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MOTIVATION Annotating tissue structures provides an important layer of biological interpretation from
spatial molecular data. Uniform and consistent identification of structures across different batches, experi-
ments, and diverse disease conditions remains a challenging task, often requiring manual intervention. The
generalizability of annotations froma reference dataset to newor unseen data also remains amajor challenge
for methods in this arena. The current work introduces spatial cellular graph partitioning (SCGP) and its refer-
ence-query extension pipeline, SCGP-Extension, as unsupervised annotation tools that streamline and
simplify this process, enhancing the consistency, reliability, and generalization of structure annotations
across large datasets.
SUMMARY
Tissues are organized into anatomical and functional units at different scales. New technologies for high-
dimensional molecular profiling in situ have enabled the characterization of structure-function relationships
in increasing molecular detail. However, it remains a challenge to consistently identify key functional units
across experiments, tissues, and disease contexts, a task that demands extensive manual annotation.
Here, we present spatial cellular graph partitioning (SCGP), a flexiblemethod for the unsupervised annotation
of tissue structures. We further present a reference-query extension pipeline, SCGP-Extension, that gener-
alizes reference tissue structure labels to previously unseen samples, performing data integration and tissue
structure discovery. Our experiments demonstrate reliable, robust partitioning of spatial data in a wide vari-
ety of contexts and best-in-class accuracy in identifying expertly annotated structures. Downstream analysis
on SCGP-identified tissue structures reveals disease-relevant insights regarding diabetic kidney disease,
skin disorder, and neoplastic diseases, underscoring its potential to drive biological insight and discovery
from spatial datasets.
INTRODUCTION

All human organs exhibit characteristic cellular structures that

are required for homeostasis and function. These structures

are diverse in form, scale, and function and are typically

composed of multiple cell types organized into spatial patterns.
Cell Reports Methods 4, 100838, Au
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Disruptions to these structures usually indicate a disease pro-

cess.1,2 Recent advances in in situ molecular profiling tech-

niques, including spatial transcriptomics3–7 and proteomics,8–11

have allowed us to observe molecular phenotypes and cell

states in their native contexts, where interactions between en-

tities at different spatial scales—ranging from cells12 and cellular
gust 19, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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neighborhoods (CN)13,14 to tissue organization15 and patient-

level characteristics16,17—can be explored. Discovering, anno-

tating, and analyzing these functional units in consistent ways

is a major goal for the field of spatial biology.

However, in practice, annotating tissue structures in away that

both incorporates complex molecular information and aligns

with our histological understanding has been challengingwithout

manual supervision. Consistency across diverse samples, ex-

periments, or disease conditions is difficult to achieve. More-

over, existing analysis pipelines18,19 are predominantly cell

centric20–22 or geared toward small sample numbers. Together,

these issues severely limit efforts to analyze and interpret atlas-

scale spatial biology datasets.

In recent studies, computational methods integratingmolecular

profiling with spatial information have been proposed. Some of

thesemethods aim to improve the analysis of cell-level character-

istics, such as better cell-type prediction23,24 and intercellular

communication modeling.12,25 Another line of research focuses

on annotating larger structures or spatial domains, exploring

their interactions and disease relevance. Such annotations are

performed based on clustering of cell-type composition13,26 or

locally smoothed cell features,15,27 topic modeling,28 Bayesian

modeling,29 optimal transport,30 graph Fourier transform,31 and

graph neural networks.16,32,33 Many of these methods are unsu-

pervised and lack the ability to generalize—that is, the resulting

annotations or model cannot be extended to previously unseen

samples.When new data are introduced, model retraining or refit-

ting is necessary to annotate unseen data. Consequently, down-

stream analysis on structures of interest are restricted to only the

training/fitting data, as consistent annotations on out-of-sample

data cannot be reliably acquired. Similarly, recognizing tissue

structures from unseen hematoxylin and eosin (H&E)-stained pa-

thology images is a widely studied task often resolved in a super-

vised manner.34–37 However, these tools tend to be more tissue-

type specific, require substantial annotated training datasets,

and do not incorporate molecular information.

In this work, we present a universal, robust, and generalizable

tissue structure segmentation tool called spatial cellular graph

partitioning (SCGP). SCGP is a fast and flexible method designed

to identify the anatomical and functional units in any spatial tran-

scriptomic or proteomic dataset. We further introduce a refer-

ence-query extension pipeline, SCGP-Extension, which allows a

small set of reference annotations to be generalized to previously

unseen query samples. This powerful data alignment and integra-

tion method can address challenges ranging from experimental

artifacts and batch effects to disease condition differences and

more, greatly enhancing SCGP’s robustness and versatility. To

the best of our knowledge, SCGP is the first data-type-agnostic

semantic segmentation tool that is purpose built for generaliza-

tion. We demonstrate its applications to eight datasets collected

on different tissue types using diverse profiling techniques

including CO-detection by indexing (CODEX), Visium, imaging

mass cytometry (IMC), and multiplexed error-robust fluorescence

in situ hybridization (MERFISH), totaling more than 2.5 million

cells. The tissue structures identified by SCGP are evaluated

against expert annotations, benchmarked extensively against

related software tools, and applied in downstream analysis that

reveals disease-relevant biological insights.
2 Cell Reports Methods 4, 100838, August 19, 2024
RESULTS

Unsupervised partitioning of spatial cellular graphs
To address the task of tissue structure identification, we devel-

oped SCGP to perform community detection on specialized

graph representations of tissue samples. Nodes in the graphs

are small spatial units characterized by spatial coordinates and

gene or protein expression at the location (STAR Methods). In

the representative case of multiplexed immunofluorescence

(mIF) images,38 nodes are defined on cells identified through

the segmentation pipeline20 (Figure 1A). However, this concept

of nodes can be further extended to accommodate broader

spatial transcriptomics and proteomics data, such as spots in

spatial transcriptomics sequencing measurements7 or small

square patches in single-molecule fluorescence images.3 In

this study, we primarily present and discuss cell- and spot-

based SCGP analysis. An alternative patch-based SCGP exper-

iment can be found in Figure S10.

Two types of edges are constructed between nodes (Fig-

ure 1B; STAR Methods). Spatial edges are constructed between

nodes based on Delaunay triangulation of node coordinates.

These edges aim to capture the adjacency relationships be-

tween cells. Feature edges are constructed between nodes

that share similar expression profiles.

The Leiden graph community detection algorithm39 is then

applied to the graphs, yielding partitions that represent the

different tissue structures (Figure 1C). The central aspect of

this method is the joint contribution of two types of edges.

Spatial edges guarantee the spatial continuity of the identified

tissue structures, differentiating the method from cell-type clus-

tering in that multi-cell tissue structures will appear as cohesive

entities. Feature edges interrelate tissue structures of the same

type even if they are spatially separated (e.g., two glomeruli

from different kidney samples), ensuring the consistency of tis-

sue structure interpretation across samples. This design reso-

nates with a customized tool developed for identifying spatial

modules in spatial enhanced resolution omics sequencing (ste-

reo-seq),27 though SCGP used much sparser feature edges to

avoid fragmentation of tissue structures (1–4 nearest neighbors;

STAR Methods; Figures S3E and S3F). Ablation experiments

(Figures S3A and S3B) show that both types of edges are neces-

sary for the operation of SCGP.We first verified the effectiveness

of SCGP using various types of simulated data representing

diverse tissue structures (Figure S1). Results showed consistent

and accurate recognition of all ground-truth structures by SCGP

across all conditions.

SCGP identifies structures in kidney tissues
To examine the ability of SCGP to recognize known tissue struc-

tures, we assessed its performance on a cohort of 17 tissue sec-

tions from 12 individuals with diabetes and various stages of dia-

betic kidney disease (DKD).40 Tissue samples were imaged

using the mIF platform CODEX9 and further annotated for four

major kidney compartments: glomeruli, blood vessels, distal tu-

bules, and proximal tubules. This cohort will be referred to as the

DKD Kidney dataset (STAR Methods) in the subsequent text.

Together with SCGP, we applied a diverse set of unsupervised

annotation tools13,15,24,28,32 to the DKD Kidney dataset. All



Figure 1. Workflow for SCGP and SCGP-Extension

(A) Raw mIF images of example kidney samples show multiple tissue structures.

(B) Graph representations of mIF images are constructed on nodes (white circles) representing cells or other spatial units. Spatial edges (solid lines) and feature

edges (dashed arrows) are constructed to reflect spatial closeness and feature similarity.

(C) Leiden graph community detection identifies partitions representing tissue structures.

(D) The query sample shares similar structures to the reference partitions.

(E) Graph representation of the query sample is constructed with additional pseudo-nodes (colored circles in the white box) extracted from the reference par-

titions. Reference-query edges (brown dashed arrows) are constructed between query nodes and pseudo-nodes.

(F) Leiden graph community detection yields both existing partitions that align with reference and novel partitions that were previously unseen.
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methods were applied to the combination of all 17 samples con-

taining 137,654 cells, i.e., in a joint partitioning manner. Clus-

tering/partitioning outputs on representative samples are visual-

ized in Figures 2A and S2A, with the leftmost images illustrating

the raw mIF images with key biomarkers. Due to the unsuper-

vised nature of the output, we reordered the output clusters of

each method in accordance with manually annotated compart-
ments. In Figure 2A, the top image for each column shows the

output, and the bottom image highlights themismatches. Across

samples, partitions annotated by SCGP frequently demon-

strated the highest fidelity to manual annotations, and they

were robust to cell segmentation noise (Figures S3C and S3D).

