Supplementary files for "Multi-omics profiling reveals comprehensive microbeplant-metabolite regulation patterns for medicinal plant *Glycyrrhiza uralensis* Fisch"

Chaofang Zhong^{1,2}, Chaoyun Chen¹, Xi Gao¹, Chongyang Tan¹, Hong Bai^{1,*}, Kang Ning^{1,*}

¹Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

²Key Laboratory of Karst Biodiversity and Ecological Security, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China

*Correspondence should be addressed to Kang Ning (Email: ningkang@hust.edu.cn) and Hong Bai (Email: baihong@hust.edu.cn)

Supplementary Figures

Supplementary Figure S1. KEGG pathways with the most significant enrichment of DEGs in the three groups of *G. uralensis.* (a) C1 vs. WT, (b) C3 vs. WT, (c) C3 vs. C1. The degree of enrichment was measured by the rich factor, FDR value and the number of genes enriched to each KEGG term. Rich factor referred to the ratio of the number of DEGs enriched in each term to the number of all DEGs annotated. The greater enrichment factor, the greater enrichment. The closer to

zero, the greater enrichment. The circle size referred to the number of genes enriched to each KEGG term. WT: wild type; C1: cultivated for one year; C3: cultivated for three years.

Supplementary Figure S2. Expression patterns of genes involved in plant hormone signal transduction pathways. Enzymes encoded by the differentially expressed genes were marked in red and the heatmap shows log2 (FPKM+1) values of each DEGs. Each row of heatmap represented one gene and each column represents one a group (from left to right, WT, C1, C3). The black arrow in the heatmap indicated that up (arrow up) or down (arrow down) regulation of C1 and C3 compared to wild, respectively. The bar box showed the average FPKM of genes encoding the same enzymes. WT: wild type; C1: cultivated for one year; C3: cultivated for three years.

Supplementary Figure S3. Expression patterns of genes involved in plant-pathogen interaction. Each row of heatmap represented one gene and each column represented one a group (from left to right, WT, C1, C3). The heatmap was scaled in the row direction based on the FPKM of genes. WT: wild type; C1: cultivated for one year; C3: cultivated for three years.

Supplementary Figure S4. The comparison of microbial community diversities between the rhizosphere and soil. WT: wild type; C1: cultivated for one year; C3: cultivated for three years.

Supplementary Figure S5. The comparison of rhizosphere microbial community diversity between wild, C1 and C3 *G. uralensis*. WT: wild type; C1: cultivated for one year; C3: cultivated for three years.

Supplementary Figure S6. Marker genera in rhizosphere samples of wild, C1 and C3 G.

uralensis. The heatmap was scaled in the row direction based on the microbial relative abundance. WT: wild type; C1: cultivated for one year; C3: cultivated for three years.

Supplementary Figure S7. Marker pathogen genera in rhizosphere samples of wild, C1 and C3 *G. uralensis*. The heatmap was scaled in the row direction based on the microbial relative abundance. WT: wild type; C1: cultivated for one year; C3: cultivated for three years.

Supplementary Figure S8. The correlation between pathogen abundance and the expression of genes related to plant-pathogen interaction in *G. uralensis*. Significance of the correlation using *t*-test, p < 0.05

Supplementary Figure S9. Marker PGPRs and pathogens at the species level in rhizosphere samples of wild, C1 and C3 *G. uralensis*. The heatmap was scaled in the row direction based on the microbial relative abundance. WT: wild type; C1: cultivated for one year; C3: cultivated for three years.

Supplementary Figure S10. Matrix of Module-Trait Relationships (MTRs) and *p*-values for selected traits. a. Correlation distribution of traits and gene modules. b. Correlation distribution of traits and microbial modules. Each row corresponded to a gene or microbial module, and each column corresponded to a histopathological trait. Each cell contained a corresponding correlation and *p*-value. The table was color-coded by correlation according to the color legend.

Supplementary Figure S11. Relative abundance comparison of *Lysobacter* and *Rhodoplanes* in three types of *G. uralensis*. a. Relative abundance comparison of *Lysobacter* in three types of *G. uralensis*: wild (WT), cultivated *G. uralensis* that were grown for one year (C1) and three years (C3). b. Relative abundance comparison of *Rhodoplanes* in wild, C1 and C3 *G. uralensis*.

