1	Supplemental information
2	Identification of Circular RNAs Regulating Cardiomyocyte Proliferation in
3	Neonatal Pig Hearts
4	Ling Tang, Verah Nyarige, Pengsheng Li, Junwen Wang, Wuqiang Zhu
5	
6	List of Supplemental Items
7	Supplemental Figures 1-10
8	Supplemental Legends 1-10
9	Supplemental Tables 1-11

2 Supplemental Figure 1. Diagram illustrating the experimental design.

2 Supplemental Figure 2. Differentially expressed circRNAs in neonatal pig hearts.

3 (A) Principal Component Analysis (PCA) visualization of batch-corrected circRNA data

from 36 circRNA samples obtained from 24 pig hearts sequenced by CD Genomics Inc. 1 ("cd"), and Novogene Inc. ("nv1" and "nv2"). (B) Barplot showing the counts of significantly 2 differentially expressed circRNAs. circRNAs with a log₂FC > 0.5 and p value < 0.05 were 3 classified as significantly upregulated (in orange) while circRNAs with a log₂FC < -0.5 and 4 p value < 0.05 were classified as significantly downregulated (in teal). (C-F) Volcano plot 5 visualizing differential expression analysis results from various comparisons including P1 6 versus P3 (C), P1 versus P7 (D), P1 versus P28 (E), and P1 versus P3, P7 and P28 (F). 7 circRNAs were categorized as significantly upregulated if they had a p value < 0.05 and 8 $log_2FC > 0.5$ (Up significant in red), significantly downregulated if they had a p value < 9 0.05 and $log_2FC < -0.5$ (Down significant in blue), significant but neither upregulated nor 10 downregulated if the p value < 0.05 but log2FC < 0.05 (in dark), otherwise nonsignificant 11 (in grey). 12

Supplemental Figure 3. Time-varying effect modeling (TVEM) of cell cycle
regulating circRNAs. (A-G) Visualization of the changes in the β₁ coefficient across
different postnatal periods. Significant variation in the β₁ coefficients over time in core cell
cycle related pathways such as G2M checkpoint (A), mitotic spindle (B), Myc-targets (CD), myogenesis (E), PI3K-Akt-mTOR signaling (F), and Wnt-beta catenin signaling (G).

Supplemental Figure 4. Differentially expressed miRNAs in neonatal pig hearts. (A) 1 PCA visualization of 12 miRNA samples obtained from 12 pig hearts at different postnatal 2 days (P1, P3, P7, and P28). (B) Barplot showing the counts of significantly differentially 3 expressed miRNAs. MicroRNAs with a $log_2FC > 0.5$ and p value < 0.05 were classified 4 as significantly upregulated (in orange) while circRNAs with a $log_2FC < -0.5$ and p value 5 < 0.05 were classified as significantly downregulated (in teal). (C-F) Volcano plot 6 visualizing differential expression analysis of miRNA at different experimental designs 7 including (C) P1 versus P3, (D) P1 versus P7, (E) P1 versus P28, and (F) P1 versus P3, 8 P7 and P28. miRNAs were categorized as significantly upregulated if they had a p value 9 < 0.05 and log₂FC > 0.5 (Up significant distinguished in red), significantly downregulated 10 if they had a p value < 0.05 and $log_2FC < -0.5$ (Down significant distinguished in blue), 11 significant but neither upregulated nor downregulated if the p value < 0.05 but log2FC < 12 0.05 (distinguished in green), otherwise nonsignificant (distinguished in grey). 13

1 Supplemental Figure 5. Differentially expressed mRNAs in neonatal pig hearts. (A)

PCA visualization of 12 mRNA samples obtained from 12 pig hearts at different postnatal 2 days (P1, P3, P7, and P28). (B) Barplot showing the counts of significantly differentially 3 expressed mRNAs. mRNAs with a $log_2FC > 0.5$ and p value < 0.05 were classified as 4 significantly upregulated (in orange) while mRNAs with a $log_2FC < -0.5$ and p value < 0.05 5 were classified as significantly downregulated (in teal). (C-F) Volcano plot visualizing 6 differential expression analysis of mRNA from various comparisons including (C) P1 7 versus P3, (D) P1 versus P7, (E) P1 versus P28, and (F) P1 versus P3, P7 and P28. 8 mRNAs were categorized as significantly upregulated if they had a p value < 0.05 and 9 $log_2FC > 0.5$ (Up significant in red), significantly downregulated if they had a p value < 10 0.05 and $log_2FC < -0.5$ (Down significant in blue), significant but neither upregulated nor 11 downregulated if p value < 0.05 but log2FC < 0.05 (in dark), otherwise nonsignificant (in 12 grey). 13

Supplemental Figure 6. Intracellular localizations of circRNAs. hiPSC-CMs at day 28 1 after the initiation of cardiac differentiation were utilized. The intracellular location of each 2 circRNA was visualized using an Alexa Fluorescent 488 probe targeting the specific 3 circRNA. Cardiomyocytes were identified using an Alexa Fluorescent 568 probe targeting 4 human cTnT RNA. All cell nuclei were stained with DAPI. Representative images 5 displaying the cytoplasmic and nuclear distribution of hsa-ABLIM1 0001 (A), hsa-6 RNF13 0004 (B), hsa-KIF1B 0001 (C), hsa-MYOM1 0001 (D), hsa-AC096949 0001 7 (E), and hsa-PDLIM5_0001 (F) in hiPSC-CMs were captured. 8

С

1 Supplemental Figure 7. Integrated networking analysis of circRNA-miRNA-mRNA

interactions. Network diagram illustrates the interactions between circRNAs and
miRNAs, as well as miRNA and mRNAs in the comparisons of P1 versus P3 (A), P1
versus P7 (B), and P1 versus P28 (C).

