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SUMMARY
Clinical studies investigating the benefits of beta-lactam therapeutic drug monitoring (TDM) among critically
ill patients are hindered by small patient groups, variability between studies, patient heterogeneity, and inad-
equate use of TDM. Accordingly, definitive conclusions regarding the efficacy of TDM remain elusive. To
address these challenges, we propose an innovative approach that leverages data-driven methods to unveil
the concealed connections between therapy effectiveness and patient data, collected through a randomized
controlled trial (DRKS00011159; 10th October 2016). Our findings reveal thatmachine learning algorithms can
successfully identify informative features that distinguish between healthy and sick states. These hold prom-
ise as potential markers for disease classification and severity stratification, as well as offering a continuous
and data-driven ‘‘multidimensional’’ Sequential Organ Failure Assessment (SOFA) score. The positive impact
of TDM on patient recovery rates is demonstrated by unraveling the intricate connections between therapy
effectiveness and clinically relevant data via machine learning.
INTRODUCTION

Sepsis is a life-threatening condition that poses significant chal-

lenges to healthcare professionals due to its difficulty in early

detection and management, leading to a high mortality rate.

Intravenous antibiotic therapy, including the commonly used

beta-lactam class of antibiotics, is a crucial element in the man-

agement of sepsis.1 Antibiotic administration should start as

soon as possible, ideally within the first hour of diagnosis and af-

ter clinical cultures are obtained.2 Early recognition and opti-

mized treatment of sepsis can improve the chances of patient

survival. Due to the heterogeneous presentation of sepsis, how-

ever, early recognition is often challenging. This can lead to de-

layed care, increasing the risk of organ failure and negatively im-

pacting patient outcomes.

Due to acute disease processes and treatment interventions

associated with sepsis and its management in the intensive

care unit (ICU), critically ill patients often experience altered

pharmacokinetics (PK).3–5 This can result in highly variable and
Cell Reports Medicine 5, 101681, Au
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unpredictable exposures of beta-lactam antibiotics.6 Moreover,

due to antibiotic usage being higher in the ICU compared to

other areas of the hospital and in the community, pathogens iso-

lated in ICU patients are at risk of reduced antibiotic susceptibil-

ity. This adds to the difficulty in ensuring beta-lactam antibiotic

exposures attain desired pharmacodynamic (PD) targets.7 Ther-

apeutic drug monitoring (TDM) offers a potential solution to

ensure antibiotic concentrations are maintained at target expo-

sures throughout the treatment period. This intervention may

help improve treatment failure rates and reduce the risk of expo-

sure-related drug toxicity.

However, the wider adoption of beta-lactam TDM in ICUs is

impeded by several challenges, including limited availability,

operational complexities that can delay turnaround times for re-

porting results, as well as cost considerations.8 As a result,

healthcare professionals are compelled to carefully assess the

optimal allocation of resources and prioritize patient groups

that are likely to derive the greatest benefits from beta-lac-

tam TDM.9
gust 20, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Despite several randomized controlled trials investigating the

impact of beta-lactam antibiotic TDM in the ICU,2,10–13 none

have yet demonstrated a significant difference in patient out-

comes. To address this gap, it is important to approach the prob-

lem froma broader perspective, considering itsmultidimensional

nature. This involves examining a wider range of outcomes

including clinical cure, microbiological eradication, development

of antibiotic resistance, patient morbidity and mortality, as well

as conducting rigorous cost-effectiveness analyses. By consid-

ering and analyzing such multifaceted information, a deeper un-

derstanding of how to optimize beta-lactam antibiotic dosing

strategies in critically ill patients can be obtained.5,7,14

However, understanding and processing such large-dimen-

sional and heterogeneous data is not straightforward with con-

ventional methods. In this context, machine learning (ML)