To evaluate the performance of each method quantitatively,

we calculated the adjusted Rand index (ARI) between
Cell Reports Methods 4, 100838, August 19, 2024 3



Figure 2. Unsupervised annotations of the DKD Kidney samples

(A) Annotations from SCGP and other unsupervised annotation methods recognized tissue structures aligned with manually annotated compartments. Nodes

representing cells are colored according to the assigned clusters/partitions in the top images, and colors not listed in the legend (e.g., cyan) refer to clusters/

partitions that cannot be matched to any compartment. Mismatched nodes are highlighted in red in the bottom images.

(B) ARIs were calculated between unsupervised annotations and manual annotations. SCGP performed significantly better than all other methods (Wilcoxon

signed-rank test).

(C) For each manually annotated compartment, F1 scores were calculated between manual annotations and the most overlapped cluster/partition.

(legend continued on next page)
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manually annotated compartments and unsupervised partitions

(Figure 2B). SCGP achieved the top performance with a median

ARI of 0.60, significantly outperforming all other methods (Wil-

coxon signed-rank test). Since ARI downweighs smaller/rarer

compartments (e.g., glomeruli, blood vessels), we calculated

additional alignment and accuracy measurements, including in-

dependent F1 scores for each compartment (Figures 2C, S2B,

and S2C; STAR Methods). These metrics better reflect perfor-

mances on less common structures, many of which have great

functional significance. We found that unsupervised discovery

of tissue architecture with graphs (UTAG)15 and SCGP per-

formed the best at recognizing glomeruli (F1 = �0.8), while

SpiceMix24 and SpaGCN32 excelled at recognizing tubule struc-

tures. Overall, SCGP achieved the best average F1 score in

discerning all manually annotated compartments.

To further validate SCGP-identified partitions, we highlighted

their relative protein expression (Figures 2D and S2D). The heat-

map corresponds well to our expectation, with CCR642 and Nes-

tin43 among the top biomarkers for glomeruli and CXCR344 and

MUC145 for proximal and distal tubules. Notably, by grouping

performance metrics by sample disease progression,41 we

found that the quality of unsupervised partitions degraded sub-

stantially with disease progression (severe DKD, class IIB/III).

This indicates how normal tissue structures and functions are

dysregulated in DKD and highlights the challenge of performing

consistent annotations across disease states (Figure 2E).

SCGP identifies major structures of the brain
Next, we assessed SCGP’s performance on spatial transcrip-

tomics measurements of human and mouse brains. We first em-

ployed a Visium7 dataset of human dorsolateral prefrontal cortex

(DLPFC).46 In contrast to the mIF approach, the Visium platform

features a grid of spatially barcoded oligonucleotide arrays that

can be used for mRNA capture and library preparation. Each

array (i.e., spot) may contain multiple cells. We adapted our

method by treating each spot as a node and defining edges

based on the grid and gene count information (STAR Methods).

DLPFC contains 12 samples annotated with 7 compartments: 6

cortical layers (L1–L6) andwhitematter.We directly compared our

methodagainstexisting toolsdeveloped for thismodality, including

BayesSpace,29 SpaGCN, and SpiceMix, in recognizing manually

annotated layers. Clustering/partitioning was performed indepen-

dently on each sample. Results on a representative sample are

demonstrated in Figure 3A, revealing a clear layer-wise pattern in

the tissue structures. Among the benchmarked methods, SCGP

and SpiceMix achieved the top ARI scores, exhibiting superior

alignment with the ground-truth compartmentsmarked by dashed

lines. Quantitative metrics (Figures 3B and S4E) demonstrated

thatSCGPachievedcomparable, if notsuperior, performance (me-

dian ARI = 0.56, median F1 = 0.65) to unsupervised annotation

tools designed specifically for Visium spatial transcriptomics.

We subsequently tested SCGP on a MERFISH-profiled sec-

tion of a whole mouse brain,47 where SCGP readily recognized
(D) Signature protein biomarkers for SCGP-identified partitions match expectatio

(E) SCGP annotations on samples with different classes of DKD show varying lev

DKD classes represent the different progression stages assigned by a nephrolog

See also Figure S2.
major brain parcels, exhibiting an overall ARI score of 0.75 (Fig-

ure 3C). Furthermore, SCGP with higher granularity accurately

identified finer structures aligned with detailed parcellation

(Figure S5).

Next, we further evaluated if jointly partitioning multiple sec-

tions would improve performance. Following the experiment

design by Chidester et al.,24 we applied unsupervised annotation

tools to the combination of four samples in DLPFC collected

from the same donor (Figures S4A–S4C). While BayesSpace,

SpaGCN, and SpiceMix performed better when jointly partition-

ing samples, UTAG and SCGP yielded worse results. Motivated

by the aforementioned challenge of partitioning different disease

states as well as how joint partitioning might suffer from inter-

sample variance, we explored means of generalizing consistent

annotations across conditions.

SCGP extends existing tissue structures to unseen
samples
In practical applications, generalizing a set of curated annota-

tions across different experiments, conditions, or disease

states is required to conduct analyses at larger scales of

data and a long-standing goal of data integration. Generaliza-

tion is useful for performing inference on prospective un-

seen data, suppressing unwanted noise or batch effects,

comparing samples across disease conditions, and detecting

previously unseen and unannotated disease states. Existing

unsupervised annotation tools have limited or non-existent

support for this functionality. Most methods (e.g., UTAG,

SpaGCN) explicitly require either retraining or refitting the

clustering model or the addition of separate prediction models

to extend existing partitions. Therefore, to address this need,

here, we present a specialized reference-query extension

pipeline, SCGP-Extension.

SCGP-Extension begins with the annotation of a small

group of high-quality reference samples, for example, by using

SCGP. Resulting partitions are assumed to represent the

ground-truth structures and referred to as reference partitions

(Figure 1D). Next, we define pseudo-nodes as representative

data nodes for each reference partition (STAR Methods). These

pseudo-nodes are explicitly added into the SCGP graphs of

unseen query samples and connected to other query nodes

based on feature similarity (Figure 1E). Finally, the graph commu-

nity detection step is conducted as before, with partitions of

the pseudo-nodes pre-assigned. Consequently, query nodes

resembling pseudo-nodes are assigned the corresponding parti-

tion, while query nodes that do not resemble any reference par-

titions form their own groups and assigned as newly discovered

or ‘‘novel’’ partitions (Figure 1F). On simulated data, SCGP-

Extension robustly identified both known and novel partitions

(Figures S1D and S1E).

To demonstrate how SCGP-Extension improves partitioning

performance, we examined its application in the DLPFC

joint partitioning experiment. Here, we established reference
ns of kidney tissue structures.

els of alignment and accuracy. Diabetes mellitus (DM, with healthy kidney) and

ist following the Tervaert classification.41

Cell Reports Methods 4, 100838, August 19, 2024 5



Figure 3. Unsupervised annotations of human and mouse brain samples

(A) A representative DLPFC sample was annotated using SCGP and other unsupervised annotation methods. Note that layer 2 and layer 4 were not fully

recognized. Boundaries between ground-truth layers are annotated as dashed lines.

(B) ARIs were calculated between unsupervised annotations and ground-truth layers on 12 samples, with each sample annotated independently.

(C) A mouse brain section profiled by MERFISH was annotated using SCGP, from which major brain parcels were identified. Boundaries between parcels are

annotated as dashed lines.

See also Figures S4 and S5.
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annotations on one sample (Figure 3A) and extended them to

the rest, simulating the application scenario where a small set

of gold-standard annotations are acquired and generalized

to the entire dataset. SCGP-Extension considerably outper-

formed joint clustering approaches in alignment and accuracy

(Figures S4A and S4D). In addition, we evaluated approaches

that directly utilized partial ground-truth annotations, consisting

of both predictive modeling and SCGP-Extension approaches,

where SCGP-Extension using partial labels demonstrated the

best performances (Figure S4D).

SCGP-Extension can also generalize across disease condi-

tions and help identify unique disease states. To demonstrate

this, we applied SCGP-Extension to generalize primary partitions

defined on healthy DKD samples to severe DKD cases. In

this scenario, glomeruli exhibit elevated collagen four and

decreased native marker expression (e.g., CCR6). Unsupervised

SCGP, joint partitioning methods, and supervised classifiers

(XGB Prediction) all struggled to correctly identify tissue charac-

teristics of severe DKD (Figures 4A, 2E, and S2A), often mis-

recognizing fibrotic glomeruli (Figure 4A, arrows). However,

SCGP-Extension preserved most of the original partitions while

uncovering two additional structures: the purple partition out-

lined fibrotic glomeruli, characterized by the depleted native

biomarkers and enriched collagen expression, and the red parti-

tion, characterized by elevated CD45 and CD68 expression

(Figures 4A and 4B), suggesting the infiltration of immune cells
6 Cell Reports Methods 4, 100838, August 19, 2024
(e.g., macrophages). Compared to joint partitioning and predic-

tive modeling, SCGP-Extension delivered more accurate results

both visually and quantitatively (Figure 4C). Furthermore, it

highlighted unique disease-specific partitions with ready biolog-

ical interpretations, offering valuable insights into disease

progression.