1 Supplemental Figure 8. Evaluation of the cell cycle regulatory function of miRNAs.

hiPSC-CMs at day 28 after initiation of cardiac differentiation were utilized. The cells were 2 treated with either negative control siRNA, or various concentration (1, 4, 10, 20, and 3 100nM) of specific human miRNA siRNAs for 3 days. Cell number was measured using 4 bioluminescence analysis for hiPSC-CMs treated with siRNAs or mimics for (A) hsa-miR-5 128-3p, (B) has-miR-197-3p, (C) has-miR-215-3p, (D) has-miR-140-5p, (E) has-miR-15a-6 3p, and (F) has-miR-128-3p. All data were presented as mean ± SEM. Statistical analysis 7 was performed via the Student's t-test. n=4 in each group. *p<0.05, **p<0.01, ***p<0.001, 8 and ****p<0.0001. 9

The expression levels of miRNAs were normalized to U6 reference gene. Cell numbers 1 were measured using bioluminescence analysis. Cell cycle activity was determined by 2 immunostaining using antibodies against BrdU and PH3. Cardiomyocytes were identified 3 using anti-human cTnT immunostaining. All cell nuclei were stained with DAPI. The BrdU 4 or PH3 positively stained cardiomyocyte nuclei were normalized to the total number of 5 6 cardiomyocyte nuclei and the results were presented as a percentage. (A-B) Expression of hsa-miR-128-3p (A) and its target circRNA hsa-AC096949-0001 (B) in the cells treated 7 with has-miR-128-3p mimics was evaluated. (C-E) The hsa-miR-128-3p mimics inhibited 8 9 cell proliferation as indicated by reduced bioluminescence signal (C) and the decrease in the prevalence of BrdU- and PH3-positively stained cardiomyocyte nuclei (D and E). (F) 10 hsa-miR-128-3p mimics also inhibited the expression of MME. All data were presented 11 as mean ± SEM. Statistical analysis was performed via the Student's t-test. n=3 technical 12 replicates in each group for panels A and F. n=4 technical replicates in each group for 13 panels B and C. n=15 technical replicates in each group for panel D. n=20 technical 14 replicates in each group for panel E. *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001. 15

Supplemental Figure 10. Evaluation of the cell cycle regulatory function of hasmiR-128-3p siRNAs. hiPSC-CMs at day 28 after initiation of cardiac differentiation were
used. The efficiency of siRNA-based knockdown of miRNAs in hiPSC-CMs was
determined through qRT-PCR. The expression levels of circRNAs were normalized to

GAPDH reference gene. Cell numbers were measured using bioluminescence analysis. 1 Cell cycle activity was determined by immunostaining using antibodies against BrdU and 2 PH3. Cardiomyocytes were identified using anti-human cTnT immunostaining. All cell 3 nuclei were stained with DAPI. The BrdU or PH3 positively stained cardiomyocyte nuclei 4 were normalized to the total number of cardiomyocyte nuclei and the results were 5 6 presented as a percentage. (A-B) Expression of hsa-miR-128-3p (A) and its target circRNA hsa-AC096949-0001 (B) in the cells treated with has-miR-128-3p siRNAs was 7 evaluated. (C-E) The hsa-miR-128-3p siRNAs promoted cell proliferation as shown by 8 9 the increase in bioluminescence signal (C) and the greater prevalence of BrdU- and PH3positively stained cardiomyocyte nuclei (D and E). (F) hsa-miR-128-3p siRNAs also 10 enhanced the expression of MME. All data were presented as mean ± SEM. Statistical 11 analysis was performed via the Student's t-test. n=3 technical replicates in each group for 12 panels A and F. n=4 technical replicates in each group for panels B and C. n=23 technical 13 replicates in each group for panels D and E. *p<0.05, **p<0.01, ***p<0.001, and 14 ****p<0.0001. 15

16

1 Supplemental table 1. Batch information for RNA sequencing of neonatal pig

2 hearts

Batch	Pig ID	Company	RNA	Data analysis
ID			sequencing	
nv1	P1-s1, P1-s2, P1-	Novogene	circRNA only	circRNA (Figure
	s3; P3-s1; P3-s2,			2)
	P3-s3; P7-s1; P7-			
	s2; P7-s3; P28-s1;			
	P28-s2; P28-s3			
cd	P1-s4, P1-s5, P1-	CD Genomics	Total RNA	circRNA (Figure
	s6; P3-s4; P3-s5,			2); miRNA (Figure
	P3-s6; P7-s4; P7-			3); and mRNA
	s5; P7-s6; P28-s4;			(Figure 4)
	P28-s5; P28-s6			
nv2	P1-s1, P1-s2, P1-	Novogene	Total RNA	circRNA (Figure
	s3; P3-s1; P3-s2,			2)
	P3-s3; P7-s1; P7-			
	s2; P7-s3; P28-s1;			
	P28-s2; P28-s3			

