic plants and GL-3 after prolonged drought for 3 months and subsequent drought stress by withholding water for 10 days.

Fig. S4. Internode length of GL-3, *MdSUMO2A* OE plants, *MdSUMO2A* RNAi, and *MdSUMO2* RNAi plants under long-term drought conditions. OE, overexpression. Data are means \pm SE (n = 4). One-way ANOVA was performed and different letters indicate statistically significant differences (*, P < 0.05; **, P < 0.01).

Fig. S5. Dry weight of shoots of *MdSUMO2* transgenic plants and GL-3 under prolonged drought stress. Plants were exposed to drought for up to 3 months. During treatment, 43-48% soil volumetric water content (VWC) was maintained as control and 18-23% of VWC was maintained as drought treatment. Error bars indicate standard error (n = 5). Asterisks indicate significant differences based on one-way ANOVA and Tukey test (*, P < 0.05; **, P < 0.01). OE, overexpression.

Fig. S6. Photosynthesis related parameters of GL-3, *MdSUMO2A* overexpression plants, *MdSUMO2A* RNAi, and *MdSUMO2* RNAi plants under long-term drought conditions. (A) The rate of net photosynthesis. (B) Rate of transpiration. (C) Stomatal conductance (Gs). Data are means \pm SE (n = 8). Asterisks indicate significant differences based on one-way ANOVA and Tukey test (*, P < 0.05; **, P < 0.01).

Fig. S7. Transpiration rate (A) and stomatal conductance (B) of *MdSUMO2* transgenic plants and GL-3 under long-term drought stress conditions. Long-term drought-treated plants were used to measure the transpiration rate and stomatal conductance. Data are means \pm SE (n = 7). One-way ANOVA (Tukey's test) was performed and statistically significant differences were indicated by **P* < 0.05 or ***P* < 0.01.

Fig. S8. Dry weight of roots of *MdSUMO2A* transgenic plants and GL-3 under control and long term drought stress condition. Data are means \pm SE (n = 5). Asterisks indicate significant differences based on one-way ANOVA and Tukey test (*, P < 0.05; **, P < 0.01).

Fig. S9. The ABA content of *MdSUMO2A* transgenic plants and GL-3 under control and long -term drought stress conditions. Data are means \pm SE (n = 6). Asterisks indicate significant differences based on one-way ANOVA and Tukey test (*, P < 0.05; **, P < 0.01).

Fig. S10. SUMOylation of *MdSUMO2* transgenic plants and GL-3 under control and long-term drought stress conditions.

A	1	MGAYDQGVNMPSLPLDSSRKRKTRSRRDGNSVADTLEKWKEHNKQLESATEEGKKRKVPA	60
	61	KGSKKGCMKGKGGPENARCNYRGVRQRTWGKWVAEIREPDRGSRLWLGTFPTAVDAALAY	120
	121	DEAAKAMYGDGARLNLPHAVNNHPSSSQETSSVATPSGSSAAATPGCSTSTSSLSEVC	180
	181	ADENSKLFLDV K KEDGEGESR MYPLSG AVPQ ASG MV <mark>K</mark> QEVNEDFD MD YLR NNQQ QP VG MV	240
	241	KPEVNEVFDMDYLRNNQQQRGVEDHNPNGGDGFVGDYSENFTMGELFDMDEMFDVNELLM	300
	301	PPDDISLCNSGPEQVSRPDVGQPGMETLSSEGPSNLSYQLQYPDAKLLGSLPHMEQAPLD	360
	361	FEYSFDFM <mark>K</mark> QEEGSNHTSQNDQGYFNLGPSDLGLGGFTEGTMQSGDVGYNYSMEM.	420
B	1	MAKDIEGAEHGEFATKDYQDPPPTPLFDAEELTKWSFYRAVIAEFVATLLFLYITVLTVIGYKSQ	60
	61	SEVDQCGGVGILGIAWAFGGMIFVLVYCTAGISGGHINPAVTFGLFLARKVSLIRAVLYIVAQCL	120
	121	GAICGVGLVKAFQKSYYVKYGGGANELADGYNKGTGLGAEIIGTFVLVYTVFSATDPKRNARD	180
	181	SHVPVLAPLPIGFAVFIVHLATIPITGTGINPARSFGAAVIYNKDKAWDDQWIFWLGPFIGAAIA	240
	241	AFYHQYILR AG AI <mark>K</mark> ALGSFRSNA	300
С	1	$MLAVFDKSVA^{\mathbf{K}}CPEALQSPQSGSASAL^{\mathbf{K}}DGFLAQQFASVHPSSVTVNLGASGLIAYSLD$	60
	61	RQNPLLPRLFAVVDDIFCLFQGHIENVALLKQQYGLNKTANE <mark>VIIVIE</mark> AFRTLRDRGPYP	120
	121	ADQ V VR DIQG KF AF VLF DS AS KATFI AT DP DG N VPFF WGT DS EG HL VLS DDS EV V <mark>K</mark> KGC	180
	181	GNSE APEPKGCEETSSGGI RSVEHPHNELKAVPR VDSSGEMCGANEK VDADTKKESSGI	240
	241		300
		PRVGSAANWSSNY.	