Sample	Crown	Tuangavintama	Matabalama	Rhizosphere	Soil mianabiama	Tomponatura	"П	Villago	
ID	Group	Transcriptome	microbiome		Son microbiome	Temperature	рп	vmage	
WT1	Wild	\checkmark	\checkmark	\checkmark	\checkmark	22.47	6.87	Shiji Quan	
WT2	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.70	6.70	Shiji Quan	
WT3	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.30	6.80	Shiji Quan	
WT4	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.43	6.83	Shiji Quan	
WT5	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.53	6.87	Shiji Quan	
WT6	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.53	6.87	Shiji Quan	
WT7	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.83	6.87	Shiji Quan	
WT8	Wild	\checkmark	\checkmark	\checkmark	\checkmark	18.87	6.90	Shiji Quan	
WT9	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.40	6.93	Shiji Quan	
WT10	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.37	6.87	Shiji Quan	
WT11	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.27	6.90	Shiji Quan	
WT12	Wild	\checkmark	\checkmark	\checkmark	\checkmark	20.50	6.93	Shiji Quan	
WT13	Wild	\checkmark	\checkmark	\checkmark	\checkmark	20.90	6.87	Shiji Quan	
WT14	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.23	6.87	Shiji Quan	
WT15	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.50	6.87	Shiji Quan	
WT16	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.77	6.87	Shiji Quan	
WT17	Wild	\checkmark	\checkmark	\checkmark	\checkmark	21.33	6.90	Shiji Quan	
WT18	Wild	\checkmark	\checkmark	\checkmark	\checkmark	21.60	6.93	Shiji Quan	
WT19	Wild	\checkmark	\checkmark	\checkmark	\checkmark	20.30	6.87	Shiji Quan	
WT20	Wild	×	\checkmark	\checkmark	\checkmark	20.37	6.90	Shiji Quan	
WT21	Wild	×	\checkmark	\checkmark	\checkmark	21.63	6.93	Shiji Quan	

Supplementary Tables Supplementary Table S1. The information about collected samples in this study

WT22	Wild	×	\checkmark	\checkmark	\checkmark	21.57	6.80	Shiji Quan
WT23	Wild	×	\checkmark	\checkmark	\checkmark	20.43	6.90	Shiji Quan
WT24	Wild	×	\checkmark	\checkmark	\checkmark	20.13	6.93	Shiji Quan
WT25	Wild	\checkmark	\checkmark	\checkmark	\checkmark	19.50	6.93	Shiji Quan
C1-1	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	27.77	6.63	TianJi Zhang
C1-2	Cultivated for one year	\checkmark	\checkmark	\checkmark	\checkmark	23.47	6.90	TianJi Zhang
C1-3	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	22.50	6.57	TianJi Zhang
C1-4	Cultivated for one year	×	\checkmark	×	\checkmark	22.47	6.87	TianJi Zhang
C1-5	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	19.70	6.77	TianJi Zhang
C1-6	Cultivated for one year	\checkmark	\checkmark	×	\checkmark	23.83	6.73	TianJi Zhang
C1-7	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	20.67	6.80	TianJi Zhang
C1-8	Cultivated for one year	\checkmark	\checkmark	\checkmark	\checkmark	22.10	6.77	TianJi Zhang
C1-9	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	18.17	6.80	TianJi Zhang
C1-10	Cultivated for one year	\checkmark	\checkmark	\checkmark	×	19.83	6.80	TianJi Zhang
C1-11	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	21.23	6.80	TianJi Zhang

C1-12	Cultivated for	\checkmark	\checkmark	\checkmark	\checkmark	22.13	6.90	TianJi Zhang
C1-13	one year Cultivated for one year	×	\checkmark	\checkmark	\checkmark	20.63	6.87	TianJi Zhang
C1-14	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	20.77	6.83	TianJi Zhang
C1-15	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	21.83	6.83	TianJi Zhang
C1-16	Cultivated for one year	\checkmark	\checkmark	\checkmark	\checkmark	22.47	6.77	TianJi Zhang
C1-17	Cultivated for one year	×	\checkmark	×	\checkmark	24.93	6.67	TianJi Zhang
C1-18	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	23.10	6.80	TianJi Zhang
C1-19	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	21.03	6.77	TianJi Zhang
C1-20	Cultivated for one year	\checkmark	\checkmark	\checkmark	\checkmark	20.57	6.70	TianJi Zhang
C1-21	Cultivated for one year	\checkmark	\checkmark	\checkmark	\checkmark	23.17	6.83	TianJi Zhang
C1-22	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	21.03	6.70	TianJi Zhang
C1-23	Cultivated for one year	\checkmark	\checkmark	×	\checkmark	22.13	6.70	TianJi Zhang
C1-24	Cultivated for one year	×	\checkmark	\checkmark	\checkmark	23.93	6.80	TianJi Zhang

C1-25	Cultivated for one year	\checkmark	\checkmark	\checkmark	\checkmark	22.17	6.73	TianJi Zhang
C3-1	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	20.13	5.93	TianJi Zhang
C3-2	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	20.37	6.37	TianJi Zhang
C3-3	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	21.63	6.17	TianJi Zhang
C3-4	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	20.10	6.30	TianJi Zhang
C3-5	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	21.87	6.20	TianJi Zhang
C3-6	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	20.73	6.67	TianJi Zhang
C3-7	Cultivated for three years	\checkmark	\checkmark	×	\checkmark	22.90	6.87	TianJi Zhang
C3-8	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	21.87	6.53	TianJi Zhang
C3-9	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	23.27	6.63	TianJi Zhang
C3-10	Cultivated for three years	\checkmark	\checkmark	\checkmark	×	23.43	6.77	TianJi Zhang
C3-11	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	22.60	6.90	TianJi Zhang
C3-12	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	23.17	6.90	TianJi Zhang