1 Supplemental table 2. Hallmark gene sets from pathway enrichment analysis of

2 pig	circRNAs
--------------	----------

Groups	Pathway	Leading edge genes
P1 vs P3	HALLMARK_MTORC1_SIGNALIN	USO1, GGA2, NUFIP1, IFRD1,
	G	GSK3B, GSR, PGM1, CANX,
		GBE1, FADS1, MTHFD2L, IDH1
P1 vs P3	HALLMARK_MYOGENESIS	CDH13, SVIL, BAG1, IFRD1,
		MYOM1, AGL, ABLIM1, MEF2C
P1 vs P3	HALLMARK_MITOTIC_SPINDLE	DST, MYH10, KIF1B, RANBP9,
		CDC42, TLK1, STAU1,
		DLGAP5, KIF20B, NF1,
		OPHN1, ROCK1, RICTOR,
		DLG1, PDLIM5, KIFAP3
P1 vs P3	HALLMARK_MYC_TARGETS_V1	EIF4G2, XPOT, UBA2,
		FAM120A, IFRD1, CUL1,
		NAP1L1, CLNS1A, VDAC1,
		DHX15, SRPK1, SYNCRIP,
		CANX
P1 vs P3	HALLMARK_PROTEIN_SECRETI	SEC31A, DST, KIF1B, USO1,
	ON	GOLGA4, PAM, ARCN1,
		ATP1A1, ARFIP1
P1 vs P3	HALLMARK_OXIDATIVE_PHOSP	OAT, HADHA, PDHX, CPT1A,
	HORYLATION	NNT, IDH3A, ACADM, IDH2,

MTX2, VDAC1, ECH1,

		ATP6V1C1, IDH1, AFG3L2
P1 vs P3	HALLMARK_ADIPOGENESIS	GPHN, BCL2L13, ANGPT1,
		IDH3A, ACADM, PDCD4,
		PGM1, DBT, ECH1, GBE1,
		PPM1B, IDH1
P1 vs P3	HALLMARK_SPERMATOGENESI	MLLT10, STRBP, BRAF, EZH2,
	S	ZPBP
P1 vs P7	HALLMARK_MYOGENESIS	ABLIM1, SVIL, MEF2A, RB1,
		CDH13, MYOM1, SORBS1,
		ACTN2, BAG1, DMD, MEF2C
P1 vs P7	HALLMARK_ESTROGEN_RESPO	PDCD4, FKBP5, CHPT1,
	NSE_LATE	UNC13B, FDFT1, IDH2, IL6ST,
		BAG1
P1 vs P7	HALLMARK_MITOTIC_SPINDLE	DLG1, KIF20B, ROCK1, NF1,
		TLK1, RANBP9, DST, CDC27,
		CENPF, KIFAP3, PDLIM5,
		ARFGEF1, ARHGEF12,
		RAB3GAP1, KIF5B, PALLD,
		MYH10
P1 vs P7	HALLMARK_UV_RESPONSE_DN	DLG1, VAV2, SCAF8,
		BCKDHB, ATRN, ATP2C1,

		VLDLR, AKT3, INPP4B,
		PDLIM5, LAMC1
P1 vs P28	HALLMARK_MITOTIC_SPINDLE	ARHGEF12, RANBP9,
		ARFGEF1, DST, CDC27,
		KIFAP3, DLGAP5, ALMS1,
		TLK1, CDC42BPA, CCNB2,
		DLG1, KIF1B, PDLIM5, PKD2,
		RAB3GAP1, ROCK1, LRPPRC,
		MYO1E, NF1, STAU1, CENPF,
		CLIP1, MYH10, TOP2A
P1 vs P28	HALLMARK_MYC_TARGETS_V1	SYNCRIP, DDX21, XPO1,
		DHX15, XPOT, FAM120A, DEK,
		CCT3, CUL1, CANX
P1 vs P28	HALLMARK_PROTEIN_SECRETI	GOLGA4, ARFGEF1, DST,
	ON	MAPK1, ARFGAP3, USO1,
		ARFIP1, PAM, ARFGEF2,
		KIF1B, STX12, COPB1,
		SEC31A
P1 vs P28	HALLMARK_MTORC1_SIGNALIN	GGA2, GSK3B, USO1, ENO1,
	G	FADS1, PGM1, ME1, PDK1,
		CANX, SSR1, DDX39A,
		NUFIP1

P1 vs P28	HALLMARK_G2M_CHECKPOINT	SYNCRIP, CDC27, DMD,
		XPO1, TOP1, CCNB2, CUL5,
		SLC7A1, CUL1, NUP98,
		SLC38A1, DDX39A, CENPF,
		CBX1, TOP2A, RBL1, KIF4A,
		SS18, EZH2, SQLE, KIF20B,
		WRN, ABL1
P1 vs P28	HALLMARK_MYOGENESIS	SVIL, DMD, MYH7, MEF2C,
		MEF2A, ABLIM1, MYOM1,
		AGL, BAG1, SH3BGR, RB1,
		APP
P1 vs P28	HALLMARK_ESTROGEN_RESPO	IDH2, FDFT1, PDCD4,
	NSE_LATE	UNC13B, MOCS2, FKBP5,
		BAG1, TOP2A
P1 vs P28	HALLMARK_E2F_TARGETS	SYNCRIP, DLGAP5, XPO1,
		ATAD2, CCNB2, DEK, PRKDC,
		DDX39A, PRPS1, PMS2,
		TOP2A, NAP1L1, KIF4A,
		RBBP7, EZH2, MELK
P1 vs P28	HALLMARK_EPITHELIAL_MESEN	DST, HTRA1, BMP1
	CHYMAL_TRANSITION	
P1 vs P28	HALLMARK_OXIDATIVE_PHOSP	IDH2, ACADM, PDHX, ACAT1,
	HORYLATION	NDUFS2, DLD, MTX2,