Fig. S11. The putative SUMOylation lysine residues in MdDREB2A (A), MdAQP2 (B), and MdALI (C) proteins. The red line indicates AP2 domain in (A). Red box indicates SIM in (C). The SUMOylation lysine residues are highlighted in red.

Fig. S12. SUMOylation of MdDREB2A, MdAQP2, and MdALI using *E. Coli* system. (A) SUMOylation of MdDREB2A was detected with anti-MdDREB2A. (B) SUMOylation of MdDREB2A was detected with anti-GST. (C) SUMOylation of MdAQP2 was detected with anti-GST. + indicates non-specific band; solid box indicates the fused GST-MdAQP2 protein; dotted box indicates the GST protein. (D) SUMOylation of mutant MdALI was detected with anti-GST. The SIM (V102 and V105) was mutated alanine (A). Putative SUMOylation sites (K) were mutated to arginine (R). (E) SUMOylation of MdALI was detected with anti-GST. The empty vector carrying GST tag (pGEX-4T) was used as the negative control. * indicates SUMOylated substrates; arrow indicates; triangle indicates the expressed GST protein. OE, overexpression.

Fig. S13. MdDREB2A interacts with MdCE1 *in vitro* **and** *vivo*. (A) The interaction of MdSCE1 and MdDREB2A was examined by MST analysis. (B) CO-IP analysis. MdSCE1-Flag was co-infiltrated with GFP-MdDREB2A into tobacco leaves. Proteins were extracted and immunoprecipitated with an anti-Flag antibody. The immunocomplex was then detected with western blot using anti-Flag or anti-MdDREB2A.

Fig. S14. Effects of MdSUMO2A on the subcellular localization of MdDREB2A.

Fig. S15. SUMOylation of MdDREB2A is critical for drought stress tolerance. (A) Expression of *MdDREB2A* in *MdDREB2A* or *MdDREB2A^{K192R}* OE transgenic calli. (B) Phenotypes of 35S::MdDREB2A and 35S::MdDREB2A^{K192R} calli under PEG treatment for 2 weeks. (C) Relative fresh weight of calli shown in (B). Error bars indicate standard error (n = 3 in A, 10 in C). Asterisks indicate significant differences based on one-way ANOVA and Tukey test (*, *P* < 0.05; **, *P* < 0.01).

Fig. S16. MdDREB2A interacts with MdRNF4 *in vivo*. Proteins were extracted from GL-3 leaves and immunoprecipitated with an anti-MdDREB2A antibody. The immunocomplex was then detected with western blot using anti-MdRNF4 or anti-MdDREB2A.

