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Supplementary Figures 

 
Figure S1. SCGP partitioning of simulation data, related to Figure 1. 
A. Simulated data is adopted from Chidester et al.[s1], which modeled the structure of the mouse cortex. Each simulated layer of the 
cortex consists of different combinations of glial cells, excitatory and inhibitory neurons (e.g., eL1, i1, g1). SCGP identified ground truth 
layer structures across diverse settings (i.e., cell density, number of layers). B. Quantitative measurements revealed that joint clustering 
of multiple samples derived from the same data distribution always yield better performances than independent clustering. Notably, 
thinner layers (2-3 cells) are typically more challenging to recognize. C. SCGP identified ground truth tissue structures in TMA data 
simulated using different strategies: Condition 1 consists of a base layer and two major structures; Condition 2 consists of a base layer 
and a much wider variety of tissue structures; Condition 3 defines segments of equal sizes and assigns them to different tissue 
structures randomly. Cells are sampled for each tissue structure based on a predefined cell type composition mapping. Note that both 
cell types and biomarker expression are directly sampled from a real head-and-neck cancer dataset[s2] that we have previously studied. 
D. In condition 3 simulation, we explicitly add novel structures (e.g., red, purple partitions) to the query samples. SCGP-Extension 
successfully recognized both known and novel tissue structures across all query samples, achieving comparable or superior accuracy 
to the reference samples. E. SCGP and SCGP-Extension achieved robust performances (ARI > 0.7) across diverse simulated TMA 
data regardless of shapes and complexities (i.e., 10+ tissue structures). 
  



 
3 

 
Figure S2. More examples from the DKD Kidney dataset, related to Figure 2. 
A. Clustering/partitioning outputs from unsupervised annotation tools on four samples of different DKD classes are illustrated. 
Qualitatively, Leiden clustering identified cell types that are not spatially smooth; CN defined an extra cluster (cyan) for proximal 
tubules; UTAG defined multiple smaller clusters (light green, gray, purple) that do not correspond to any compartments; Spatial LDA 
and SpiceMix had more noisy annotations for glomeruli (orange); SpaGCN misrecognized some regions as blood vessels; SCGP 
misrecognized some fibrotic glomeruli as blood vessels. B-C. Additional quantitative metrics (V measures and Rand index) show 
consistent results. P values are calculated using the Wilcoxon signed-rank test. D. Full heatmap for all biomarkers tested in the DKD 
Kidney dataset shows signature protein biomarkers for SCGP partitions, with each partition corresponding to a manually annotated 
compartment. 
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Figure S3. Ablation experiments on the DKD Kidney dataset, related to Figure 2. 
A. SCGP established a hybrid graph consisting of spatial edges and feature edges. Excluding either component will cause major 
performance decay: Excluding spatial edges degrades SCGP to a vanilla Leiden clustering, resulting in noisy and unsmooth partitions; 
Excluding feature edges disconnects distant tissue structures and leads to inconsistent outputs. Switching the type of spatial edges 
does not significantly change outputs. B. ARIs of different variants show consistent results as observed in panel A. C-D. To evaluate 
how segmentation noise might affect partition outcome, we experimented with randomly excluding nodes/cells from the graph. 
Outcomes and performances are robust and stable even after 20% dropout. E-F. We examined the influence of a hyperparameter 
choice: num of feature edges. More feature edges (>5) resulted in fragmented partitions and worse alignment. Optimal performances 
were observed when the number of edges is set between 2 and 4 in this experiment. G. Granularity of the partition outcomes can be 
controlled by the resolution parameter.  
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Figure S4. Partitioning of DLPFC samples, related to Figure 3. 
A. Joint unsupervised annotations recognized major layers in four DLPFC samples. Notably, characterization of the two thinner layers 
(Layer 2 and Layer 4) were worse in most methods. B. Approaches utilizing partial ground truth annotations were examined.(continued) 
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(continued) The predictive modeling approach trained a gradient boosted tree model (XGBoost) with the ground truth annotations and 
applied it to the rest. SCGP-Extension can be adapted with ground truth annotations as references. The Label2-Extension variant 
demonstrated the best performances. C. SCGP-Extension can be applied with noisy references: when using UTAG annotations (fitted 
on Reg 151673) as references, resulting query partitions did not show better alignment with ground truth, but captured the same spatial 
compartmentalization patterns as the reference region. D. Quantitative metrics show performances of unsupervised annotation tools. 
Methods utilizing partial ground truth achieved best performances, in which extensions of ground truth labels performed better than 
XGBoost predictions. E. Additional quantitative metrics (V measures and F1 scores) were calculated for independent partitioning of all 
samples in DLPFC and show consistent results.  