		SUCLA2, LRPPRC, IDH3A,
		HADHA, ATP6V1C1, SUCLG1,
		OAT, ETFA, ECH1, AFG3L2,
		RHOT1, ETFDH
P1 vs P28	HALLMARK_HEME_METABOLISM	ARHGEF12, RBM5, CDC27,
		EIF2AK1, TOP1, ADD1,
		MOSPD1, UROS, EZH1,
		DCAF10, SYNJ1, KDM7A,
		GAPVD1
P1 vs P28	HALLMARK_ADIPOGENESIS	ACADM, PTCD3, PDCD4,
		ANGPT1, DLD, PGM1, ME1,
		ARAF, DBT, IDH3A, ACOX1,
		SUCLG1, BCL2L13, PPM1B,
		ECH1, HADH
P1 vs P28	HALLMARK_FATTY_ACID_META	ACADM, BCKDHB, PPARA,
	BOLISM	DLD, SUCLA2, ME1, UROS,
		ACOX1, SUCLG1, ECH1,

HADH, ETFDH, RDH11 P1 vs P28 HALLMARK_APICAL_JUNCTION CNN2, BMP1, NEXN, DLG1, AKT3, ADAM23, CTNNA1, NF1,

MYH10, HADH, SYMPK, VAV2

P1 vs	HALLMARK_MITOTIC_SPINDLE	DST, RANBP9, TLK1, DLG1,
P(3,7,28)		CDC27, ARHGEF12, NF1,
		KIFAP3, KIF1B, MYH10,
		KIF20B, CDC42, ARFGEF1,
		PDLIM5, DLGAP5, STAU1,
		PKD2, CENPF, ALMS1,
		ROCK1, RAB3GAP1
P1 vs	HALLMARK_MYOGENESIS	SVIL, MYOM1, ABLIM1,
P(3,7,28)		MEF2C, BAG1, MEF2A,
		CDH13, RB1, AGL, SORBS1,
		APP
P1 vs	HALLMARK_PROTEIN_SECRETI	DST, PAM, USO1, GOLGA4,
P(3,7,28)	ON	SEC31A, KIF1B, ARCN1,
		ARFGEF1, OCRL, ARFIP1,
		GALC
P1 vs	HALLMARK_G2M_CHECKPOINT	SYNCRIP, SLC38A1, CDC27,
P(3,7,28)		KIF20B, NUP98, SS18, TOP1,
		RBL1, ARID4A, CUL1, EZH2,
		WRN, SLC7A1, DDX39A,
		CENPF, XPO1
P1 vs	HALLMARK_MYC_TARGETS_V1	SYNCRIP, FAM120A, DHX15,
P(3,7,28)		NAP1L1, CUL1, UBA2, SRPK1,

		XPOT, HDAC2, DDX21, XPO1,
		DEK, PTGES3, CCT3
P1 vs	HALLMARK_APICAL_JUNCTION	DLG1, NF1, VAV2, AKT3,
P(3,7,28)		MYH10, SYMPK, CNN2, NEXN,
		CTNNA1
P1 vs	HALLMARK_ADIPOGENESIS	ACADM, PDCD4, ANGPT1,
P(3,7,28)		PPM1B, PGM1, IDH3A,
		BCL2L13, DBT, ME1, DLD,
		ECH1, SORBS1, GPHN,
		PTCD3
P1 vs	HALLMARK_HEME_METABOLISM	RBM5, MOSPD1, CDC27,
P(3,7,28)		ARHGEF12, EIF2AK1, KDM7A,
		TOP1, GAPVD1, NNT, PICALM,
		ADD1, CAST, EZH1, BTRC
P1 vs	HALLMARK_MTORC1_SIGNALIN	GGA2, USO1, NUFIP1, PGM1,
P(3,7,28)	G	MTHFD2L, GSK3B, DDX39A,
		ME1, VLDLR, PDK1, GSR

1 Supplemental table 3. Hallmark gene sets from pathway enrichment analysis of

2 pig mRNAs

Groups	Pathway	Leading edge genes
P1 vs P3	HALLMARK_INTERFERON_ALPHA	ISG15, PARP14, IFI44, MX1,
	_RESPONSE	IFI44L, UBE2L6, PLSCR1, BST2,
		TRIM14, B2M, IFI30, PARP9,
		TENT5A
P1 vs P3	HALLMARK_INTERFERON_GAMM	ISG15, PARP14, IFI44, MX1,
	A_RESPONSE	IFI44L, SOD2, UBE2L6,
		PLSCR1, BST2, CD86, MX2,
		TRIM14, B2M, IFI30
P1 vs P3	HALLMARK_HYPOXIA	SLC2A5, EDN2, CCN2, AK4,
		TMEM45A, CP, HAS1, ENO1,
		ADM, ERO1A, RORA, ZNF292,
		FAM162A, ANXA2
P1 vs P3	HALLMARK_EPITHELIAL_MESENC	PTX3, FSTL3, CCN2, PLOD2,
	HYMAL_TRANSITION	CRLF1, SPOCK1, FBN1, PFN2,
		LAMA3, FSTL1, TNC, COL12A1,
		CDH11, TPM1, NT5E, VCAN,
		COL8A2, PLAUR, TPM4,
		GADD45A, PLOD1, FBLN2,
		ABI3BP, FERMT2, GADD45B,
		EMP3

P1 vs P7 HALLMARK HYPOXIA SLC2A5, HAS1, ENO1, ALDOB, PFKL, ISG20, PLAUR, AK4, TMEM45A, BHLHE40, SLC6A6, ERO1A, GAPDHS, PRDX5, RRAGD, FAM162A, ZNF292, NCAN, P3H1, PPP1R15A, ERRFI1 P1 vs P7 HALLMARK INTERFERON ALPHA ISG15, MX1, ISG20, BST2, _RESPONSE IFI30, UBE2L6, PARP14, PARP9, IFI44, BATF2, MVB12A, PLSCR1 P1 vs P7 HALLMARK OXIDATIVE PHOSPH NDUFA2, ATP5F1D, COX8A, NDUFB4, LDHB, NDUFS8, ORYLATION TCIRG1, ATP6V0B, ATP5PF, COX4I1, CYB5A, NDUFV1, ATP5PO, ATP5F1A, GPX4, NDUFS3, OPA1, UQCRC1, COX7A2, NDUFV2, TOMM70, TIMM10, NDUFA8, MRPS22, SDHB P1 vs P7 HALLMARK INTERFERON GAMM ISG15, MX1, ISG20, BST2, A_RESPONSE IFI30, UBE2L6, SOD2, MX2,