 $\begin{array}{c} 895 \\ 890 \\ 885 \\ 2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{9} 2^{1} 2^{2} 2^{3} 2^{4} 2^{5} 2^{6} 2^{7} 2^{8} 2^{9} 2^{10} \end{array} \\ \begin{array}{c} 884 \\ 882 \\ 2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{9} 2^{1} 2^{2} 2^{3} 2^{4} 2^{5} 2^{6} 2^{7} 2^{8} 2^{9} 2^{10} \end{array} \\ \begin{array}{c} \alpha - MdRNF4 \\ \hline \\ Ligand concentration (nM) \end{array} \\ \begin{array}{c} \alpha - MdRNF4 \\ \hline \\ Ligand concentration (nM) \end{array} \\ \end{array}$

Fig. S17. MdRNF4 interacts with MdSUMO2A by SIMs. (A) The putative SIMs in MdRNF4 protein. SIMs were indicated by red color and the ring finger domain was underlined in red. (B) The scheme of MdRNF4 SIM deletions. (C) MdSUMO2A interacted with MdRNF4 by SIMs in yeast two-hybrid analysis. (D) The interaction of MdRNF4 and MdSUMO2A was verified by MST analysis. (E) Co-IP assay confirmed the interaction of MdRNF4 and MdSUMO2A. Proteins were extracted form the leaves of *MdSUMO2A* OE (carrying 35S::Myc-*MdSUMO2A*) transgenic plants and immunoblotted with anti-Myc or anti-MdRNF4. No-antibody was used as the negative control.

Fig. S18. Expression of MdRNF4 in MdRNF4 RNAi transgenic plants.

Fig. S19. Tolerance of *MdRNF4* RNAi calli in response to simulated drought stress. (A) Expression of *MdRNF4* in *MdRNF4* RNAi transgenic calli. (B) Tolerance of *MdRNF4* RNAi to PEG treatment. (C) Relative fresh weight of WT and *MdRNF4* RNAi under PEG treatment. Error bars indicate standard error (n = 3 in A, 15 in C). Asterisks indicate significant differences based on one-way ANOVA and Tukey test (*, P < 0.05; **, P < 0.01).