C3-13	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	23.40	6.67	TianJi Zhang
C3-14	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	22.67	6.67	TianJi Zhang
C3-15	Cultivated for three years	\checkmark	\checkmark	×	\checkmark	22.07	6.70	TianJi Zhang
C3-16	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	22.27	6.60	TianJi Zhang
C3-17	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	23.37	6.80	TianJi Zhang
C3-18	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	23.70	6.80	TianJi Zhang
C3-19	Cultivated for three years	×	\checkmark	\checkmark	\checkmark	20.80	6.37	TianJi Zhang
C3-20	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	23.43	6.50	TianJi Zhang
C3-21	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	24.57	6.60	TianJi Zhang
C3-22	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	22.40	6.77	TianJi Zhang
C3-23	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	24.20	6.70	TianJi Zhang
C3-24	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	24.37	6.70	TianJi Zhang
C3-25	Cultivated for three years	\checkmark	\checkmark	\checkmark	\checkmark	24.57	6.83	TianJi Zhang

study							
Sample Transcriptome Rhizosphere mircrobial Soil r							
ID	reads	reads	reads				
WT1	47,799,762	400,528	176,054				
WT2	45,806,484	189,932	167,000				
WT3	49,128,144	382,816	234,160				
WT4	49,736,312	157,834	168,762				
WT5	49,562,546	138,304	199,314				
WT6	50,328,210	149,168	168,806				
WT7	48,621,854	215,694	152,826				
WT8	47,933,578	136,396	191,286				
WT9	49,289,478	195,346	179,722				
WT10	48,650,092	144,366	179,848				
WT11	52,775,672	146,752	185,208				
WT12	49,808,910	159,218	161,952				
WT13	50,809,828	190,604	177,764				
WT14	49,552,490	174,858	171,240				
WT15	53,064,638	219,576	163,848				
WT16	53,606,680	205,562	160,432				
WT17	46,267,576	204,158	203,290				
WT18	52,714,148	167,140	177,852				
WT19	46,935,588	171,038	157,722				
WT20	48,314,440	180,042	171,066				
WT21	NA	181,796	164,166				
WT22	NA	241,556	169,176				
WT23	NA	227,396	150,436				
WT24	NA	180,296	150,346				
WT25	48,585,478	227,990	190,586				
C1-1	NA	253,700	607,660				
C1-2	53,158,416	218,252	487,962				
C1-3	NA	176,908	152,608				
C1-4	NA	NA	457,266				
C1-5	NA	161,536	410,804				
C1-6	47,593,790	NA	397,380				
C1-7	NA	197,306	219,880				
C1-8	47,005,566	273,836	450,092				
C1-9	NA	257,980	166,014				
C1-10	46,437,566	258,426	NA				
C1-11	NA	239,264	189,280				
C1-12	51,321,014	215,728	138,882				
C1-13	NA	179,416	184,200				
C1-14	NA	270,336	138,306				
C1-15	NA	221,146	164,180				

Supplementary Table S2. The sequencing information about collected samples in this

C1-16	47,401,372	230,258	143,486
C1-17	NA	NA	207,412
C1-18	NA	194,856	191,304
C1-19	NA	206,756	174,420
C1-20	52,750,846	213,478	195,206
C1-21	41,451,592	175,506	168,234
C1-22	NA	193,622	209,870
C1-23	50,120,412	NA	184,580
C1-24	NA	255,850	152,680
C1-25	53,908,780	265,948	262,156
C3-1	52,668,672	197,414	176,842
C3-2	55,034,984	219,394	189,492
C3-3	51,528,026	187,290	194,388
C3-4	50,487,742	224,396	154,718
C3-5	55,257,210	169,948	200,256
C3-6	50,548,492	236,964	237,324
C3-7	53,428,780	NA	213,306
C3-8	51,302,848	203,874	190,526
C3-9	55,931,934	204,620	201,700
C3-10	52,775,118	217,712	NA
C3-11	67,279,696	184,602	167,376
C3-12	47,713,652	211,490	155,358
C3-13	54,059,372	220,440	160,420
C3-14	44,550,252	153,562	153,240
C3-15	57,015,350	NA	235,204
C3-16	43,860,278	144,962	172,462
C3-17	43,846,454	153,058	183,532
C3-18	44,476,450	135,682	177,118
C3-19	NA	152,994	165,606
C3-20	47,960,128	214,072	178,848
C3-21	52,199,638	442,414	186,660
C3-22	45,853,510	396,372	183,778
C3-23	52,590,556	208,094	227,364
C3-24	49,218,040	254,240	200,952
C3-25	48,620,476	358,548	188,470
Total	2,758,648,920	14,740,616	14,921,664