We next assessed the performance of SCGP in another

healthy versus disease comparison. Here, kidney tissue samples

from patients who experienced transplant rejection were parti-

tioned (TR Kidney dataset, STAR Methods), characterized by

heavily deformed native kidney structures, substantial inflamma-

tion, and immune cell infiltration. Although the measured protein

markers and disease context were different, our analysis derived

the same set of tissue structures as before (Figure 4D). Extending

partitions from reference samples with heavy inflammation

to query samples with minimal immune activities produced

consistent structures, which enabled direct comparisons be-

tween conditions (Figures 4D, S6A, S6B, and S6G). Notably,

SCGP-Extension effectively partitioned a region containing

background signal artifacts, demonstrating effective handling

of data issues that would typically require manual intervention

to find and fix (Figures S7A–S7D).

To show that SCGP-Extension can identify novel anatomical

structures in query samples, we evaluated unsupervised annota-

tion methods on an IMC dataset collected on healthy lung spec-

imens (Lung IMC dataset, STARMethods), which were manually



(legend on next page)
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annotated for anatomical structures. SCGP achieved remark-

able alignment with ground truth, but tissue structures

across samples were disintegrated and assigned to different

partitions (Figure S8A). To address this issue, we conducted pri-

mary SCGP on a small subset of samples and extended parti-

tions to the remaining samples. Notably, SCGP-Extension iden-

tified two anatomical structures (submucosal glands and

cartilage) that were absent in the reference while preserving all

known structures (Figure 4E). SCGP-Extension also achieved

significantly better alignment scores (median ARI = 0.564;

Figures 4F, S8B, and S8C) than all other benchmarked methods

(Wilcoxon signed-rank test).

SCGP-Extension can also helpmitigate batch effects between

experiments. On a cohort of skin samples collected from four

separate experiments (UCSF Derm dataset, STAR Methods),

we employed unsupervised annotation methods to define tissue

structures. The UCSF Derm dataset comprised samples of

different skin conditions sharing similar anatomical structures

(Table S1). Both UTAG and SCGP failed to link tissue structures

from different samples (Figures S7E and S7F). We then attemp-

ted SCGP-Extension by defining reference partitions on samples

from one experiment (Figure S6C) and extending them to the rest

(Figures S6D–S6F). Regardless of biases in the experiments and

differences in disease conditions, SCGP-Extension successfully

recognized consistent partitions across samples reflecting

anatomical structures (Figures 4G and S7H).

SCGP partitions assist downstream analysis of disease
states
Partitions acquired by unsupervised annotation using SCGP

reflect the anatomical and functional structures of the subject tis-

sues. In this section, we demonstrate how these tissue structures

can facilitate the analysis of disease states and enable the discov-

ery of key insights regarding disease-relevant partitions.

In the DKD Kidney experiments, samples were collected from

individuals with different DKD classes. Based on the partitioning

of these samples, we were interested in exploring correlations

between tissue structures and disease progression. Figure 5A il-

lustrates three representative samples of different DKD classes

along with their tissue structures annotated by SCGP and

SCGP-Extension. Clear visual differences between samples

can be observed: tubules and glomeruli were denser in the

healthy sample, while these structures gradually deformed

over the course of DKD, accompanied by fibrosis and infiltration
Figure 4. Versatile applications of SCGP-Extension

(A) Compared to joint partitioning or predictive models, SCGP-Extension better re

and identified a previously unseen immune aggregates partition (red boxes).

(B) Extension to severe DKD samples improved partition alignment and accurac

(C) Heatmap shows signature protein biomarkers for extended partitions in the

gregates partitions.

(D) In the TR Kidney dataset, SCGP partitioned a cohort of kidney samples with he

control samples with minimal immune responses (bottom row).

(E) In the Lung IMC dataset, SCGP-Extension recognized an anatomical struct

reference samples.

(F) ARIs calculated between unsupervised annotations and manual annotations s

signed-rank test).

(G) In the UCSF Derm dataset, SCGP-Extension consistently partitioned sample

See also Figures S6–S8.
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of immune cells. These changes were also reflected in the tissue

structures: a significant increase (p < 0.001, Jonckheere-

Terpstra test48) in the area proportion of the basement mem-

brane partition was observed across samples (Figure 5B), re-

flecting the degradation of normal kidney structures. Immune

aggregate (red) and fibrotic glomerular (purple) partitions were

identified in the severe DKD sample with SCGP-Extension,

which were not present in healthy and mild DKD samples.

Furthermore, to characterize how DKD affects glomerular

functions, we assessed the protein biomarker expression of indi-

vidual glomerulus (dashed circles in Figure 5A), annotated by

deriving connected components of the SCGP glomeruli parti-

tions. The results suggested that glomeruli undergo significant

loss of native proteins (CCR6) throughout the disease progres-

sion (p < 0.001, Jonckheere-Terpstra test; Figure 5C), with high

intra-sample and inter-sample heterogeneity.

We next applied the partition-based analysis to the UCSF Derm

dataset comprising normal samples and atopic dermatitis sam-

ples. Representative samples visualized in Figure 5D show

notable differences in terms of epidermal thicknesses and im-

mune cell densities. We verified these visual signatures using

SCGP partitions: the area proportion of the immune aggregate

partition demonstrated significant increases in atopic dermatitis

samples (p < 0.001, two-sided two-sample t test; Figure 5E).

Thicknesses of the epidermal layers were characterized using

the contours of the corresponding partition, which showed signif-

icant increases as well (p < 0.001, two-sided two-sample t test;

Figure 5F). Patients with atopic dermatitis also exhibit a much

more heterogeneous distribution of epidermal thickness.49 Thus,

SCGP empowers rapid quantitative insights from spatial molecu-

lar data.

Atlas-scale structural annotation of TMEs
Lastly, we assessed the applicability of SCGP in identifying

structures in neoplastic diseases, which are typically character-

ized by the complete disruption of normal cellular architectures

and uncontrolled growth of abnormal cells. We focused our anal-

ysis on tumor microenvironments (TMEs),50 highly structured

and complex systems containing cancer cells and a variety of

non-malignant cell types, including immune cells and stromal

cells.

Identifications of major structures in TMEs, such as tumor and

stromal regions, are crucial tasks that facilitate further investiga-

tion of critical topics including tumoral heterogeneity, dynamics
cognized the fibrotic glomeruli (purple dashed circles) in severe DKD samples

y.

severe DKD samples; note the additional fibrotic glomeruli and immune ag-

avy inflammation (top row). SCGP-Extension further extended the partitions to

ure, submucosal glands (purple), in the query samples that was not seen in

how that SCGP-Extension achieved significantly better alignments (Wilcoxon

s from multiple experiments with different skin conditions.
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of tumor-immune cell interactions, and therapeutic targeting,

among others. Extensive studies have been proposed to perform

tumor classification and segmentation on histopathology images

using various deep learning methods,36,51–53 most of which

adopt supervised learning strategies. Spatial omics, on the con-

trary, facilitate the detection of these structures in TMEs in a fully

unsupervised manner.

We benchmarked SCGP against other annotation tools to a

cohort of head and neck tumor samples (University of Pittsburgh

Medical Center-Head and Neck Cancer [UPMC-HNC]; STAR

Methods) containing 36 tumor cores and 175,000 cells. As illus-

trated in Figures 6A and S9A, a distinct separation between tumor

and stromal regions was observed after partitioning at a coarse

resolution. Quantitative metrics showed a median ARI exceeding

0.8 and an F1 score of 0.94 fromSCGP (Figure 6B), which not only

significantly outperformed competing unsupervised methods but

also matched the reported performance of H&E-based super-

vised segmentation tools. These outcomes are further verified in

another cancer study (Figures S9B and S9C).

We also performed more granular partitioning of TMEs. By de-

ploying our SCGP-Extension pipeline, we acquired consistent an-

notations of TMEs at a higher granularity (Figure 6C). In addition to

the tumor/stroma separation, several novel partitions with distinct

biomarkerprofilesandcell-typecompositionswere identified (Fig-

ure 6D). For example, an immune-rich partition was isolated from

stroma regions, which exhibited much denser immune cell popu-

lations including B cells, T cells, and macrophages. Similarly, a

uniqueCD15/granulocyte-rich partitionwas detected in the tumor

regions of multiple samples, which showed distinct morphology

and biomarker enrichment. Such results highlight the power of tis-

sue structure annotations, fromwhich distinct spatial organization

of different cell types can be discovered and examined.

DISCUSSION

In this work, we present SCGP, an unsupervised annotation tool

for spatial transcriptomics and proteomics measurements.