 
Figure S5. SCGP annotations of mouse brain sections, related to Figure 3. 
A. Cell types were annotated for a coronal mouse brain section. Please refer to Zhang et al.[s3] for color details. B. Cells were further 
mapped to Allen CCFv3 to annotate brain parcels. C. SCGP accurately identified major parcels, achieving an ARI score of 0.751. D. 
Fine-grained SCGP identified more fine-grained structures. Note the layered structures in isocortex, which can be robustly extended to 
the query section (panel H). E-H. Cells in another distant section were annotated and partitioned using the reference section (panel C-
D) and SCGP-Extension, which yielded consistent results, both visually and quantitatively, with an ARI score of 0.730. I. SCGP with 
higher granularity identified fine-grained structures in the hippocampal region. 
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Figure S6. SCGP annotations of TR Kidney dataset and UCSF Derm dataset, related to Figure 4. 
A. Primary SCGP experiment on 10 samples from the TR Kidney dataset with heavy inflammation defined six major partitions 
corresponding to kidney tissue structures including tubules, glomeruli, and blood vessels. The red partition exhibits high expression of 
immune cell biomarkers, suggesting substantial immune cell infiltration. B. Partitions were extended to 5 normal samples from the TR 
Kidney dataset that have minimal inflammation. Note the absence of the immune aggregates partition and the denser arrangement of 
tubules and glomeruli. C. Primary SCGP annotations on 17 samples from experiment 1 of the UCSF Derm dataset defined major tissue 
structures including the epidermis layers, dermis layer, immune aggregates, and glands. D-F. Partitions were extended to samples from 
different experiments of the UCSF Derm dataset, yielding consistent annotations. G. Signature protein biomarker expression of the six 
kidney tissue structures are visualized in the heatmap. Note that the same set of kidney tissue structures as in Fig. 2D were derived 
despite the fact that TR Kidney dataset used a different biomarker panel. H. Signature protein biomarker expression for the major skin 
partitions identified by SCGP are visualized in the heatmap. 
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Figure S7. Annotating representative samples from TR Kidney dataset and UCSF Derm dataset using variants of SCGP, 
related to Figure 4. 
On a set of representative samples from the TR kidney dataset, A. UTAG defined partitions do not correspond well to tissue 
structures. B. SCGP failed to assign tissue structures from different conditions into the same partition. Note the different colors. C. 
Individual SCGP partitions of different samples were matched post hoc to reflect shared tissue structures. Note the vertical separation 
of partitions due to uneven background. D. SCGP-Extension enabled consistent recognition of tissue structures regardless of artifact 
and different disease conditions. On a set of representative samples from the UCSF derm dataset, E-F. Joint partitioning with 
UTAG and SCGP failed to assign tissue structures from different experiments into the same partition. Note the different colors of 
epidermal layers in the samples. G. Individual partitions of different samples were matched post hoc to reflect shared tissue structures. 
H. Reference-query extension pipeline enabled consistent recognition of tissue structures across samples from multiple experiments 
with different skin conditions. 
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Figure S8. SCGP annotations of Lung IMC dataset, related to Figure 4. 
A. Clustering/partitioning outputs from various unsupervised annotation tools on representative lung samples are visualized. When 
jointly partitioning all 26 samples, one class of tissue structures from different samples is usually assigned to disconnected partitions, as 
evidenced by the diverse colors. SCGP-Extension resolved the issue by extending reference partitions defined on a well-integrated 
subset of seven samples. Resulting partitions on the remaining samples demonstrated the best visual alignment with manual 
annotations. B-C. Quantitative metrics[s4] (homogeneity score and rand index) show that SCGP-Extension achieved the best 
performance. P values are calculated using the Wilcoxon signed-rank test. D. Signature protein biomarker expression for the tissue 
structures identified by SCGP-Extension are visualized in the heatmap, corresponding to the six manually annotated compartments. 
Note that submucosal glands and cartilage are two novel tissue structures revealed in the query samples by SCGP-Extension 
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Figure S9. Identification of tumor/stroma regions in tumor microenvironments, related to Figure 6. 
A. Tumor and stroma regions in the representative samples from UPMC-HNC were annotated by SCGP. B. Structures in the 
representative samples from the Stanford-PC dataset were annotated by SCGP. 148 tumor cores from this dataset were divided into 
two subsets: 63 and 85 cores respectively as reference and query sets for validating SCGP-Extension. Note the blue partition that 
indicates a tertiary lymphoid structure. C. Quantitative metrics (ARI, F1 scores, V measures) were calculated for all unsupervised 
annotation methods, in which SCGP/SCGP-Extension achieved superior performances. P values are calculated using the Wilcoxon 
signed-rank test. 
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Figure S10. SCGP annotations of mIF images as spatial grids of patches, related to STAR Methods. 
A. In the absence of cell segmentation, mIF images can be directly partitioned using SCGP by adopting a spatial-grid approach: Images 
were first dissected into small patches through a sliding window. Nodes were defined based on patches, with node features 
summarizing biomarker expression in the patches. Spatial edges and feature edges were constructed in a similar fashion to enable 
application of SCGP. Note that the resolution of the grid can be adjusted by varying the size of the patches. B. SCGP on the patch grids 
of three mIF images yielded similar results as cell-based SCGP, recognizing tubules, glomeruli, blood vessels, and immune aggregates 
in the tissue. In the severe DKD (IIB) sample, the fibrotic glomeruli were recognized as combinations of the basement membrane and 
normal glomeruli partitions, suggesting the degradation of normal glomerular structures into scar tissues. C. Signature protein 
biomarker expressions are visualized in the heatmap for the partitions identified by patch-based SCGP. Note the distinct immune 
aggregates partition enriched in CD45, CD68, and DAPI (i.e., higher cell density).
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Supplementary Tables 
Table S1. Details of datasets: number of samples/cells/patients, major grouping or patient characteristics, related to STAR Methods. 
 

