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Supplemental Figure 1. Structural formula of the copper(II) bis(thiosemicarbazone) 
complexes, Cu-PTSM  (R1 = R2 = CH3) and Cu-ETS (R1 = -CH2CH3,  R2 = H).  "H2PTSM" 
is the acronym for pyruvaldehyde bis(N4-methyl-thiosemicarbazone), and "H2ETS" is 
ethylglyoxal bis(thiosemicarbazone). These uncharged, lipophilic chelates have shown 
promise for use as 62Cu-radiopharmaceuticals for PET perfusion imaging with PET (1-
21). In addition to exhibiting the desired high first-pass tissue extraction of tracer, these 
agents also desirably afford prolonged "microsphere-like" tissue retention of the 
radiolabel (5,12,20,21), as they undergo rapid intracellular reductive decomposition 
liberating ionic 62Cu into the endogenous intracellular copper pool (20-24).  Contrary to 
findings in animal models (6,7,8,21), in humans Cu-PTSM tends to underestimate the 
rate of perfusion in high flow tissues  (9,10,13), because it exhibits a high, species-
specific, affinity for the IIA Warfarin-binding site of human serum albumin (25-27) that 
limits its otherwise efficient first-pass extraction into tissue at high flow rates.  This high-
affinity interaction with HSA does not appear feasible when the pyruvaldehyde methyl 
group is replaced with bulkier ethyl group of the Cu-ETS chelate  (27), making Cu-ETS 
the preferred choice for imaging perfusion in the human tissues that can have high rates 
of perfusion, such as the heart, kidney, and some tumors. 

	
  
	
  

In Vitro Assay to Define the Kinetics of [62Cu]Cu-ETS Decomposition by Patient 
Blood.  
  
Because a portion of the injected [62Cu]Cu-ETS radiopharmaceutical will be reductively 
decomposed by the patient’s blood cells, in vitro assays were performed to directly examine the 
rate of [62Cu]Cu-ETS decomposition in patient blood (28), allowing correction of the PET-
derived arterial blood 62Cu time-activity curve to represent the fraction of blood radioactivity 
expected to remain present as intact [62Cu]Cu-ETS.  
 
Prior to PET imaging, a 1-mL sample of the patient’s blood was collected into a heparinized 
syringe, and transferred to a polypropylene centrifuge tube in a thermomixer for maintenance at 
37°C with gentle swirling (300 rpm). A 50-µL sample of the [62Cu]Cu-ETS product solution was 
added to the blood sample. At 10, 20, 30, 40, 50, 60, 90, 120, 180, 240, and 300-seconds post-
mixing, 25-µL samples of the 62Cu-blood were transferred to centrifuge tubes containing 1000-
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µL n-octanol, vortex mixed, and then centrifuged at 10,000 x G for 5-minutes. The octanol and 
cell debris pellet were separated, and the samples counted in a NaI(Tl) well-counter to quantify 
the fraction of the blood 62Cu remaining present as octanol-soluble [62Cu]Cu-ETS (8,9,12,28). 
 
The rate of [62Cu]Cu-ETS decomposition by blood was always a first-order process. However, 
that rate showed considerable variability between subjects (Supplemental Figure 2), as well as 
between the baseline and during-treatment studies of an individual subject. The average rate of 
[62Cu]Cu-ETS decomposition by human blood (Supplemental Figure 2) was somewhat faster 
than what we previously observed with porcine blood (12). 

	
  
Supplemental Figure 2.  Decomposition of [62Cu]Cu-ETS by human blood in vitro at 37°C. 
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Radiation Dosimetry 
 
Radiation dosimetry estimates for the [62Cu]Cu-ETS radiopharmaceutical are available from the 
Proportional Technologies, Inc. 62Cu-ethylglyoxal (bis(thiosemicarbazone) Investigator’s 
Brochure:  
 

http://www.proportionaltech.com/new_site/images/stories/Investigator_Brochure_ETS.pdf 
 
The whole body effective dose equivalent for [62Cu]Cu-ETS is 9.47 x 10-3 mSv/MBq (35 
mrem/mCi) (male) and 1.14 x 10-2 mSv/MBq (42 mrem/mCi) (female). The kidneys are 
expected to be the critical organ, receiving an estimated 3.90 x 10-2 mSv/MBq (144 mrem/mCi) 
(male) and 4.24 x 10-2 mSv/MBq (157 mrem/mCi) (female).  
 

 
PET/CT Data Analysis 
 
The standard two-compartment model routinely employed for the measurement of blood flow in 
the brain and heart was applied to the measurement of tumor perfusion with 15O-water (30-38).  
In this model, the transport of the tracer from the vasculature to the interstitial space is 
assumed to be sufficiently rapid that the single-pass extraction fraction of water is 
approximately equal to 1.0 across the range of perfusion values.  This model consists of two rate 
constants, K1 and k2, representing the tissue perfusion and tracer washout rates, respectively.  
Both model rate constants are related to tissue perfusion with: 
 

K1 = RBF x EF k2 = RBF / Vd. 
 