SCGP embeds spatial information and molecular features into

graph representations and performs Leiden graph community

detection to identify partitions corresponding to anatomical

and functional structures. The reference-query extension pipe-

line, SCGP-Extension, robustly generalizes existing tissue struc-

tures to unseen samples and recognizes unique disease states

and anatomical structures. Our experiments demonstrate the

power of SCGP and SCGP-Extension in identifying tissue struc-

tures in various data cohorts and show how tissue structures

assist downstream biomedical research and discoveries.
Figure 5. Downstream analysis of disease states with SCGP-identified

(A) Three representative samples of different DKD classes are illustrated; note t

partition (light blue-colored nodes). Glomeruli are segmented by dashed circles.

(B) Boxplot shows that the area proportion of the basement membrane partition

Each dot represents a tissue sample.

(C) Expression of native proteins (CCR6) significantly decreases (p < 0.001, Jonck

individual glomerulus, and each box summarizes glomeruli from one patient. Note

between patients from the same DKD class.

(D) Two samples from the UCSF Derm dataset with different skin conditions are

(E) Area proportion of the immune aggregate partition significantly increases in a

(F) Epidermal layers show significant thickening in atopic dermatitis samples (p <
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We compared SCGP against other unsupervised annotation

tools that similarly utilize both spatial information and molecular

profiling output. Methods such as CN, UTAG, and Spatial-LDA

define different concepts of neighborhoods, usually based on

distance thresholding, and annotate them through unsupervised

clustering. These methods tend to be inflexible to structures of

different spatial scales. Another class of methods also uses

graph representations of tissue samples to model cellular orga-

nization. Computational tools including latent variable modeling

and graph neural networks are applied on these graphs to anno-

tate nodes (cells) according to their tissue context. However,

spatially disconnected samples are difficult to annotate with

these tools. SCGP and SCGP-Extension follow a graph repre-

sentation approach and enhance it with nearest-neighbor feature

edges to weave multiple samples into one cohesive graph.

Moreover, SCGP-Extension is the first method that ad-

dresses the long-standing need of generalizing structures to

previously unseen samples. SCGP-Extension resembles su-

pervised learning tools in that models apply knowledge learned

from the reference samples (i.e., training data) to unseen query

samples (i.e., test data). Simultaneously, SCGP-Extension can

isolate previously unseen tissue structures during inference. In

practice, we have demonstrated that SCGP-Extension can help

overcome common challenges including experimental arti-

facts, batch effects, and different disease conditions. More

importantly, it can help uncover unique disease states and

anatomical structures.

SCGP and SCGP-Extension offer outstanding running

time and memory consumption performances compared to

many unsupervised annotation tools, some of which require

extensive parameter estimations or optimizations (STAR

Methods; Table S2). In practice, this advantage allows for appli-

cations to much larger datasets and facilitates model parameter

tuning to obtain optimal partitions.

SCGP and SCGP-Extension are validated on both simulated

and real datasets to model various spatial proteomics and tran-

scriptomics measurements effectively, capturing tissue struc-

tures of diverse shapes and sizes in systems with varying

levels of complexities. Minimal parameter adjustments (STAR

Methods) are required. The two major parameters for SCGP

are the density of feature edges and the granularity of partitioning

(Figures S3E–S3G). One additional parameter, the extent of

extension, is introduced in SCGP-Extension to control the bal-

ance between generalizing existing partitions and exploring

new partitions. In examples involving different disease condi-

tions, certain tissue structures may experience changes in their

expression profiles (e.g., fibrosis, immune infiltration), and the
partitions

he fibrosis of glomeruli and increase in the area of the basement membrane

significantly increases (p < 0.001, Jonckheere-Terpstra test) in DKD samples.

heere-Terpstra test) in glomeruli of patients with DKD. Each dot represents an

the heterogeneity observed within a single tissue sample (A, bottom row) and

illustrated.

topic dermatitis samples (p < 0.001, two-sided two-sample t test).

0.001, two-sided two-sample t test).



Figure 6. Annotation of major structures in TMEs by SCGP

(A) Coarse partitioning identified tumor/stroma regions in TMEs.

(B) ARIs and F1 scores were calculated between unsupervised annotations and manual tumor/stroma annotations. SCGP achieved significantly better per-

formances than other methods (Wilcoxon signed-rank test).

(C) Fine-grained partitions detected additional tissue structures in TMEs.

(D) Heatmaps show distinct cell-type enrichment and protein expression profiles of different tissue structures identified by SCGP.

See also Figure S9.
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decision of whether to integrate or separate these structures will

depend on the specific downstream applications.

Looking ahead, SCGP opens new opportunities for analyzing

and understanding spatially resolved molecular profiling data.

By inserting a middle layer between cell-level annotations and

sample-level characteristics, it facilitates analysis tailored to

specific structures of interest at scale.

Limitations of the study
We acknowledge the presence of certain caveats in SCGP and

SCGP-Extension, which hinder their applications in specific sce-

narios. One major shortcoming is that SCGP appears to be less

suitable for identifying thinly layered structures. Due to the
design of the hybrid graph, spatial edges are isotropic for the

purpose of community detection. Thin-layer structures exhibit-

ing much denser spatial connections in their normal directions

than tangential directions are harder to detect (Figures S1A

and S4A). In the DLPFC study, alternative methods (e.g.,

BayesSpace, SpiceMix) can identify thinner structures under

more granular settings, while SCGP recognizes structures in

the orthogonal direction. Refining the spatial edges to reflect

the anisotropy of tissues would be a direction to improve the per-

formance of SCGP.

Another limitation is that the outputs of SCGP and SCGP-

Extension are hard class assignments. This lack of flexibility

may limit applications in scenarios where probabilistic or mixture
Cell Reports Methods 4, 100838, August 19, 2024 11
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outputs are preferred. Oneway to accommodate this limitation is

to collect ensembled outputs from running the algorithm using

different random seeds.

Case studies presented in this work used solely biomarker

expression to define tissue structures. This can be further

improved by integrating multi-modal data. For instance, inclu-

sion of morphology information (e.g., through embeddings of

H&E staining) would greatly enrich the feature space and allow

SCGP to account for cellular- and tissue-level morphological

differences.

In addition, the concept of reference-based annotation can be

further extrapolated to prior-based annotation. Specifically,

instead of fully unsupervised partitioning, incorporating prior

knowledge of the expected tissue structures (e.g., signature bio-

markers, sizes, and shapes) could potentially yield better-aligned

results and will be a direction for future improvements. Lastly, we

acknowledge that evaluations in this study were not exhaustive of

all possible methods and datasets. We selected representative

methods spanning diverse approaches to establish the bench-

mark for SCGP. Many recent methods54–57 were not included

due to time constraints despite their competitive performances.

Moreover, quantitative performances (i.e., ARI, F1 scores) were

calculated based on manual annotations, which are subjective

and may contain intrinsic biases. To mitigate dataset-specific

biases, we performed comparisons across diverse datasets

from different institutions, though realistic performances will still

vary based on the specific tissue/disease environments.
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Stanford pancreatic cancer CODEX dataset This study Zenodo: https://doi.org/10.5281/zenodo.12682727
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Alexandro E. Trevino

(alex@enablemedicine.com).

Materials availability
This study did not generate new unique materials or reagents.

Data and code availability
d External spatial proteomics and transcriptomics datasets used in this study (Human DLPFC Visium dataset, adult mouse brain

MERFISH dataset, Lung IMC dataset, UPMC head-and-neck cancer CODEX dataset) are publicly available as of the date of

publication. Processed CODEX datasets (DKD kidney CODEX dataset, UCSF derm CODEX dataset, TR kidney CODEX data-

set, Stanford pancreatic cancer CODEX dataset) have been deposited at zenodo. All accession numbers are listed in the key

resources table. Raw data and images will be accessible through links posted at: https://gitlab.com/enable-medicine-public/

scgp. They will also be available from lead contact (A.E.T.) upon request.

d SCGPwas implemented based on Annotated data61 (https://anndata.readthedocs.io/en/latest/) and emObject62 (https://docs.

enablemedicine.com/emobject/). All source codes are publicly available at https://gitlab.com/enable-medicine-public/scgp.

An archival DOI is listed in the key resources table.

d Any additional information required to re-analyze the data reported in this paper will be available from lead contact (A.E.T.) upon

request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Eight spatial proteomics and transcriptomics datasets collected fromdiverse tissue types were examined in this work. An overview of

the statistics and primary phenotypes of these datasets can be found in Table S1. For external datasets, please refer to the source

publications for full details. For datasets introduced in this study:

TR Kidney63: Kidney samples were obtained from patients who underwent allograft nephrectomy at Stanford University Medical

Center under Institutional Review Board-approved protocols. One TMA was constructed using 2 mm cores of cortical tissue, then

stained and acquired on the PhenoCycler Fusion using a 51-plex biomarker panel, from which 5 normal and 17 transplant rejection

kidney regions were used in this study. Further clinical or patient demographic data related to these samples was not selected or

considered in this study.

Stanford-PC: De-identified tissue samples were obtained from the surgical pathology archives of Stanford Medical Center under

Institutional Review Board-approved protocols. Tumor cores (1 mm diameter) were sampled and profiled with CODEX using im-

mune-cell focused biomarker panels. One coverslip containing 148 cores was analyzed in this study. Clinical or patient demographic

data related to these samples was not selected or considered in this study. All cores were manually annotated for tumor regions

based on epithelial protein markers.