		PARP14, IFI44, BATF2,
		PLSCR1, IRF8
P1 vs P7	HALLMARK_MTORC1_SIGNALING	ENO1, PFKL, TFRC, IFI30, AK4,
		BHLHE40, SLC6A6, ERO1A,
		CTH, FADS1, P3H1, FKBP2,
		SERP1, ME1, TOMM40,
		HMGCR, PPP1R15A, STIP1,
		ITGB2, PSMC4, GBE1, HSPA5,
		PLOD2
P1 vs P7	HALLMARK_G2M_CHECKPOINT	TTK, CDC20, KIF23, NDC80,
		POLQ, CDKN3, CDKN2C,
		CCNB2, KIF2C, CHAF1A,
		RAD54L, INCENP, MCM2, E2F2,
		STMN1, FBXO5, SMC4, KIF15,
		SMC2, RPA2, GINS2, STIL,
		UBE2S, ORC6, HMGN2
P1 vs P7	HALLMARK_E2F_TARGETS	CDC20, BUB1B, CDKN3,
		DLGAP5, CDKN2C, CCNB2,
		KIF2C, GINS3, MCM2, MELK,
		CDCA8, STMN1, DEPDC1,
		SMC4, WEE1, MMS22L, RPA2,
		POLD1, PSIP1, UBE2S, LIG1,
		ORC6, DUT

P1 vs P7	HALLMARK_MITOTIC_SPINDLE	TTK, PIF1, KIF23, NDC80,
		DLGAP5, CCNB2, KIF2C,
		INCENP, FBXO5, SMC4, KIF15,
		ECT2, CDK5RAP2, CKAP5
P1 vs P28	HALLMARK_EPITHELIAL_MESENC	TNC, COL8A2, LAMA1, PTX3,
	HYMAL_TRANSITION	FBN1, SPOCK1, NT5E, CDH11,
		TPM4, COL12A1, LAMA3,
		FSTL1, APLP1, PLOD1, OXTR,
		VCAN, PLOD2, GADD45A,
		LRRC15, FBLN2, COL5A1,
		CRLF1, PLAUR, GPX7, THBS2,
		EMP3, PFN2, TGFBI, PPIB
P1 vs P28	HALLMARK_SPERMATOGENESIS	SLC2A5, SNAP91, ADCYAP1,
		SCG3, KIF2C, CCNB2, TEKT2,
		MEP1B, TTK, PHF7, GAPDHS,
		PCSK4
P1 vs P28	HALLMARK_G2M_CHECKPOINT	KIF15, E2F2, KIF23, CHAF1A,
		SLC7A5, KIF2C, RAD54L,
		NDC80, CCNB2, MCM2, GINS2,
		TTK, FBXO5, STIL, UBE2S,
		POLQ, STMN1, CDC20, SMC2,
		SNRPD1, MARCKS

P1 vs P28 HALLMARK HYPOXIA SLC2A5, HAS1, CP, TMEM45A, LXN, AK4, ENO1, PFKL, ANXA2, EDN2, GAPDHS, NCAN, TPBG, COL5A1, PLAUR, TGFBI, SLC6A6, AKAP12, AMPD3, CA12 P1 vs P28 HALLMARK MTORC1 SIGNALING PSAT1, ME1, AK4, ENO1, PFKL, SLC7A5, HMGCR, PLOD2, MCM2, FADS1, PRDX1, PSMC4, SLC6A6, ARPC5L, TOMM40, TFRC, SORD, SLC1A5, IFI30, DHCR24 P1 vs P28 HALLMARK_E2F_TARGETS CDCA8, DEPDC1, MELK, DLGAP5, KIF2C, BUB1B, CCNB2, MCM2, MMS22L, UBE2S, STMN1, CTPS1, CDC20, TFRC P1 vs P28 HALLMARK OXIDATIVE PHOSPH COX7A2, NDUFA2, COX8A, ORYLATION SLC25A20, ATP5F1A, ATP5PO, NDUFA8, OPA1, GOT2, ATP6V0B, UQCRC1, ATP5F1D, NDUFB4, TIMM10, MRPL34,

