Cell Reports Medicine, Volume 5

Supplemental information

Proteomic landscape profiling

of primary prostate cancer reveals

a 16-protein panel for prognosis prediction

Rui Sun, Jun A, Haolan Yu, Yan Wang, Miaoxia He, Lingling Tan, Honghan Cheng, Jili Zhang, Yingrui Wang, Xiaochen Sun, Mengge Lyu, Min Qu, Lingling Huang, Zijian Li, Wenhui Zhang, Kunpeng Ma, Zhenyang Dong, Weigang Ge, Yun Zhang, Xuan Ding, Bo Yang, Jianguo Hou, Chuanliang Xu, Linhui Wang, Yi Zhu, Tiannan Guo, Xu Gao, and Chenghua Yang

Supplemental information

Proteomic landscape profiling of primary prostate cancer reveals a 16-protein panel for prognosis prediction

Rui Sun, Jun A, Haolan Yu, Yan Wang, Miaoxia He, Lingling Tan, Honghan Cheng, Jili Zhang, Yingrui Wang, Xiaochen Sun, Mengge Lyu, Min Qu, Lingling Huang, Zijian Li, Wenhui Zhang, Kunpeng Ma, Zhenyang Dong, Weigang Ge, Yun Zhang, Xuan Ding, Bo Yang, Jianguo Hou, Chuanliang Xu, Linhui Wang, Yi Zhu, Tiannan Guo, Xu Gao, Chenghua Yang

Figure S1

Figure S1 Representative HE staining showing the FFPE sampling of PCa in this study. Related to Figure 1.

(A) HE staining shows the FFPE sample before and after the punch.

(B) HE staining shows the different Gleason score criteria used by pathologists in our study.

(C) The quantification of protein numbers for each patient is shown. Each line represents a patient, with the red dot representing the average protein number identified in two tumor samples, and the blue dot representing the protein number identified in the adjacent benign sample.

(D-E) Left panel: Correlation matrix for quantality samples, including 72 mouse liver samples (D) for sample preparation QC and 72 pool samples for MS QC (E). Middle panel: tSNE plots showing the proteomic data distribution of 72 batches of mixed PCa QC samples collected. Right panel: tSNE plots showing the distribution of proteomic data of mixed PCa QC samples collected by three mass spectrometers (K,N,M).

(F-I) tSNE plots showing the proteomic data distribution of different sample type (F), ISUP grade (G), pathology stage (H) and BCR recurrence (I).

(J) The correlation of between serum PSA and tissue KLK3 expression.

(K) Comparison of four methods for differentially expressed proteins between tumor and benign samples. "T1": tumor samples from primary Gleason score (GS1) were compared with benign samples; "T2": tumor samples from secondary GS (GS2) were compared with benign samples. "T1+T2": Two tumor samples from the same patient, considered as individual entities, were compared with benign samples; "average (T1+T2)": The average levels of the two tumor samples from the same patient were compared with benign samples.

Figure S2. Consensus clustering of the proteomic data. Related to Figure 3. Subgroups are identified based on proteomic data by K-means consensus clustering of their abundances.

Figure S3

Figure S3 Identification and validation of a panel of 16 protein biomarkers for prognostic prediction Related to Figure 4.

(A) Kaplan-Meier analysis of BCR-free survival for PCa across different ISUP grade (log rank p = 0.017).

(B) BCR time distribution of all 306 patients in our study.

(C) Kaplan-Meier analysis (right) and ROC curves (left) of the PCSHA discovery dataset for BCR-free survival prediction based on our 16-protein model, with 1-year predictive power (yellow), 2-year predictive power (blue), and 3-year predictive power (red).

(D) Calibration curves of the 16-protein panel in PCSHA discovery dataset (left panel) and validation dataset (right panel). (E-G) Kaplan-Meier analysis of BCR-free survival based on our 16-protein panel of the dataset Zhong et al. dataset (E), the Sinha et al. dataset (F), and the Charmpi et al. dataset (G).

(H) ROC curves of the six datasets for BCR-free survival prediction based on our 16-protein model, with various years' predictive power.