Dataset N (samples) N (cells/spots) N (patients) Major groups / patient characteristics 

DKD Kidney 17 137,654 12 

Kidney sections with different DKD classes: 
● Healthy kidneys from diabetic individuals (DM): 7 sections 
● DKD class IIA: 2 sections 
● DKD class IIA-B: 3 sections 
● DKD class IIB: 4 sections 
● DKD class III: 1 section 

DLPFC 12 47,681 3 Postmortem DLPFC samples from three independent neurotypical adult donors. 

ABCA-1 2 57,731 1 
MERFISH spatial transcriptomics dataset of a single adult mouse brain. 
Parcellation is defined by aligning cells to the 3D Allen-CCF. 

TR Kidney 22 765,129 22 
Kidney samples sorted into two groups: 

● Case group: 17 samples (transplant rejection) 
● Control group: 5 samples (normal) 

Lung IMC 26 69,830 3 
Lung samples from three healthy donor lung specimens: sections of airways 
extending from proximal bronchi and succeeding divisions to terminal and respiratory 
bronchioles. 

UCSF Derm 44 588,867 33 

Skin samples with different skin conditions: 
● Atopic Dermatitis (AD) 
● Normal (N) 

The dataset is collected from 4 experiments: 
● Experiment 1: 22 samples (22 AD) 
● Experiment 2: 11 samples (4 AD, 4 N) 
● Experiment 3: 3 samples (3 N) 
● Experiment 4: 8 samples (2 AD, 3 N) 

UPMC-HNC 36 175,698 24 Tumor cores from a cohort of head-and-neck cancer patients. 

Stanford-PC 148 815,463 148 Tumor cores from a cohort of pancreatic cancer patients, separated into two subsets 
containing 63 and 85 cores each. 
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Table S2. Running time and memory usage of unsupervised annotation methods, related to STAR Methods. 

 

Method DKD Kidney 
(17 samples, 137,654 cells) 

DLPFC 
(4 samples, 14,364 spots) 

Time Memory (Peak) Time 

KMeans <10s 
KMeans: 2s 179 MB <10s 

KMeans: 1s 

Leiden[s5] 1min 
Leiden: 50s 2792 MB <10s 

Leiden: 5s 

CN[s6] 
24s 
Composition vectors: 22s 
KMeans: 2s 

61 MB N/A 

UTAG[s4] 
2min 
Aggregate expression: 53s 
Leiden: 50s 

2426 MB 
12s 
Aggregate expression: 7s 
Leiden: 5s 

Spatial LDA[s7] 
25min 
Count vectors + spatial prior: 30s 
LDA: 1500s 

64.6 GB N/A 

BayesSpace[s8] N/A N/A 17min 
Parameter estimation: 1030s 

SpaGCN[s9] 
7min 
Construct graph: 68s 
GCN optimization: 360s 

282.7 GB 
23s 
Construct graph: 3s 
GCN optimization: 20s 

SpiceMix[s1] 
4.5h 
Construct graph: 10s 
Louvain: 1000s 
Optimization (100 iterations): 15000s 

11.48 GB 

1.25h 
Construct graph: 5s 
Louvain: 30s 
Optimization (200 iterations): 
4500s 

SCGP 
1min 
Construct graph: 30s 
Leiden: 30s 

1434 MB 
<10s 
Construct graph: 2s 
Leiden: 2s 

SCGP- 
Extension 

2min 
Reference SCGP (14 samples): 55s 
Pseudo-nodes: 10s 
Query extension (3 samples): 60s 

1125 MB 
10s 
Reference SCGP (1 sample): 1s 
Pseudo-nodes: 1s 
Query extension (3 samples): 8s 
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