NDUFV1, ETFB, MRPS15,

GPX4, ALAS1, NDUFS3,

ATP5PF, NDUFV2, TOMM70,

MRPS11

P1 vs P28	HALLMARK_ALLOGRAFT_REJECT	SIT1, TRAT1, PRKCG, LCK,
	ION	IL12RB1, CCR2, MAP4K1,

IL12RB1, CCR2, MAP4K1,

CCR5, CD80, NLRP3, CD96,

NCR1, CD86, SPI1

P1 vs P28 HALLMARK INTERFERON ALPHA ISG20, BATF2, IFI44L, TENT5A, RESPONSE UBA7, IFI44, MX1, ISG15,

PARP9, PARP14

P1 vs P28 HALLMARK INTERFERON GAMM ISG20, BATF2, IFI44L, NLRC5,

A_RESPONSE

IFI44, MX1, ISG15, PARP14,

CD274, CD86, EIF4E3, B2M,

UBE2L6, PDE4B, TNFAIP3,

TRIM14, MX2

P1 vs P28 HALLMARK INFLAMMATORY RE CXCR6, TNFSF15, LCK, ROS1, SPONSE RASGRP1, CSF3R, C5AR1,

ABCA1, PTAFR, NLRP3

P1 vs HALLMARK EPITHELIAL MESENC PTX3, TNC, SPOCK1, COL8A2,

P(3,7,28) HYMAL TRANSITION CDH11, COL12A1, PLOD2,

PLAUR, PFN2, PLOD1, FBN1,

VCAN, LAMA3, TPM4, APLP1,

		NT5E, FSTL1, EMP3, GADD45A,
		PPIB, FSTL3, TPM1, FBLN2
P1 vs	HALLMARK_OXIDATIVE_PHOSPH	NDUFA2, COX7A2, COX8A,
P(3,7,28)	ORYLATION	NDUFB4, ATP5F1A, ATP5PO,
		ATP5F1D, OPA1, ATP5PF,
		ATP6V0B, NDUFA8, SLC25A20,
		CYB5A, GPX4, UQCRC1,
		NDUFV2, MRPL34, TOMM70,
		NDUFS3, GOT2, NDUFV1,
		TIMM10, NDUFS8, TCIRG1,
		MRPS15, COX4I1
P1 vs	HALLMARK_HYPOXIA	SLC2A5, HAS1, TMEM45A,
P(3,7,28)		ENO1, AK4, CP, PFKL, EDN2,
		PLAUR, SLC6A6, GAPDHS,
		FAM162A, ANXA2, ERO1A,
		ZNF292, RRAGD
P1 vs	HALLMARK_MTORC1_SIGNALING	ENO1, AK4, TFRC, ME1,
P(3,7,28)		PLOD2, PFKL, IFI30, HMGCR,
		SLC6A6, ERO1A, PRDX1,
		PSMC4, FADS1, SERP1,
		TOMM40, FKBP2, SORD, ETF1,
		PSAT1, SLC1A5, P3H1, PSMC6,
		HSPA5

P1 vs	HALLMARK_G2M_CHECKPOINT	CDC20, TTK, CDKN3, KIF23,
P(3,7,28)		NDC80, INCENP, CDKN2C,
		POLQ, RAD54L, CCNB2, KIF2C,
		SLC7A5, CHAF1A, MCM2,
		E2F2, TGFB1, SMC4, BCL3,
		STMN1, TRAIP, FBXO5, TLE3,
		SMC2
P1 vs	HALLMARK_E2F_TARGETS	CDC20, GINS3, CDKN3,
P(3,7,28)		CDKN2C, BUB1B, CCNB2,
		WEE1, DLGAP5, KIF2C, PSIP1,
		MCM2, POLD1, LIG1, SMC4,
		CDCA8, STMN1, MMS22L,
		MELK, DEPDC1, SSRP1, RPA2
P1 vs	HALLMARK_ALLOGRAFT_REJECT	SIT1, LCK, TRAT1, PRKCG,
P(3,7,28)	ION	ELANE, IL12RB1, CCR2,
		MAP4K1, CCR5, TGFB1, BCL3
P1 vs	HALLMARK_BILE_ACID_METABOL	ALDH1A1, LCK, SULT2B1,
P(3,7,28)	ISM	SLC27A5, LIPE, ABCA1,
		ALDH8A1, RXRA
P1 vs	HALLMARK_ESTROGEN_RESPON	RASGRP1, SULT2B1, DHRS3,
P(3,7,28)	SE_EARLY	PMAIP1, OLFM1, SLC7A5,
		CISH, TTC39A, TPD52L1,
		FAM102A, RPS6KA2, LRIG1,

		CBFA2T3, SEMA3B, SH3BP5,
		NRIP1, FRK
P1 vs	HALLMARK_MITOTIC_SPINDLE	PIF1, TTK, KIF23, NDC80,
P(3,7,28)		INCENP, CCNB2, DLGAP5,
		KIF2C, SMC4, CDK5RAP2,
		PLEKHG2, SYNPO, FBXO5,
		ARAP3, MAP1S, EPB41, ABL1,
		KPTN, TSC1, SPTAN1, ECT2,
		CYTH2, KIF15, NCK1, CKAP5

Conserved	Chro	circAtlas Location	Closest circRNA	circAtlas Location of	CD genomic location
CircRNA ID	mos		ID (as per our	closest circRNA	(Based on our data)
(Used)	ome		data)		
sus-CDH13_0001	6	5311874-5318531	sus-CDH13_0001	5311874-5318531	5311873-5318531: -
sus-ABLIM1_0001	14	136012794-136046886	sus-ABLIM1_0009	135917668-135932668	135913411-135918906: -
sus-RNF13_0002	13	98121118-98191973	sus-RNF13_0006	98146479-98191973	98162591-98191973:+
sus-KIF1B_0001	6	64542087-64546864	sus-KIF1B_0001	64542087-64546864	64542086-64545302
sus_MYOM1_0001	6	96504635-96512930	sus_MYOM1_0007	96528976-96559830	96538670-96541892:+
sus_TBCD_0003	12	315608-323713	sus_TBCD_0001	289310-301790	301658-323714:+
sus-PDLIM5_0001	8	134379373-134409025	sus-PDLIM5_0008	134355181-134379557	134379372-134409025:-
sus-AGL_0001	4	129654375-129659295	sus-AGL_0386	sus-AGL_VLJW2*	129789460-129792899
sus-	No mat	ching sequence in the data	abase		
ENSSSCG000000					
26041_0001					