In these equations RBF is regional blood flow, EF is the tracer single pass extraction fraction, 
and Vd is the tracer volume of distribution in tissue.  In order to maintain consistency between 
the estimation of RBF using 15O-Water and 62Cu-ETS, we used K1 as our perfusion estimate.   
 
Correction of the measured data for factors resulting from the limited image resolution 
achievable from current generation PET imaging systems (detector geometry as well as 
respiratory motion) is necessary for the absolute quantification of physiologic processes.  An 
approach previously developed and validated for myocardial PET imaging applications was 
utilized to minimize the bias caused by these resolution-based distortions (32).  Attention was 
paid in the definition of tumor regions-of-interest to assure that the assumption is met that the 
data can be described by a linear combination of tumor tissue activity and blood pool activity.   
These methods were implemented by modifying the mathematical expressions describing the 
radionuclide concentration in a region-of-interest as follows: 
 

Cvoi(t) = (1-FBV)CT(t) + FBVCa(t) 
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where Croi(t) is the measured region-of-interest concentration, CT(t) is the tumor tissue 
concentration, Ca(t) is the arterial blood concentration, and Fa is the fraction of the region-of-
interest volume occupied by arterial blood.   
 
For tumors in the lungs, it was necessary to define the source of arterial blood flow to each 
lesion by analysis of the tumor radioactivity time-activity curve relative to the time-activity 
curves for regions in the blood pool of the right ventricle and left atrium.  If blood counts from 
the intravenously administered radiopharmaceutical arrived at the tumor prior to tracer 
appearance in the left atrium, the right ventricular blood ROI was used for defining that tumor’s 
arterial input. Otherwise, tumor blood flow, and that of the thyroid, myocardium, and muscle 
reference tissues, was modeled with the arterial input function derived from the blood pool of 
the left atrium. 
 
For 62Cu-ETS PET, flow was quantified using a 2-compartment model that was previously used 
with success in myocardial flow quantification with 62Cu-PTSM in the dog (6,8).  In our 
implementation of this model, the transport of tracer from the vasculature through the 
interstitial space and into the cellular compartment is assumed sufficiently rapid that the 
delivery rate is perfusion limited.  Once in the cellular compartment, tracer is retained by the 
cell (k2 = 0).  The tracer concentration within a defined volume of interest CVOI(t) can then be 
defined as a function of the arterial blood concentration, Ca(t), by: 
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 Where F = tissue perfusion (mL/min/g), EF = extraction fraction, PS = permeability – surface 
area product, CA(t) = 62Cu concentration in arterial blood, CA*(t) = 62Cu-ETS concentration in 
arterial blood, fBV = fraction of the volume of interest volume occupied by arterial blood, and t1, 
t2 are the start and stop times of each image frame.   
 
The model was fit using the arterial blood concentration of 62Cu to define the input function for 
PET quantification of tumor and normal tissue blood flow, defining the arterial input function 
from the data provided by a volume-of-interest positioned on the blood pool of the left atrium 
(or right ventricle for some lung lesions).  The raw arterial blood 62Cu time-activity curve 
(CA(t))was corrected to the 62Cu-ETS time-activity curve (CA*(t)) by applying the measured rate 
of 62Cu-ETS decomposition in the patient’s blood at 37°C.  
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Positron Range Considerations 
 
Copper-62 emits positrons at higher energy than oxygen-15, which will somewhat impact spatial 
resolution in 62Cu vs. 15O PET images.  The potential impact associated with positron range upon 
the observed lesion signal includes: (i) a reduction in the observed 62Cu concentration in an 
isolated lesion, due to the long positron range in low density tissue adjacent to that lesion; and 
(ii) an increase in observed 62Cu concentration in the isolated lesion, due to positrons 
originating in surrounding tissue annihilating within the more dense lesion volume.   The 
relative impact of these competing processes will depend upon lesion size, surrounding tissue 
density, and the lesion-to-background 62Cu concentration ratio. The potential limitations that 
may be caused by the 62Cu positron range include: (i) large underestimation of perfusion in 
small lesions, and loss of ability to detect these lesions over background; and (ii) overestimation 
of perfusion in low perfusion lesions, particularly if there is tracer uptake in surrounding low 
density tissue, or in scenarios in which background uptake exceeds lesion uptake.   Nonetheless, 
the correlations we observed between 62Cu-ETS and 15O water perfusion estimates are strong 
(Figures 4 and 5) and there were no lesions observed with 15O-water that were not observed with 
62Cu-ETS, or vise versa.   Theoretically one could implement a positron range correction in the 
reconstruction algorithm, but it is unclear that this would provide a benefit from a clinical 
perspective. 
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