Malus_domestica Pyrus_bretschneideri Prunus_armeniaca Prunus_mume Fragaria_vesca Rosa_chinensis Zea_mays Oryza_sativa Triticum_aestivum Nicotiana_attenuata Arabidopsis	MGAYDOGVNMPSLPLDSSRÄRKTEGREDG.NSVADTLEKTE HNKQLESATEE.GKRÄVPAKGSKKGCMKGGGESAAR ON RGVORT AGKWALT REED GGRLMLGT E MGAYDOGVNMPLPLDSSRARTTEGREDG.NSVADTLEKTKEYNKQLESATEE.GKRÄVPAKGSKKGCMKGRGESAAR ON RGVORT AGKWALT REED GGRLMLGT E MGAYDOVSNEVALTLDSTRARTTEGREDG.NSVADTLEKTKEYNKQLESEDNE.GKRÄVPAKGSKKGCMKGRGESAAR ON RGVORT AGKWALT REED GGRLMLGT E MGAYDOVSNEVALTLDSTRARTTEGREDG.TSVATLEKTKEYNKQLESEDNE.GKTÄVPAKGSKKGCMKGRGESAAR ON RGVORT AGKWALT REED GGRLMLGT E MGAYDOSSNGFSQPLDSSRAR.RSKNGA.GSVATLEKTKEYNKQLESEDNE.GKTÄVPAKGSKKGCMKGKGGESASAN GVRGVRGRAGKWALT REED GGRLMLGT E MGAYDOSSNGFSQPLDSSRAR.RSKNGA.GSVATLEKTKEYNKQLESEDNE.GKTÄVPAKGSKKGCMKGKGGESAN GVRGVRGVRGVRGVRG MGAYDOSSNGFSQPLDSSRAR.RSKNGA.GSVATLEKTKEYNKQLESGIND.DKARTGN/GSKKKCMKGGGESAN GVRGVRGVRGVRGVRGVRG MGAYDOSSNGFSQPLDSSRAR.RSKNGA.GSVATTLSRVKSINNULESGIND.DKARTGN/GSKKKCMKGGGESANGCVRGVRGVRGVRGVRGVRG MGAYDOSSNGFSQPLGSSKAGGRSKNG.ASVVETLSRVKSINNULESGIND.DKARTGN/GSKKGCMKGGGESANGVVRGVRGVRGVRGVRGVRG MITLYISYDDELPCVV.RKKARFKSGSGGG.TTVARTKANNAL ONGVLGDSGG.SKKGCMKGCKSKGCPSSKSGCVRGVRGVRGVRGVRGVRGVRGVRGVRGVRGVRGVRGVRGV	111 128 111 100 111 106 109 121 113 109
Malus_domestica Pyruns_bretschneideri Prunus_mume Fraqaria_vesca Rosa_chinensis Zea_mays Oryza_sativa Triticum_aestivum Nicotiana_attenuata Arabidopsis	TA VDAALAYDEAARANY COARENLEHAVNNHESSSQETSSVATESGSSAAFFCGSTSTSTSSLSEVCADENSKLFILDVKKEDGE.GESRMYPLSGAVPQASGMVKQEVNEDFDMDY TA VDAALAYDEAARANY COARENLEHGVNNHESSSQETSSVATESGSSAAFFCGSTSTSTSSHSEVCADEDSKLFILDVKKEDGE.GESRMYPLSGAVPQASGMVKQEVSEDLDVDY TALDAALAYDEAARANY COARENLEHGVNNHES.SSQETSSVATESGSSAVAFFCGSGTSTSSHSEVCADEDSKGFLDVKTENGE.GESANFMSSGAVPQASGMVKQEVSEDLDVDY TALDAALAYDEAARANY COARENLEHGVNSLVKEETRDEFTCGY TALDAALAYDEAARANY COARENLEHGVNSLVKEETRDEFTCGY TAVDAALAYDEAARANY COARENLEHGVNSSPWKESSQETSSATTFSGSAVASFCGSGTTSSNHSEVCADEDSKOFLDVKTENGE.GESANHAMSSGLNQALVKEETRDEFTCGY TAUDAALAYDEAARANY COARENLEHGVNSSPWKESSQETSSATTFSGSAVASFCGSGTTSSNHSEVCADEDSKOFLDVKTENGE.GESANHAMSSGLNQALVKEETRDEFTCGY TAVDAALAYDEAARANY COARENLEHGVNSINSYTSSWKESSHETSSVTFSGSTVATCGCSETTISNOSDHSEVCAEESFUKKTEDGE.GELTSAMSNAYTEFSGSTATODDVKSEVPHDH TAVDAALAYDEAARANY COARENLEHGVNSINSYTSSWNESSHETSSVTFSGSTVATCGCCESTINSNOSDHSEVCAEESFUKTEDGE.DESTHNAFTCPFSANTADDUKSEVPHDH TAVDAALAYDEAARANY COKARENGESSSSADNSCOTSALSLLASSVPAALQQRSDE.KVETEVESVETELVHEVKTEAKNODLGSVKVTC TAODAASAYDEAARANY COARENLEFRSDASEVTSTSOSSEVCTVETPGCVHVKTEDDFCGSKPFSGVEPMYCLENGAEKKEVKADKHWLSEFEHNYWSDILKKEKKOK QGIVE TAADAARANY CALARTSFRAHPACAPNSCOTSALSLLASSVPAALQQRSDE.KVETEVESVESVESTELVHEVKTE	228 228 245 236 234 198 227 232 220 227