Supplemental table 4. Genomic information for validated circRNAs

1 Supplemental table 5. The match of pig circRNAs to their corresponding human

2 circRNAs

circRNA ID (pig)	circRNA ID (human)
sus-CDH13_0001	None
sus-ABLIM1_0001	hsa-ABLIM1_0001
sus-RNF13_0002	hsa-RNF13_0004
sus-CDC42_0001	None
sus-KIF1B_0001	hsa-KIF1B_0001
sus-MYOM1_0001	hsa-MYOM1_0001
sus-TBCD_0003	None
sus-PDLIM5_0001	hsa-PDLIM5_0001
sus-AGL_0001	hsa-AC096949_0001
sus-ENSSSCG00000026041_0001	None

3

4

1 Supplemental table 6. Key reagents and resources.

Chemicals	Source	Cat. No
B27 supplement	Gibco	17504044
B27 supplement minus insulin	Gibco	A1895601
Bovine Serum Albumin (BSA)	Thermo Fisher Scientific	BP9706100
CHIR99021	BioGems	2520691
D-Luciferin	Sigma-Aldrich	L9504
DMEM	Corning	MT10013CV
DPBS	Gibco	14190250
Dimethyl sulfoxide	Sigma-Aldrich	67-68-5
DAPI	Invitrogen	D1306
High-Capacity RNA-to-cDNA™	Applied Biosystems™	4387406
Kit		
iPS DF19-9-7T	WiCells Inc	FTDL-01
IWR-1	BioGems	1128234
KAPA SYBR FAST qPCR Kits	Roche	07959486001
Illumina Ribo-Zero Plus rRNA	Illumina Inc.	20037135
Depletion Kit		
LightCycler 480 SYBR Green I	Roche Inc	04887352001
Master		
Lipofectamine™ RNAiMAX	Thermo Fisher Scientific	13778-100
Matrigel	Thermo Fisher Scientific	CB356253
mTeSR™ Plus kit	Stem Cell Technologies	100-0276

MicroRNA first-strand synthesis	Takara Bio USA	638316
and miRNA quantitation kit		
NEBNext® Ultra™ II Directional	New England Biolabs	E7760L
RNA Library Prep Kit		
Newborn Calf Serum, New	Thermo Fisher Scientific	16010159
Zealand origin		
Propidium lodide - 1.0 mg/mL	Thermo Fisher Scientific	P3566
Solution in Water		
Qubit™ RNA High Sensitivity	Thermo Fisher Scientific	Q32852
(HS) Assay Kits		
RPMI 1640	Gibco	11875119
RPMI 1640 with no glucose	Gibco	11879020
RNeasy mini kit	QIAGEN	74104
RIPA Lysis and Extraction Buffer	Thermo Fisher Scientific	89901
Silencer® Select Negative	Thermo Fisher Scientific	4390843
Control #1 siRNA		
Sodium azide	Sigma Aldrich Inc.	26628-22-8
Two-well Chamber Slide	Thermo Fisher Scientific	154852
TNNT2 RNA Alexa Fluor 568	Thermo Fisher Scientific	PF-210
probe		
ViewRNA™ ISH Cell Assay Kit	Thermo Fisher Scientific	QVC0001

Chemicals	Dlutions	Source	Cat. No
Cardiac Troponin T	1:100	Abcam	ab8295
BD Pharmingen™	1:50	BD Biosciences	565744
Alexa Fluor® 647			
Mouse Anti-Cardiac			
Troponin T			
BrdU (5-bromo-2'-	1:100	Abcam	ab142567
deoxyuridine)			
PH3	1:200	Sigma Aldrich Inc.	06-570
Alexa Fluor® 488	1:100	JACKSON	712-545-150
AffiniPure Donkey Anti-		IMMUNORESEARCH	
Rat IgG (H+L)			
Alexa Fluor® 488	1:100	JACKSON	711-545-152
AffiniPure Donkey Anti-		IMMUNORESEARCH	
Rabbit IgG (H+L)			
Alexa Fluor® 594	1:100	JACKSON	711-585-152
AffiniPure Donkey Anti-		IMMUNORESEARCH	
Rabbit IgG (H+L)			
Alexa Fluor® 594	1:100	JACKSON	715-585-150
AffiniPure Donkey Anti- IMMUNORESEARCH			
Mouse IgG (H+L)			

1 Supplemental table 7. Primary and secondary antibodies

- 1 Supplemental table 8. Primer sequences for qRT-PCR based validation of
- 2 circRNA expression in pig hearts and human induced pluripotent stem cells-
- 3 derived cardiomyocytes

CircRNA ID		Primer sequences
sus-CDH13_0001	Forward	AGCATCAGACCATCAGTTTCAAG
	Reverse	TGTGGCGGGATCATCCTTGT
sus-ABLIM1_0001	Forward	AAGAATGAAGTAATGCT TTGAGAAAAGGAAAT
	Reverse	ACATGATTCAGCAATCCCACT
sus-RNF13_0002	Forward	TTCAAAAAGTATAATTTTGAAAATGCATCTCAG
	Reverse	ACCTTCAGCCGGAAGTCTAT
sus-CDC42_0001	Forward	GATACTGCAGGTCATCATCAAATTTG
	Reverse	ATCGCCCACAACAACACACT
sus-KIF1B_0001	Forward	GCCAAGCCCGCTCTGTGTTG
	Reverse	TGGATGCATTAGCTCCTCCATT
sus-MYOM1_0001	Forward	CGCAAAGCCCGAAACTTCAA
	Reverse	GCGTCAAAATCTACCCCAACAGG
sus-TBCD_0003	Forward	CTTCCCGACTCTCGGACGGC
	Reverse	GGTGGCAGCATGGGGTAGAC
sus-PDLIM5_0001	Forward	ATCTTGAAAGCAGCTAGGGATTGGG
	Reverse	TCTGAGGTCCCAGGCATCAT
sus-AGL_0001	Forward	ATTCTTGGGCCTGTAGTTCTGG
	Reverse	TAAGCATAGCACTGGCGTGT
sus-ENSSSCG	Forward	ACCATCAACCATTGTAGCTTAGT