METHOD DETAILS

Datasets
This section briefly describes phenotypes and properties of each dataset analyzed in this study.

DKDKidney40: Kidney samples were obtained from patients with diabetes and healthy kidneys (DM, five individuals), DKD classes

IIA, and IIB (two individuals per class), IIA-B intermediate (two individuals), and III (one individual). Twenty-three cores, each 0.5mm in

diameter, were sampled from twelve tissue blocks and assembled into a tissue microarray (TMA). The TMA block was further

sectioned into 5 mm slices. One TMA section was imaged and characterized using the CO-Detection by indexing (CODEX) platform.

After excluding medulla samples and quality control, a total of 17 cortical section samples across various DKD classes were ac-

quired. Each sample was imaged for 21 protein biomarkers (see columns in Figure S1B).

DLPFC46: Spatial gene expression in human postmortem dorsolateral prefrontal cortex tissue sections was profiled using two

pairs of ‘‘spatial replicates’’ from three independent neurotypical adult donors on the Visium platform, each pair comprising two

directly adjacent, 10 mm serial tissue sections, with the second pair located 300 mm posterior to the first. In total 12 samples are

collected and examined. We downloaded the filtered count matrices for all 12 samples from the spatialLIBD project.64 In the inde-

pendent partitioning experiment (Figure 3), we filtered the count matrices to exclude spike-in genes, mitochondrial genes, and genes

that have nonzero expression in fewer than three spots. Expression matrices were normalized to have the same total counts per spot

(median of all pre-normalize spots), log-transformed and reduced to the top 50 principal components. In the joint partitioning exper-

iment (Figure S2), we followed the preprocessing steps outlined in SpiceMix24: Genes having nonzero expression in less than 10% of

spots were removed. Expression matrices were normalized to have total counts of 10,000 per spot and log-transformed. We further

reduced the expression to the top principal components.

Adult Mouse Brain (ABCA-1)47: This dataset comprises in total 147 coronal sections of a single adult mouse brain, profiled with a

1122 gene panel using MERFISH. Cells were annotated for cell types and mapped to the Allen mouse common coordinate frame-

work.65We downloaded preprocessed biomarker expression matrices, cell types, and CCF coordinates from the source publication.

Two sections (ABCA-1.071, ABCA-1.079) were used to assess SCGP and SCGP-Extension. In the experiments, the 300 most var-

iable genes of the reference section (ABCA-1.079) were used as features.

TR Kidney63: Kidney samples were obtained from patients who underwent allograft nephrectomy. Briefly, a TMAwas constructed

using 2 mm cores of cortical tissue. The TMA comprised 7 samples of normal, peritumoral renal cortex (from patients undergoing

native nephrectomy for tumor removal), and 43 samples of cortex from patients undergoing allograft nephrectomies. After sectioning

of the tissue block, only 41 cores from allograft nephrectomies remained. An FFPE embedded tissue microarray core of human kid-

ney samples were stained and acquired on the PhenoCycler Fusion using a 51-plex biomarker panel (Figure S3C) by Enable

Medicine.

Lung IMC15,66: Lung samples were acquired from three healthy donor lung specimens. In total 26 samples were imaged using IMC

with 28 biomarkers (see columns in Figure S4D). Tissue samples were collected with a particular focus on airways extending from

proximal bronchi and succeeding divisions to terminal and respiratory bronchioles. Each image was manually annotated with or-

gan-specific microanatomical domains: airways, connective tissue, submucosal glands, vessels, cartilages, and alveolar space.

Thesemanually annotated domains were used as labels for unsupervised annotations. Additionally, cells in these samples were phe-

notyped into seven broad clusters of cell identity: CD8 T cells, macrophages, mast cells, smooth muscle cells, endothelial cells,

epithelial cells, and connective tissue cells. Cell type information was used in CN and Spatial-LDA, other methods only used

biomarker expression data. We downloaded preprocessed biomarker expression matrices and domain/cell type annotations from

the source publication.59

UCSF Derm60: Tissue samples were acquired as 2–4 mm punch or shave skin biopsy specimens from healthy control and atopic

dermatitis patients. In total, 44 skin samples were obtained and stained in 4 experiments with varying biomarker panels. See Table S1
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for a detailed breakdown of experiments and patient skin disorders. 35 shared protein biomarkers were used in the unsupervised

annotation analysis with UTAG and SCGP.

Stanford-PC andUPMC-HNC16: These two datasets were derived from studies of pancreatic cancer and head-and-neck cancer.

Tumor cores (1mmdiameter) were sampled and profiledwith CODEX using immune-cell focused biomarker panels. Figure 6D shows

some of the representative protein biomarkers in the panel. We adapted one coverslip from each study to assess SCGP and SCGP-

Extension. Stanford-PC contained 148 cores in total, which were further divided into two subsets: a higher-quality reference set (63

cores) and a lower-quality query set (85 cores). UPMC-HNC contained 36 cores. Clinical data related to these samples were not used

in this study. All cores were manually annotated for tumor regions by an expert, and other foreground tissues were treated as non-

tumor/stroma regions.

Preprocessing
DLPFC, Lung IMC, and ABCA-1 datasets were downloaded and normalized as specified above.

For the CODEX datasets, we followed the preprocessing pipeline established in the prior work by Wu et al.16 Briefly, a neural

network-based cell segmentation tool DeepCell20 was applied to DAPI images to identify nuclei, which were further dilated to obtain

whole-cell segmentation.

Next, the biomarker expression for biomarker j in cell i was computed following the strategy below67:

(1) For channel j, mean pixel intensity within the cell segmentation mask of cell i was calculated and denoted as x
ðjÞ
i . The set of

expression values for all cells in the same sample fxðjÞ1 ; x
ðjÞ
2 ; :::g was denoted as XðjÞ.

(2) Normalized expression value for channel j was calculated using quantile normalization and arcsinh transformation:
fðxðjÞi Þ = arcsinh

 
x
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i

5Q
�
0:2;XðjÞ�

!

in which Qð0:2;XðjÞÞ represents the 20-th quantile of XðjÞ and arcsinh is the inverse hyperbolic sine function. The set of all normalized

expression values ffðxðjÞ1 Þ; fðxðjÞ2 Þ; :::g was denoted as ðXðjÞÞ .

(1) Z score of normalized expression value was calculated:
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It should be noted that SCGP does not require any cell clustering or classification inputs, it infers partitions using biomarker expres-

sion of cells.

Spatial cellular graph partitioning (SCGP)
SCGP is an unsupervised annotation tool that recognizes tissue structures by partitioning graphs constructed based on the spatial

organization of cells (or other units) in the subject tissue sample(s). The SCGP pipeline comprises the following steps.

Nodes
Nodes represent small spatial regions in the tissue, and are indivisible units throughout the partitioning process. In this study, we

employed three different strategies for defining nodes.

(1) Cells: Nodes are defined based on individual cells, which are identified via the cell segmentation preprocessing step specified

above. Biomarker expression values are calculated and normalized accordingly, and these values are set as the node features.

(2) (Visium) Spots: Nodes are defined based on the barcoded spots used in the Visium platform, eachmeasuring gene expression

in a circular area 55 mm in diameter. The normalized gene expression values or top principal components are set as node fea-

tures.

(3) Patches: In the patch-based SCGP experiment (Figure S10), nodes are defined based on small square patches with 12 mm

side lengths on the mIF images, sampled using a sliding window mechanism (stride equals patch side length). Only patches

within the spatial range of tissue are retained (>85% overlap), and the average fluorescence intensities for each biomarker

channel are used as node features.

Spatial edges
Spatial edges are constructed between spatially adjacent nodes to embed the spatial closeness relationship into the graph.
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(1) Cells: A Delaunay triangulation is conducted on centroid coordinates of all cells from the same sample. Node pairs that share

edges in the triangulation output are connected, excluding any edge exceeding 35 mm in length.

(2) (Visium) Spots: Nodes (i.e., spots) are spatially arranged in a close-packing manner. Each node is connected to its six closest

neighboring nodes.

(3) Patches: Nodes (i.e., patches) are spatially arranged in a regular 2D grid. Each node is connected to its four immediately adja-

cent nodes.

Feature edges
Feature edges are constructed between nodes with similar biomarker expression profiles. For node i, its k nearest neighboring nodes

in the expression space are identified based on Euclidean distances between node features (e.g., z-scored protein expression

values, principal components of the gene expression). We used the nearest neighbor descent68 approximate queries implemented

in PyNNDescent for better computational efficiency.

In practice, k is a hyperparameter that controls the balance between spatial coherence and expression consistency within parti-

tions. We typically set it to an integer between 1 and 4 so that feature edges account for about 25%–50% of all edges (Figures S3E

and S3F). In general, less feature edges will generate spatially smoother partitions, though minor changes in k do not significantly

change partition outcomes in our experiments. However, a larger k (>5) will lead to spatially fragmented partitions, which resemble

the results of direct Leiden clustering on feature vectors. This design choice of sparse feature edges differentiates SCGP from other

Leiden-based unsupervised annotation tools.15,27

Graph community detection
Nodes, spatial edges, and feature edges define the spatial cellular graph input for SCGP. We used the Leiden algorithm39 to detect

graph communities.