emerges as a powerful tool to navigate these complexities. By

harnessing ML, informative features can be identified from the

collected multidimensional, temporal patient data, enabling the

creation of a comprehensive patient state representation (Figure

1A). This learned representation facilitates the distinction be-

tween healthier and relatively sicker states by comparing infor-

mative measured features over time within a patient and across

different patients. Such data-driven analyses offer the means to

monitor patients’ recovery trajectories and treatment responses,

shedding light on the intricate interplay between therapy, patient

dynamics, and outcomes. The inclusion of ML-based methodol-

ogies thus provides a crucial lens through which to quantify the

impact of TDM on patient recovery, enhancing our ability to

derive meaningful insights from the intricate web of clinical

data. The objective of this work is to quantitatively analyze the in-

fluence of TDM on recovery trajectories, with specific attention

to three key aspects: (1) quantification of the patient state during

piperacillin/tazobactam antibiotic therapy, (2) the impact of pi-

peracillin/tazobactam antibiotic TDM on patient state dynamics,

and (3) the effect of piperacillin/tazobactam TDM on the survival

of patients (Figures 1B and 1C).

RESULTS

Data-driven assessment of TDM and control group split
We first computed the mean pairwise Euclidian distances in the

original feature space, which yielded no difference between the

TDM and control group patients (Figure S2). Considering

the small number of patients in the study (n = 248), we further

extended the similarity analysis in lower dimensional represen-

tation generated by two dimensionality reduction techniques,

t-distributed stochastic neighbor embedding and linear prin-

cipal component analysis (Figures 2A and 2B). In both cases,

computed pairwise distance statistics and their distribution

were the same. The analysis of the pathogen reports for the first

day was also aligned with this data-driven deduction.

Figures 3D and 3E demonstrate the presence of distinct path-

ogen types in both the TDM and control group on day 1

(following randomization). Notably, the pathogen distributions

exhibited similarity between the two groups. Furthermore, the

distribution of piperacillin-resistant (Figure 3D) and sepsis-

causing pathogens (Figure 3E) followed the same pattern.

Therefore, it was deduced that patients in both the TDM and
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control sub-populations started treatment in similar conditions,

enabling the conduction of the proposed state-space trajectory

analysis objectively.

Impact of TDM on patient state trajectory
The evolution of the patient states for the TDM and control group

populations revealed three important outcomes (Figure 2C). At

the beginning of the study, both the TDM and control groups

demonstrated a comparable distance to the reference state

space (i.e., patients with Sequential Organ Failure Assessment

[SOFA] score = 1), indicating similar feature distributions within

the patient groups. This finding alignedwith the results illustrated

in Figures 2A and 2B, emphasizing the resemblance in patient

statuses between the control and TDM groups during the initial

phase of the study. Secondly, as treatment continued, the

TDM groups ‘‘moved’’ faster toward the reference state

compared to the control group. In particular, the distance be-

tween the TDM and control groups was found to be the greatest

between 48 and 72 h after the randomization. It should be noted

that all patients received the same dosage at the beginning of the

clinical study (day 1), and dose adjustments weremade once the

data were available for the TDM group on day 2. The movement

after dose adjustment (day 3 and 4) toward the reference state

quantitatively demonstrated that the effective distance traveled

per day was much higher for the TDM group. Thirdly, similar

trendswere observed between days 7 and 10, indicating a stable

recovery rate toward a healthy state (SOFA 1) for both groups.

Considering the importance of the treatment in the first 72 h of

sepsis on one hand, the difference in the slope of the curves

for the number of people who left the study deceased up to

day 10 (Figure 3B). On the other hand, we may argue two modes

of response to treatment in the patient groups. During the first

three days, precise dose adjustments were crucial for sepsis

management, where TDM leads to improvements in two modes.

Some patients experienced immediate short-term benefits,

leading to a higher proportion of TDM patients exiting the ICU

alive within the first week (Figure 3A). Conversely, standard treat-

ment appeared to prolong recovery time for those who survived

(Figure 3A). A second mode of TDM impact was evident in the

overall treatment trajectory, particularly visible in Figure 3B.