Risk	TN	GS	Stage	Pre_PSA
Q92599 SEPTINB C9NPA8 16 7.3=-08 15 14 14 14 14 13 10 14 14 14 14 14 14 14 14 14 14 14 14 14	Q92599 SEPTIN8 17 15 13 11 N T 9 N T Q9NPA8 ENY2 17 15 15 15 13 11 11 11 11 11	092599 SEPTIN8 0.0017 16 15 14 13 -<-7 8-10	Q22599 Q9NPA8 SEPTINB CNY2 0.045 16 0.0094 15 15 14 13 12 T2 T3/T4 T2 T3/T4	O22599 SEPTINB 0.0016 17 16 16 14 12 10 19 20 0 0019 16 14 12 10 19 20
Q9UKK9 Q14767 NUDT5 LTBP2 16 0.0066 18 1.1e-05 14 16 14 12 12 10 10 high 10 low high	Q9UKK9 NUDTS 16 14 12 10 N T N T Q14767 LTBP2 0.045 17.5 15.0 12.5 N T N T	Q9UKK9 NUDT5 16 14 12 12 11 <=7 8-10 Q14767 LTBP2 LTBP	Q9UKK9 NUDT5 Q14767 LTBP2 0.017 18 0.0071 15 14 14 12 12 11 12 10 T2 T3/T4	Q9UKK9 NUDT5 16 14 12 10 19 20 Q14767 LTBP2 18 15 12 10 19 20
094972 TRIM37 16 15 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	094972 TRIM37 P02042 HBD 16 14 12 N T N T	094972 TRIM37 0.032 0.032 10 12 12 12 12 12 12 12 12 12 12 12 12 12	094972 TRIM37 16 14 12 11 12 12 11 12 12 12 12 12 12 12 12	094972 TRIM37 16 14 12 10 19 20 10 19 20
P04179 P12724 SOD2 2.7e-07 18 2.7e-07 18 15 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	P04179 SOD2 20.0 17.5 15.0 12.5 N T N T	P04179 SOD2 0016 18 16 14 -=7 8-10 P12724 RNASE3 0.018 18 15 12 -=7 8-10	P04179 SOD2 NNASE3 0.016 16 14 T2 T3/T4 P12724 RNASE3 15 15 T2 T3/T4	P04179 P12724 SOD2 20 17.5 15.0 16 12.5 10 19 20 10 19 20
P61626 P80188 LVZ 20 8.4e-13 15 15 16 15 12 12 9 10w high	P61626 P80188 LCN2 20.0 17.5 15.0 12.5 N T N T	P61626 P80188 LYZ LCN2 20 2.7e-05 18 18 5 14	P61626 P80188 LYZ 0.0013 0.0013 18 15 14 T2 T3/T4 9 T2 T3/T4	P61626 P80188 LVZ 0.0.012 0.0042 20.0 0.012 10 0.0042 12.5 10 19 20 10 19 20
Q8N9N2 ASCC1 3e-08 16 14 12 10 low high	Q8N9N2 ASCC1 CHMP1A 17.5 15.0 10.0 N T N T	0.04 ASCC1 10 14 12 10 <=7 8-10 0 2004 14 14 12 10 <=7 8-10 0 20HD42 CHMP1A 14 12 10 <=7 8-10	Q8N9N2 ASCC1 0,0016 14 12 10 T2 T3/T4 Q9HD42 CHMP1A 14 14 12 10 T2 T3/T4	Q8N9N2 ASCC1 CHMP1A 17.5 15.0 12.5 10.0 10 19 20
096K21 ZFYVE19 18 16 12 12 10 1000 high 15.0 10.0 1000 high	Q96K21 ZFYVE19 16 14 12 10 N T 12 N T	Q96K21 ZFYVE19 18 0.001 12 12 <=7 8-10 Q08426 EHHADH 0.00012 15.0 12.5 10.0 <=7 8-10	Q96K21 ZFYVE19 16 14 12 12 T2 T3/T4 Q056 12.5 10.0 T2 T3/T4	Q96K21 ZFYVE19 Q08426 EHHADH 17.5 15.0 12.5 10 19 20 10 19 20
Q13885 Q93034 TUBB2A CUL5 3e-08 16 14 12 low high low high	Q13885 Q93034 TUBB2A CUL5 15.0 12.5 N T N T N T	Q13885 TUBB2A CUL5 18 16 14 12 <=7 8-10 Q30034 CUL5 17 15 13 13 (=7 8-10	Q138855 TUBB2A 18 16 14 12 T2 T3/T4 11 12 T2 T3/T4	Q13885 TUBB2A 20 16 14 12 10 19 20 Q3034 CUL5 20.0 17.5 15.0 12.5 10 19 20

Figure S4 Relative protein expression of the 16 proteins in different groups. Related to Figure 4.

Figure S5 16-protein panel to prediction BCR in different subgroups. Related to Figures 4-5.

(A-B) Kaplan–Meier plots and ROC curves of BCR-free survival based on our 16-protein model in different ISUP grades (A) and pathological stage (B) using the PCSHA discovery dataset with a 1-year predictive power (yellow), a 2-year predictive power (blue), and a 3-year predictive power (red).

(C-E) Kaplan–Meier plots and ROC curves of BCR-free survival based on our 16-protein prediction model in different pathological stage using the PCSHA validation set (C), the TCGA dataset (D), and MSKCC dataset (E).

(F)ROC curves of the 16-protein panel and clinicopathological characteristics (PSA level, Gleason score, pathology stage, and D'Amico) using the PCSHA discovery dataset at 1 (upper panel), 2 (middle panel), and 3 (lower panel) years.

(G)Decision curve analysis (DCA) showing the clinical judgement of the benefits in the PCSHA discovery and validation sets.

(H)Sankey plots showing the PCa patients overlapping among the 16-protein panel prediction system, the recurrence status, and the ISUP grade using the PCSHA discovery set.

Figure S6. Independent biopsy samples for validation. Related to Figure 6.

(A) Correlation matrix for quality control samples, including eight pool samples for QC.

(B) The peak groups for the unique peptides and the protein abundance between high- and low-risk patients.

(C) ROC curves of the 16-protein model and clinicopathological characteristics for BCR prediction (PSA level,

ISUP grade based on biopsy and surgical samples, pathological stage, and D'Amico) in the PCSHA biopsy test set with three years.

Figure S7. Validation of NUDT5 and SEPTIN8 single knockout. Related to Figure 7.

(A) Representative Immunohistochemical staining intensity score showing the protein expression of SEPTIN8 and NUDT5 in different PCa tissue samples.

(B) Expression level of NUDT5 and SEPTIN8 in different prostate cancer cell lines measured by western blot. (C-D) Surveyor assay showing the deletion efficiency of SEPTIN8 (C) and NUDT5 (D) genes by the CRISPR/Cas9 system.

(E-F) Cell functional assay of PC-3 cells with SEPTIN8 or NUDT5 knockout: wound healing assay (E) and cell cycle analysis (F).