We adapted the python implementation in leidenalg, andwe used the Constant PottsModel69 as the quality function for community

detection (leidenalg.CPMVertexPartition). Additional arguments include.

(1) Edge weights: For each edge, its weight is defined as the inverse of Euclidean distance between the node features of the two

nodes it connects. We further normalized all edge weights by their median value.

(2) Resolution parameter (g): g controls the density of the output communities.

Note that the resolution parameter g is the second major hyperparameter of SCGP, regulating the granularity of the output parti-

tions.We empirically tuned g to generate the desired amount of partitions (e.g., 2 for TME samples, 10+ for whole brain samples). This

process was informed by the understanding and expectations of the subject tissues (Figure S3G).

Note that variances observed among nodes may originate from their underlying tissue structures or sample-specific biases (i.e.,

batch effect). Given the unsupervised nature of SCGP, scenarios in which biases overwhelm the biological differences between

structures can lead to a situation where increasing gwill cause structures from different samples to disintegrate and thus be assigned

to distinct partitions. This caveat is addressed in practice by curating a well-integrated reference set for SCGP followed by applying

SCGP-Extension.

Post-processing
Upon acquiring the initial partition outcomes, optional post-processing steps can be executed to refine the results.

(1) Size Filtering: Partitions accounting for less than 0.2% of all nodes are discarded.

(2) Spatial smoothing: For any node who holds a different partition assignment from its spatial neighbors, we reassigned it to the

partition held by the majority of its spatial neighbors (>50%) if applicable.

SCGP-extension
SCGP-Extension extends a given set of reference partitions to unseen query samples. Query samples are processed in the same

manner as specified in the SCGP pipeline for graph construction. Reference partitions are defined on the reference nodes, which

should be in the same format as nodes in the query samples. These partitions are usually generated through a primary SCGP run

on the reference samples. It is worth noting that technically any form of discrete labels can be employed as reference partitions.

Figures S4B and S4C demonstrates experiments that extend ground truth labels or noisy labels defined by arbitrary annotation tools.

Pseudo-nodes
SCGP-Extension introduces pseudo-nodes as guidance for unseen query sample partitioning. Based on the reference nodes and

their reference partitions, pseudo-nodes can be created for each partition via two strategies.

(1) Selection: A median node feature vector is calculated using all reference nodes affiliated with the partition. The Euclidean dis-

tance between each node’s feature vector and the median vector is calculated. Pseudo-nodes are sampled from all reference

nodes based on their distances to the median vector.
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(2) Random sampling: Themean and covariance of the node feature vector are calculated using all reference nodes affiliated with

the partition. Pseudo-nodes are generated by sampling multivariate normal random variables based on the mean and covari-

ance.

In practice, we typically generate 100 pseudo-nodes for each partition, but the size can be adjusted based on the number of nodes

in the reference and query samples. The two strategies tend to yield comparable results, we empirically prefer the selection strategy.

Prior to their integration into the query graph, dense feature edges are added to the pseudo-nodes – 20 nearest neighbors for each

pseudo-node if in total 100 nodes per partition are used. This is to guarantee well-structured communities within the pseudo-nodes.

Reference-query edges
Pseudo-nodes are integrated into the query graph via additional reference-query edges. For each node in the query graph, its k0 near-
est neighbors in the pseudo-nodes based on Euclidean distances between node features are identified. An additional ratio parameter

r (0< r% 1) is included to regulate the strengths of reference-query edges. Given a total ofN nodes in the query graph, the initial near-

est neighbor search will yield Nk0 reference-query edges. These edges are sorted by edge weights (i.e., Euclidean distances), with

only the top rNk0 edges with the highest weights or closest distances retained.

The completed query graph comprises spatial edges, intra-sample feature edges (k-nearest neighbors within the query nodes),

and reference-query feature edges (r-downsampled k0-nearest neighbors between query nodes and pseudo-nodes). r and k0 are
two additional hyperparameters in SCGP-Extension, which control the degree of matching between query nodes and reference

partitions. In practice we adjusted k, k0 and r so that the total number of feature edges matches the number of spatial edges,

with a comparable number of intra-sample feature edges and reference-query feature edges. r is typically set to a value between

0.1 and 0.5 based on expectations of matching level between query and reference samples. By default we set k = 2, k0 = 3, and

r = 0:3.

Graph community detection with fixed membership assignment
The same community detection strategy is used to identify partitions in the query sample. Additional arguments including edge

weights and resolution parameter g are specified in the same manner as specified in the SCGP pipeline.

Notably, as pseudo-nodes are created for reference partitions, their assignments are predetermined and fixed throughout the

partition optimization process70 using the is_membership_fixed argument of the leidenalg.Optimiser().optimise_partition method.

As a result, query nodes that are similar to any of the existing reference partitions will be assigned to the corresponding group, while

nodes distinct from the reference will be assigned to novel partitions.

Predictive modeling for partition extension
An alternative approach to extend existing partitions to unseen samples is through constructing a predictive model and applying it for

inference. This is demonstrated in two experiments in Figures 4A and S4B. In these experiments, we used manual annotations of

reference samples to train gradient boosted tree classifiers, which were subsequently applied to unseen query samples.

The training dataset was constructed using the reference nodes and used manual annotations as labels. The inputs contained

reference node features, as well as 1-hop aggregated node features, which were computed by averaging features from the center

nodes and their immediate spatial neighbors (defined by distance thresholding). This augmentation was inspired by the UTAG and

SpaGCNmethods and allowed the model to have larger fields of view. The test inputs for the query nodes were formulated similarly,

and the trained models were employed to infer their cluster/partition assignments.

We evaluated a range of common machine learning methods including logistic regression, linear SVR, k-nearest neighbor classi-

fier, and random forest. Gradient boosted trees implemented via XGBoost71 yielded the best performance.

Evaluation metrics
On datasets with ground truth annotations, we assessed the performances of SCGP, SCGP-Extension and other unsupervised anno-

tation tools using the following metrics.

(1) Adjusted Rand Index72 (ARI) and Rand Index (RI): ARI and RI are measures that evaluate the similarity between two data clus-

terings, in which ARI also takes into account the probabilities of random agreement between two clusterings. ARI ranges

from �1 to 1, where 1 indicates perfect agreement and 0 indicates a random agreement. We adapted the implementation

in scikit-learn58: sklearn.metrics.adjusted_rand_score. RI ranges from 0 to 1, where 1 indicates perfect agreement. RI is

only used in the Lung IMC dataset to reproduce metrics reported in its source publication. We adapted the implementation

in scikit-learn: sklearn.metrics.rand_score.

(2) V Measure: V Measure is the harmonic mean of homogeneity and completeness, two intrinsic metrics used to evaluate the

quality of clustering. Homogeneity measures if all points within one unsupervised cluster are members of a single label class,

while completeness verifies that all members of a given label class are assigned to the same cluster. All three metrics range

from 0 to 1, where higher values indicate better clustering performance. We adapted the implementation in scikit-learn:
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sklearn.metrics.homogeneity_completeness_v_measure. Homogeneity score is used in the Lung IMC dataset to reproduce

metrics reported in its source publication.

(3) F1 Score: F1 is an accuracy measure calculated as the harmonic mean of precision and recall. For each label compartment,

the F1 score is calculated through the following process:

B Labels: 1s are assigned to all nodes affiliated with the target label compartment, 0s are assigned to the rest.

B Predictions: For a given partition, predictions are calculated using the indicator function of whether a node is assigned to

that specific partition. A series of predictions will be derived for all partitions identified by the unsupervised annotation tool.

B Metrics: Multiple F1s are calculated based on the labels and the series of predictions. The highest F1 score corresponds to

the partition that has the best match with the target label compartment, and this score is taken as the final score.

To compare performances of different methods, we used the following statistical test.

(1) Wilcoxon signed-rank test: this test is employed to compare paired metrics (ARI, F1) calculated between ground truths and

partitions defined by unsupervised annotation methods, assessing the significance of differences between groups of metrics.

In the analysis of disease states, we used the following statistical tests.

(1) Two-sample t-test: this test is employed to determine if there is a significant difference between themeans of two independent

groups. It is used to compare characteristics of samples with different disease conditions.

(2) Jonckheere-Terpstra test: this test is employed to assess ordered differences among multiple independent groups. It is used

to determine if certain characteristics of tissue structures have ordered changes with respect to disease stages.

Running time and memory usage
We profiled running time and peak memory usage for all unsupervised annotation methods using two major tasks.

(1) Joint clustering/partitioning of 17 samples from the DKD kidney dataset, containing 137,654 cells;

(2) Joint clustering/partitioning of 4 samples from the same specimen (Br8100) from the DLPFCVisium dataset, containing 14,364

spots.

The profiling is performed on an amazon cloud service ec2 instance (r6i.16xlarge or g4dn.16xlarge if GPU is required). See Table S2

for full results.

CN, UTAG, SCGP, and SCGP-Extension had the shortest running times. KMeans-based methods including CN requiredminimum

memory usage, while memory consumption of Leiden-based methods relied on the number of nearest neighbors in the graph con-

struction, in which SCGP and SCGP-Extension were less demanding.