Herein, the control group exhibited a relatively steeper slope.

This observation can be explained as a long-term benefit of

TDM, enhancing recovery prospects for patients requiring

extended treatment periods, which in turn results in lower

mortality.

The statistical analysis of the data presented in Figures 3A and

3B was done by comparing the cumulative distribution function

(CDF) and probability density function (PDF) curves for TDM

and control patients to assess the impact of time on the recovery

process. Accordingly, we computed the Kolmogorov-Smirnov

test statistic for the CDF, which explains whether two samples

(TDM and control) came from the same distribution or not.

They were found as 0.214 and 0.286 for Figures 3A and 3B,

respectively.We also computed theHellinger distances between

the PDFs, yielding 0.245 and 0.432 for Figures 3A and 3B,

respectively. Results indicate a relatively large degree of dissim-

ilarity particularly for Figure 3B, supporting the argument that

TDM appears to impact the overall recovery rates of patients.



Figure 1. Quantifying effect of TDM by a similarity-based state-space approach

(A) Data processing and feature selection pipeline for patient status analysis using the in-house data preparation code. The heterogeneous medical database

collected from hospitals is transformed into digital patient cards, followed by the selection of the top 28 representative features through feature engineering. A

similarity-based state tracking approach is employed to compare the impact of TDM on patient status. The integration of biosensors for frequent sampling and

enhanced drug dosage control is proposed to complete the loop and further optimize patient care.

(B) Feature selection workflow utilizing genetic algorithm (GA) implementation. The process involves leaving out 10 patients for generalizability testing, train/test

split for feature selection evaluation, feature scaling/transformation, and iterative refinement with GA with cross-validation. The final feature set is determined

through a frequency analysis of 100 repetitions.

(C) Visualization of traveled distance analogy in a 2D feature space to assess patient state dissimilarity. The blue and orange points represent TDM and control group

patients, respectively. The distance to the reference health state (di) indicates the degree of dissimilarity from the ‘‘healthy’’ state. Patients in both groups start their

recovery trajectory in a specific sub-spaceof the 2Dstate space and are expected tomove toward the referencestate over time. The rate of recovery is determinedby

how quickly the groups progress from their initial states to the reference ‘‘healthy town’’ of Sequential Organ Failure Assessment (SOFA) score of 1. The cumulative

sum of Mahalanobis distances is calculated to quantify the difference between TDM and control groups’ proximity to the healthy zone for each day.
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When the status of the patients leaving the study alive was

further examined, it is seen that the last recorded SOFA scores

were also lower for the TDM group for the first 10 days, with

the exception of day 1 in which 2 patients left the study with a

high SOFA score (Figure 3C). Statistical analysis of the last day

SOFA scores for patients who left the study alive (day <11)

was done via ANOVA test. p value here was found as 0.0314,

indicating that the impact of TDM on the last day SOFA scores

is visible. This is also consistent with the fact that in the original

statistical analysis of the study, a lower mortality rate and a

higher clinical and microbiological cure rate were observed in

patients receiving TDM-guided therapy.

The statistical test for last day SOFA scores was done for data

points up to day 11 due to the decrease in the number of patients
remaining in the study.We postulate that the observed ‘‘spike’’ in

SOFA scores between day 12 and 14 among patients who left

the clinical study alive within the TDM group can be attributed

to two related factors. Firstly, the remaining smaller population

size in TDM group could potentially magnify the impact of indi-

vidual variations in patient responses. Secondly, a relatively

higher proportion of critically ill individuals remained in the

TDM group compared to the control as a result of the TDM

group’s overall lower mortality rate throughout the first 10 days.