Malus_domestica Pyruns_bretschneideri Prunus_mume Fragaria_vesca Rosa_chinensis Zea_mays Oryza_sativa Triticum_aestivum Nicotiana_attenuata Arabidopsis	LRNNQQQFVGMVRPEVNEVFDMDYLRNNQQQRGVEDHNPNGGDGFVGDYSENFTMGELFDMDEMFDVNELLMPFDDISLCNSGPEQVSRPDVGQFGMETLSS.EGPSNLSYQLQYPDAKL LRHNQQQFV.VVKPERGVEDHNPNGGDGFVGDSSENFTMGELFDMDEMFDNNELLMPFDDISLCNSGPEQVSRPDVGQP.GGKHLSS.EGPSNLSYQLQYPDAKL FHNDQ.PA.VKPEAYVGDFNNAGG.PYTGDYLENFTEEVFDVDELLN.PLDDTPVRNPEPEQGLSGDVGQPCGSGMHPYGC.DRPSNLSYQLQYPDAKL FHNDQ.PA.VKPEAYVGDFNNAGG.PYTGDYLENFTEEVFDVDELLN.PLDDTPVRNPEPEQGLSGDVGQPCGSGMHPYGC.DRPSNLSYQLQYPDAKL FHNDQ.PA.VKPEAYVGDFNNAGG.PYTGDYLENFTEEVFDVDELLN.PLDNTPVRNPEPEQGLSGDVGQPCGSGMHPYGC.DRPSNLSYQLQYPDAKL FHNDQ.PG.VQEQALDMI.GFDVNILNQFSLEELFVDDLVG.PTDKFIFTLKLQOISSDVGSQFCATAPVES.ATPSNSSYQVGYDGTT FHTDQ.FG.VQEQALDMI.GFDVNILNQFSLEELFVDDLVG.PTDKFIFTLKLQOISSDVGSQFCATAPVES.ATPSNSSYQVGYDGTT TVQSAEETVLHKEG.DVSYPYFNYEDVVEL.MMIIVELNADKKFEAHEEYLDGDDGFSLFAY. TCQQQ.QQDSLSVADYGMPN.DVDQSHLD.SSDMFDVDELLR.DLNGDDVFAGLNQDRYPGNSVANGSNR.PESQQ ARSTSEEDVFPLE.FISSLPDG.EADGFDIEELLR.LKEADFIEVPTGSSNNCGTVTGVSKLQSAYDNNQFSNLSYQLQNDCKT TVGQQ.QQDSLSVADYGMPN.DVDQSHLD.SSDMFDVDELLR.LKEADFIEVPTGSSNNCGTVY.QSAVFNQDQYWDSSNLQSAAYDNNQFSNLSYQLQNDCKT TCQQQ.QQDSLSVADYGMPN.DVDQSHLD.SSDMFDVDELLR.DLNGDVFAGLNQDRYPGNSVANGSYR.PESQQ	347 330 340 323 325 327 256 298 300 319 298
Malus_domestica Pyruns_bretschneideri Prunus_mume Pragaria_vesca Rosa_chinensis Zea_mays Oryza_sativa Triticum_aestivum Nicotiana_attenuata Arabidopsis	LG.SLPHMEQAPLDFE'SFDFMKQEE.GSNHTSQNDQGYFNLGPSDLGLGGFTEGTMQSGDVGYNYSME LG.SLNHMEQGPSGGEVNPDFLKRDGVTGEDDQGYFNLGPSDLGLGGTTGGTMQPEDGSYNFSMD LG.SLNHMEQGPSGGEVNPDFLKRDDVTGEDDQGYVNLGLSDLGLOPTGGTMQPEDGSYNFSMD SG.SVQHMDQEPSVADYGFDLLNLQL.QDGNVGVDNHKYFNMDDFDFHFPGGADN PGGVVQHMVVEPSVADYGFDLLNLQL.QDGNVGVDNHKYFNMDDFDFNFTGGCGGNAN SGFDPLQSLNYGIPPFQLEG.KDGNGFFDDLSYLDLEN LDGLDQGNLEGMLQADYPYPMSISDRAMRNPAPHDAEMSEFFGL LDBQQQMQQAPIVDDYNPFFVRSDDLSYLDLEN SGFDPLQSLNYGIPPFQLEG.KDGNGFFDDLSYLDLEN	414 397 404 387 378 384 256 335 346 362 335

Fig. S20. Protein alignment of DREB2A from different species. The amino acids in red line indicate AP2 domain, and the blue frame indicates NRD region.