Hyperparameter optimizations
For unsupervised annotation methods benchmarked in this work, we searched the hyperparameter space for each method and

chose the best results. Below we briefly described the pipelines for these methods, please refer to their source publications and

code bases for full details. Note that parameters that are optimized during the hyperparameter search are marked as ‘‘searched’’.

(1) KMeans.
B Input: Biomarker expression vectors of cells/spots;

B Clustering: KMeans algorithm (K∊½2;10�, searched), implemented by scikit-learn.58

(2) Leiden.39

B Input: k-nearest neighbor graph (k∊½10;100�, searched) constructed using the biomarker expression vectors of cells/spots;

B Clustering: Leiden algorithm, implemented by leidenalg (https://github.com/vtraag/leidenalg). Resolution parameter is

searched.

(3) Cellular Neighborhood (CN).13,26

B Input: Cell types are first identified through leiden clustering. For each cell, a composition (frequency of cell types) vector is

calculated based on a window of 10–20 nearest neighboring cells (searched) as measured by Euclidean distance between

X/Y coordinates.

B Clustering: KMeans algorithm (K∊½2;10�, searched), implemented by scikit-learn.

(4) UTAG.15

B Developed and validated on spatial proteomics (mIF) data: IMC, CyCIF.

B Input: For each cell/spot, an average biomarker expression vector is calculated over all neighboring cells/spots and the cen-

ter cell/spot within a window surrounding the center cell/spot thresholded by Euclidean distance (10–20 mm, searched),

referred to as the spatially aggregated feature matrix. k-nearest neighbor graph (k∊½10;100�, searched) is then constructed

using the aggregated expression vectors.

B Clustering: Leiden algorithm, implemented by leidenalg. Resolution parameter is searched.

B Results on the LungIMC dataset are directly downloaded from https://zenodo.org/records/6376767.
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(5) Spatial-LDA.28

B Developed and validated on spatial proteomics data: CODEX, MIBI-TOF.

B Input: Cell types are first identified through leiden clustering. For each cell, its local environment is encoded as the count of

cell types (bag-of-cell) within a window surrounding the center cell thresholded by Euclidean distance (10–30 mm,

searched). Spatial prior (i.e., adjacency between cells) is first constructed by computing the Voronoi partitioning of cell po-

sitions, in which pairs of cells that share a facet in the Voronoi partitioning are connected, then reduced to a minimum span-

ning tree based on the edges.

B Clustering: Latent Dirichlet Allocationwith spatial prior, implemented in https://github.com/calico/spatial_lda.Major param-

eters (i.e., difference penalty) are searched.

(6) BayesSpace.29

B Developed and validated on spatial transcriptomics data: Visium.

B Input: Top principal components of the log transformed and normalized gene expression counts.

B Clustering: Spots are modeled using a fully Bayesian model with a Markov random field prior, specified by the Potts model.

Model parameters are estimated using a Markov chain Monte Carlo method. We adapted codes (in R) from https://

edward130603.github.io/BayesSpace/articles/BayesSpace.html. Major parameters (i.e., number of clusters) are searched.

B Only used on the DLPFC data.

(7) SpaGCN.32

B Developed and validated on spatial transcriptomics data: Visium, SlideSeqV2, MERFISH, STARmap.

B Input: Biomarker expression vectors of cells/spots are reduced to their top 20 principal components and then constructed

into aweighted undirected graph, in which edges areweighted by Euclidean distances (histology information is not included

in this study).

B Clustering: A one-layer graph convolutional network on the input graph generates initial embeddings for cells/spots, which

are clustered using the Louvain algorithm (resolution searched). Network parameters and cluster centroids are optimized by

minimizing a soft assignment-based loss function using stochastic gradient descent withmomentumuntil convergence.We

adapted codes from https://github.com/jianhuupenn/SpaGCN.

(8) SpiceMix.24

B Developed and validated on spatial transcriptomics data: Visium, seqFISH+, STARmap.

B Input: a Hidden Markov Random Field model is constructed based on the graphical model, which treats cells/spots as no-

des and connects spatially adjacent pairs (through Delaunay triangulation) with edges.

B Clustering: Cells/spots are first clustered using the Louvain algorithm to initialize estimates of hidden states and model pa-

rameters, which are further iteratively optimized via coordinate ascent. A total of 6–15 metagenes (searched) are used. We

adapted codes from https://github.com/ma-compbio/SpiceMix.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of statistical tests are described in the figure legends and in STAR Methods (see the subsection ‘‘evaluation metrics’’).
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Supplementary Figures 

 
Figure S1. SCGP partitioning of simulation data, related to Figure 1. 
A. Simulated data is adopted from Chidester et al.[s1], which modeled the structure of the mouse cortex. Each simulated layer of the 
cortex consists of different combinations of glial cells, excitatory and inhibitory neurons (e.g., eL1, i1, g1). SCGP identified ground truth 
layer structures across diverse settings (i.e., cell density, number of layers). B. Quantitative measurements revealed that joint clustering 
of multiple samples derived from the same data distribution always yield better performances than independent clustering. Notably, 
thinner layers (2-3 cells) are typically more challenging to recognize. C. SCGP identified ground truth tissue structures in TMA data 
simulated using different strategies: Condition 1 consists of a base layer and two major structures; Condition 2 consists of a base layer 
and a much wider variety of tissue structures; Condition 3 defines segments of equal sizes and assigns them to different tissue 
structures randomly. Cells are sampled for each tissue structure based on a predefined cell type composition mapping. Note that both 
cell types and biomarker expression are directly sampled from a real head-and-neck cancer dataset[s2] that we have previously studied. 
D. In condition 3 simulation, we explicitly add novel structures (e.g., red, purple partitions) to the query samples. SCGP-Extension 
successfully recognized both known and novel tissue structures across all query samples, achieving comparable or superior accuracy 
to the reference samples. E. SCGP and SCGP-Extension achieved robust performances (ARI > 0.7) across diverse simulated TMA 
data regardless of shapes and complexities (i.e., 10+ tissue structures). 
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Figure S2. More examples from the DKD Kidney dataset, related to Figure 2. 
A. Clustering/partitioning outputs from unsupervised annotation tools on four samples of different DKD classes are illustrated. 
Qualitatively, Leiden clustering identified cell types that are not spatially smooth; CN defined an extra cluster (cyan) for proximal 
tubules; UTAG defined multiple smaller clusters (light green, gray, purple) that do not correspond to any compartments; Spatial LDA 
and SpiceMix had more noisy annotations for glomeruli (orange); SpaGCN misrecognized some regions as blood vessels; SCGP 
misrecognized some fibrotic glomeruli as blood vessels. B-C. Additional quantitative metrics (V measures and Rand index) show 
consistent results. P values are calculated using the Wilcoxon signed-rank test. D. Full heatmap for all biomarkers tested in the DKD 
Kidney dataset shows signature protein biomarkers for SCGP partitions, with each partition corresponding to a manually annotated 
compartment. 
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Figure S3. Ablation experiments on the DKD Kidney dataset, related to Figure 2. 
A. SCGP established a hybrid graph consisting of spatial edges and feature edges. Excluding either component will cause major 
performance decay: Excluding spatial edges degrades SCGP to a vanilla Leiden clustering, resulting in noisy and unsmooth partitions; 
Excluding feature edges disconnects distant tissue structures and leads to inconsistent outputs. Switching the type of spatial edges 
does not significantly change outputs. B. ARIs of different variants show consistent results as observed in panel A. C-D. To evaluate 
how segmentation noise might affect partition outcome, we experimented with randomly excluding nodes/cells from the graph. 
Outcomes and performances are robust and stable even after 20% dropout. E-F. We examined the influence of a hyperparameter 
choice: num of feature edges. More feature edges (>5) resulted in fragmented partitions and worse alignment. Optimal performances 
were observed when the number of edges is set between 2 and 4 in this experiment. G. Granularity of the partition outcomes can be 
controlled by the resolution parameter.  
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Figure S4. Partitioning of DLPFC samples, related to Figure 3. 
A. Joint unsupervised annotations recognized major layers in four DLPFC samples. Notably, characterization of the two thinner layers 
(Layer 2 and Layer 4) were worse in most methods. B. Approaches utilizing partial ground truth annotations were examined.(continued) 
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(continued) The predictive modeling approach trained a gradient boosted tree model (XGBoost) with the ground truth annotations and 
applied it to the rest. SCGP-Extension can be adapted with ground truth annotations as references. The Label2-Extension variant 
demonstrated the best performances. C. SCGP-Extension can be applied with noisy references: when using UTAG annotations (fitted 
on Reg 151673) as references, resulting query partitions did not show better alignment with ground truth, but captured the same spatial 
compartmentalization patterns as the reference region. D. Quantitative metrics show performances of unsupervised annotation tools. 
Methods utilizing partial ground truth achieved best performances, in which extensions of ground truth labels performed better than 
XGBoost predictions. E. Additional quantitative metrics (V measures and F1 scores) were calculated for independent partitioning of all 
samples in DLPFC and show consistent results.  