Randomly sampled individual patient trajectories from the

TDM and control group (Figure 2D) further revealed unique re-

sponses to the therapy, highlighting the individualistic nature of

the treatment process and the need for an individualized therapy

management for a better recovery. It is noteworthy that the dose
Cell Reports Medicine 5, 101681, August 20, 2024 3
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Figure 2. Data-driven assessment of TDM and the impact of TDM on patient state trajectory

The underlying hypothesis of this study is that the medical data collected daily during the clinical study hold valuable information regarding the patients’ health

states. By employing mathematical techniques of similarity, the gradual changes in patient states based on the distribution of their health states were quantified.

(A and B) Mathematical similarity of patient groups on day 1 is demonstrated using two dimensionality reduction techniques: (A) t-distributed stochastic neighbor

embedding (t-SNE) and (B) principal component analysis (PCA). Both t-SNE and PCA embeddings indicate that patient states were homogenously distributed on

the day of admission, validating the random TDM and control split. Quantitative comparison in high-dimensional feature space is given in the supplementary

information.

(C) The concept of ‘‘traveling to a healthier state,’’ which is evaluated by calculating the normalized Mahalanobis distance between the patient’s health status on

each day and the reference state.

(D) Randomly sampled individual patient trajectories from both the control and TDM groups, revealing the disparity in mathematical distance toward the SOFA 1

state.
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adjustment frequency in the TDMgroup remained suboptimal for

the individuals, limited to 24-h cycles of drug concentration data.

These findings underscore the need for further investigation with

more frequent dose adjustments to enhance treatment efficacy

and bolster confidence in the observed outcomes.

DISCUSSION

TDM is the practice of measuring, analyzing, and adjusting the

drug levels in a patient’s blood to achieve the desired therapeutic

outcomes while avoiding adverse effects. Here, the drug con-

centrations gauged at specific intervals provide valuable infor-

mation about a patient’s individual PK/PD, allowing the health-

care providers to tune treatment regimens based on the
4 Cell Reports Medicine 5, 101681, August 20, 2024
individual state and make ‘‘informed’’ decisions regarding

dosage adjustments or changes in medication. Therefore, the

success of TDM practices strongly depends on how frequently

and accurately the drug concentrations are measured and how

the patient current state is correlated with the therapeutic win-

dow. Our study utilizes data collected in a clinical trial conducted

across 13 sites, where half of the patients were subjected to

dose adjustment. Notably, our findings demonstrate the capa-

bility of ML algorithms to discern meaningful features, allowing

us to quantitatively capture the patient recovery process and

gain valuable insights into therapy progression.

Despite the rich clinical data regarding patient state (199 fea-

tures), however, the dynamic TDM process was only run using a

daily granularity. That is, the dose adjustment in the beta-lactam
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(legend on next page)
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TDM group was made once a day; thus, smaller time interval

fluctuations in drug concentrations could not be captured. Like-

wise, of the piperacillin concentrations measured in the TDM

group, 88.1% (n = 510) were reported on the same day, while

10.0% (n = 58) were reported at a later date and 1.9% (n = 11)

were never reported.2 As a result of this ‘‘process delay,’’ TDM

feedback cycle used to adjust the dosage regimen was poten-

tially slower when compared to the evolution of the patient state,

which can be seen in the daily SOFA score fluctuations (Fig-

ure S3). Another limitation of the clinical study was the limited

number of dosage adjustments in the TDM group. Hence, the

dose adjustment may not have been made at the optimum

time for the patients. For instance, at day 1, for only 70% of

the TDM patients, dose adjustment was considered necessary,

followed by an average of 48% during treatment, and ended

with less than 30% for day 9 and day 10. Four patients in the

TDM group had never received a dose adjustment.2

The other limitation of the TDM workflow applied was its de-

pendency on theminimum inhibitory concentration (MIC),2 which

represents the lowest concentration of a drug that is required to

inhibit the growth of the microorganism in a laboratory setting. In

the TDM patients, the dose adjustment was based on the most

recent pathology report and the corresponding MIC values.