- 00000026041_0001 Reverse AGCCCTACTTACAACAGCCAG
- GAPDH-pig Forward GTGAACGGATTTGGCCGCA

Reverse AAGGGGTCATTGATGGCGAC

hsa-ABLIM1_0001 Forward AGAAACCACCTTCTCCAGCATG

Reverse AGGCTCCCCACATTTATGGC

hsa-RNF13_0004 Forward GTACATAAATTCAAGAAAGTATAACTTTGAAAATG

Reverse GTGGCCCCTTTAAACCTTCAG

- *hsa-KIF1B_0001* Forward TGGTTCAAACTTGTGGGGAGGAC
 - Reverse TCCAAGGAAACAGGAAACTTTCGG
- *hsa-MYOM1_0001* Forward CCAGAACCTCGTGTCACGTGAC

Reverse CTCGGTTTCTTCTAACGTCCTGAG

- *hsa-* Forward ATGTTCATCTTGAGAGGTTTTAATATAACTGC
- AC096949_0001 Reverse GTGGCTGGGATTCCTCTGTT
- hsa-PDLIM5_0001 Forward CAACGGCCAAACCAAGGAGCC
 - Reverse CCTTGGACGCCAGTCTTCAGT
- MME-human Forward GATCTGCTGAGGGGTCACG
- MME-human Reverse TGTACAAGGCTCAGTGGTGG
- GAPDH-human Forward GGAGCGAGATCCCTCCAAAAT
 - Reverse GGCTGTTGTCATACTTCTCATGG

1 Supplemental table 9. Sequences of siRNAs for circRNA knockdown in human

Genes	Sequences		Concentration
			(nM)
hsa-	Sense	CUACCAUCCCAAUUGCUUUtt	80
ABLIM1_0001	Antisense	AAAGCAAUUGGGAUGGUAGgt	80
hsa-	Sense	AGAGUAUCACAGACGUGAAtt	10
RNF13_0004	Antisense	UUCACGUCUGUGAUACUCUtt	10
hsa-KIF1B_0001	Sense	AGACCGAAAGUUUCCUGUUtt	10
	Antisense	AACAGGAAACUUUCGGUCUct	10
hsa-	Sense	GGACGUUAGAAGAAACCGAtt	80
MYOM1_0001	Antisense	UCGGUUUCUUCUAACGUCCtg	80
hsa-	Sense	GGUAUUUUCUUCGUGCAAAtt	80
AC096949_0001	Antisense	UUUGCACGAAGAAAAUACCca	80
hsa-	Sense	GAAUCUGAAGCCGAUAAUAtt	40
PDLIM5_0001	Antisense	UAUUAUCGGCUUCAGAUUCtt	40

2 induced pluripotent stem cells-derived cardiomyocytes

- 1 Supplemental table 10. Sequences of siRNAs for miRNA knockdown and
- 2 overexpression in human induced pluripotent stem cells-derived cardiomyocytes

miRNAs		Sequences (5'-3')
hsa-miR-15a-3P	siRNA	GAGGCAGCACAATATGGCCT
hsa-miR-140-5P	siRNA	ACCATAGGGTAAAACCACT
hsa-miR-197-3P	siRNA	CTGGGTGGAGAAGGTGGTGA
hsa-miR-215-3P	siRNA	TGGCCTAAAGAAATGACAGA
hsa-miR-31-5P	siRNA	GCTATGCCAGCATCTTGCC
hsa-miR-128-3P	siRNA	AAAGAGACCGGTTCACTGTG
hsa-miR-15a-3P	Mimic	CAGGCCAUAUUGUGCUGCCUCA
hsa-miR-140-5P	Mimic	CAGUGGUUUUACCCUAUGGUAG
hsa-miR-197-3P	Mimic	UUCACCACCUUCUCCACCCAGC
hsa-miR-215-3P	Mimic	UCUGUCAUUUCUUUAGGCCAAUA
hsa-miR-31-5P	Mimic	AGGCAAGAUGCUGGCAUAGCU
hsa-miR-128-3P	Mimic	UCACAGUGAACCGGUCUCUUU

- **Supplemental table 11. Primer sequences for qRT-PCR based validation of miRNA**
- 2 expression in human induced pluripotent stem cells-derived cardiomyocytes

CircRNA ID		Primer sequences
hsa-miR-31-5p		5'AGGCAAGAUGCUGGCAUAGCU
hsa-miR-197-3p		5'UUCACCACCUUCUCCACCCAGC
hsa-miR-215-3p		5'UCUGUCAUUUCUUUAGGCCAAUA
hsa-miR-214-5p		5'UGCCUGUCUACACUUGCUGUGC
hsa-miR-105-3p		5'ACGGAUGUUUGAGCAUGUGCUA
hsa-miR-140-5p		5'CAGUGGUUUUACCCUAUGGUAG
hsa-miR-15a-3p		5'CAGGCCAUAUUGUGCUGCCUCA
hsa-miR-128-3p		5'UCACAGUGAACCGGUCUCUUU
U6	Forward	CTCGCTTCGGCAGCACAT
	Reverse	TTTGCGTGTCATCCTTGCG