 
Figure S5. SCGP annotations of mouse brain sections, related to Figure 3. 
A. Cell types were annotated for a coronal mouse brain section. Please refer to Zhang et al.[s3] for color details. B. Cells were further 
mapped to Allen CCFv3 to annotate brain parcels. C. SCGP accurately identified major parcels, achieving an ARI score of 0.751. D. 
Fine-grained SCGP identified more fine-grained structures. Note the layered structures in isocortex, which can be robustly extended to 
the query section (panel H). E-H. Cells in another distant section were annotated and partitioned using the reference section (panel C-
D) and SCGP-Extension, which yielded consistent results, both visually and quantitatively, with an ARI score of 0.730. I. SCGP with 
higher granularity identified fine-grained structures in the hippocampal region. 
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Figure S6. SCGP annotations of TR Kidney dataset and UCSF Derm dataset, related to Figure 4. 
A. Primary SCGP experiment on 10 samples from the TR Kidney dataset with heavy inflammation defined six major partitions 
corresponding to kidney tissue structures including tubules, glomeruli, and blood vessels. The red partition exhibits high expression of 
immune cell biomarkers, suggesting substantial immune cell infiltration. B. Partitions were extended to 5 normal samples from the TR 
Kidney dataset that have minimal inflammation. Note the absence of the immune aggregates partition and the denser arrangement of 
tubules and glomeruli. C. Primary SCGP annotations on 17 samples from experiment 1 of the UCSF Derm dataset defined major tissue 
structures including the epidermis layers, dermis layer, immune aggregates, and glands. D-F. Partitions were extended to samples from 
different experiments of the UCSF Derm dataset, yielding consistent annotations. G. Signature protein biomarker expression of the six 
kidney tissue structures are visualized in the heatmap. Note that the same set of kidney tissue structures as in Fig. 2D were derived 
despite the fact that TR Kidney dataset used a different biomarker panel. H. Signature protein biomarker expression for the major skin 
partitions identified by SCGP are visualized in the heatmap. 
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Figure S7. Annotating representative samples from TR Kidney dataset and UCSF Derm dataset using variants of SCGP, 
related to Figure 4. 
On a set of representative samples from the TR kidney dataset, A. UTAG defined partitions do not correspond well to tissue 
structures. B. SCGP failed to assign tissue structures from different conditions into the same partition. Note the different colors. C. 
Individual SCGP partitions of different samples were matched post hoc to reflect shared tissue structures. Note the vertical separation 
of partitions due to uneven background. D. SCGP-Extension enabled consistent recognition of tissue structures regardless of artifact 
and different disease conditions. On a set of representative samples from the UCSF derm dataset, E-F. Joint partitioning with 
UTAG and SCGP failed to assign tissue structures from different experiments into the same partition. Note the different colors of 
epidermal layers in the samples. G. Individual partitions of different samples were matched post hoc to reflect shared tissue structures. 
H. Reference-query extension pipeline enabled consistent recognition of tissue structures across samples from multiple experiments 
with different skin conditions. 
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Figure S8. SCGP annotations of Lung IMC dataset, related to Figure 4. 
A. Clustering/partitioning outputs from various unsupervised annotation tools on representative lung samples are visualized. When 
jointly partitioning all 26 samples, one class of tissue structures from different samples is usually assigned to disconnected partitions, as 
evidenced by the diverse colors. SCGP-Extension resolved the issue by extending reference partitions defined on a well-integrated 
subset of seven samples. Resulting partitions on the remaining samples demonstrated the best visual alignment with manual 
annotations. B-C. Quantitative metrics[s4] (homogeneity score and rand index) show that SCGP-Extension achieved the best 
performance. P values are calculated using the Wilcoxon signed-rank test. D. Signature protein biomarker expression for the tissue 
structures identified by SCGP-Extension are visualized in the heatmap, corresponding to the six manually annotated compartments. 
Note that submucosal glands and cartilage are two novel tissue structures revealed in the query samples by SCGP-Extension 
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Figure S9. Identification of tumor/stroma regions in tumor microenvironments, related to Figure 6. 
A. Tumor and stroma regions in the representative samples from UPMC-HNC were annotated by SCGP. B. Structures in the 
representative samples from the Stanford-PC dataset were annotated by SCGP. 148 tumor cores from this dataset were divided into 
two subsets: 63 and 85 cores respectively as reference and query sets for validating SCGP-Extension. Note the blue partition that 
indicates a tertiary lymphoid structure. C. Quantitative metrics (ARI, F1 scores, V measures) were calculated for all unsupervised 
annotation methods, in which SCGP/SCGP-Extension achieved superior performances. P values are calculated using the Wilcoxon 
signed-rank test. 
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Figure S10. SCGP annotations of mIF images as spatial grids of patches, related to STAR Methods. 
A. In the absence of cell segmentation, mIF images can be directly partitioned using SCGP by adopting a spatial-grid approach: Images 
were first dissected into small patches through a sliding window. Nodes were defined based on patches, with node features 
summarizing biomarker expression in the patches. Spatial edges and feature edges were constructed in a similar fashion to enable 
application of SCGP. Note that the resolution of the grid can be adjusted by varying the size of the patches. B. SCGP on the patch grids 
of three mIF images yielded similar results as cell-based SCGP, recognizing tubules, glomeruli, blood vessels, and immune aggregates 
in the tissue. In the severe DKD (IIB) sample, the fibrotic glomeruli were recognized as combinations of the basement membrane and 
normal glomeruli partitions, suggesting the degradation of normal glomerular structures into scar tissues. C. Signature protein 
biomarker expressions are visualized in the heatmap for the partitions identified by patch-based SCGP. Note the distinct immune 
aggregates partition enriched in CD45, CD68, and DAPI (i.e., higher cell density).
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Supplementary Tables 
Table S1. Details of datasets: number of samples/cells/patients, major grouping or patient characteristics, related to STAR Methods. 
 

Dataset N (samples) N (cells/spots) N (patients) Major groups / patient characteristics 

DKD Kidney 17 137,654 12 

Kidney sections with different DKD classes: 
● Healthy kidneys from diabetic individuals (DM): 7 sections 
● DKD class IIA: 2 sections 
● DKD class IIA-B: 3 sections 
● DKD class IIB: 4 sections 
● DKD class III: 1 section 

DLPFC 12 47,681 3 Postmortem DLPFC samples from three independent neurotypical adult donors. 

ABCA-1 2 57,731 1 
MERFISH spatial transcriptomics dataset of a single adult mouse brain. 
Parcellation is defined by aligning cells to the 3D Allen-CCF. 

TR Kidney 22 765,129 22 
Kidney samples sorted into two groups: 

● Case group: 17 samples (transplant rejection) 
● Control group: 5 samples (normal) 

Lung IMC 26 69,830 3 
Lung samples from three healthy donor lung specimens: sections of airways 
extending from proximal bronchi and succeeding divisions to terminal and respiratory 
bronchioles. 

UCSF Derm 44 588,867 33 

Skin samples with different skin conditions: 
● Atopic Dermatitis (AD) 
● Normal (N) 

The dataset is collected from 4 experiments: 
● Experiment 1: 22 samples (22 AD) 
● Experiment 2: 11 samples (4 AD, 4 N) 
● Experiment 3: 3 samples (3 N) 
● Experiment 4: 8 samples (2 AD, 3 N) 

UPMC-HNC 36 175,698 24 Tumor cores from a cohort of head-and-neck cancer patients. 

Stanford-PC 148 815,463 148 Tumor cores from a cohort of pancreatic cancer patients, separated into two subsets 
containing 63 and 85 cores each. 
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Table S2. Running time and memory usage of unsupervised annotation methods, related to STAR Methods. 

 

Method DKD Kidney 
(17 samples, 137,654 cells) 

DLPFC 
(4 samples, 14,364 spots) 

Time Memory (Peak) Time 

KMeans <10s 
KMeans: 2s 179 MB <10s 

KMeans: 1s 

Leiden[s5] 1min 
Leiden: 50s 2792 MB <10s 

Leiden: 5s 

CN[s6] 
24s 
Composition vectors: 22s 
KMeans: 2s 

61 MB N/A 

UTAG[s4] 
2min 
Aggregate expression: 53s 
Leiden: 50s 

2426 MB 
12s 
Aggregate expression: 7s 
Leiden: 5s 

Spatial LDA[s7] 
25min 
Count vectors + spatial prior: 30s 
LDA: 1500s 

64.6 GB N/A 

BayesSpace[s8] N/A N/A 17min 
Parameter estimation: 1030s 

SpaGCN[s9] 
7min 
Construct graph: 68s 
GCN optimization: 360s 

282.7 GB 
23s 
Construct graph: 3s 
GCN optimization: 20s 

SpiceMix[s1] 
4.5h 
Construct graph: 10s 
Louvain: 1000s 
Optimization (100 iterations): 15000s 

11.48 GB 

1.25h 
Construct graph: 5s 
Louvain: 30s 
Optimization (200 iterations): 
4500s 

SCGP 
1min 
Construct graph: 30s 
Leiden: 30s 

1434 MB 
<10s 
Construct graph: 2s 
Leiden: 2s 

SCGP- 
Extension 

2min 
Reference SCGP (14 samples): 55s 
Pseudo-nodes: 10s 
Query extension (3 samples): 60s 

1125 MB 
10s 
Reference SCGP (1 sample): 1s 
Pseudo-nodes: 1s 
Query extension (3 samples): 8s 
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