Nonetheless, setting the therapeutic window based on MIC

has two important limitations: (1) serum drug concentrations

do not necessarily represent the concentration at the site of

infection; hence, drug concentrations above the MIC may not

have been reached at the site,15 and (2) complex PK/PD of the

patient status may demand a drug concentration different than

theMIC. As theMIC value only distinguishes between the growth

and suppression of the pathogen under lab conditions, the drug

concentration recommended by theMICmay not be sufficient to

kill the pathogen at the site of infection. In an ideal scheme, MIC

values can be used to set the initial therapeutic window, which is

continuously updated based on an individualized patient model

stemming from the site of infection.8,16 However, despite these

challenges, ML-augmented analysis of the patient data conclu-

sively demonstrated that implementing dose adjustment policies

had a significant and favorable impact on the overall recovery of

patients in the TDM group. In particular, dose adjustment based

on TDM had the largest impact within the first 72 h of admission,

which is noted as an important treatment window in themanage-

ment of patients with sepsis.

In TDM, quantifying the impact of defined drug concentra-

tions on a patient’s recovery trajectory is vital. In the clinical

case being examined, for instance, updating patient data on

an hourly basis, rather than daily, could significantly amplify

the impact of TDM, especially within the first 72 h. By doing
Figure 3. Effect of TDM on patient recovery trajectories

(A) The number of people left the study alive in both control and TDM groups.

(B) The number of people left the study dead in both control and TDM groups.

(C) Last recorded SOFA scores (median) for patients left the study alive in both t

(D) The presence of distinct pathogen types (red) with the distribution of pipera

(following randomization).

(E) The presence of distinct pathogen types (red) with the distribution of sepsis-c

randomization). Pathogen distributions and the distribution of piperacillin-resista

indicating that the patients in TDM and control sub-populations started the treat
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so, it would have been possible to determine the most effective

drug concentration to target, ensuring the best possible out-

comes for the patient. However, this necessitates (1) the iden-

tification of the optimal free drug concentration and (2) a quan-

titative description of the patient’s state. In this regard, the use

of biosensors can potentially provide accurate, on-site, and

rapid detection of the drug concentration from both blood

and non-invasive bodily fluids including sweat, saliva, tear,

and breath, providing a chance to accelerate the response

time of the TDM cycle.17–22 While still in the research stage,

these devices are engineered to offer frequent measurements,

detect subtle changes in drug concentration, and deliver results

that are both sensitive and consistent. A key advantage of bio-

sensors lies in their ability to operate with minimal volumes of

various biofluids, such as blood obtained through a finger prick

or non-invasive samples. This capability facilitates frequent

sampling and measurement, thereby enhancing the precision

of drug monitoring.15 Furthermore, the multiplexing function-

ality of biosensors enables the simultaneous monitoring of mul-

tiple analytes and/or samples, improving diagnosis capabilities

and establishing a better individual reference state.22,23 Addi-

tionally, this sensor data can be utilized to build digital patient

models, which can further enable model predictive control pol-

icies via simulating the patient response with individualized PK/

PD parameters. By integrating population-specific antibiotic

PK models with patient-specific information such as kidney

function, weight, pathogen data, and TDM results, tailored

dosing regimens can be calculated via model-informed preci-

sion dosing software.8,16,18 Preliminary findings indicate that

such a personalized approach improves the attainment of PK/

PD targets, particularly for patients at high risk of mortality

from infections.24 When coupled with data-driven methods,

biosensors have the potential to improve therapy efficacy by

providing a more accurate representation of the therapeutic in-

dex, tailored to individual patients’ needs. This personalized

approach enables the customization of dosage regimens, opti-

mizing treatment outcomes.

Recent developments in the wearable body area network,25

where multiple wearables mounted on different parts of the

body to concurrently analyze various physiological markers,

and the integration of internet of things devices into healthcare

monitoring26 are enabling continuous feature collection possible

for quantitative description of the patient’s state. By leveraging

ML capabilities, voluminous sensor data, together with the pre-

vious medical records, genetic information, and individualized

healthy reference state, data-driven algorithms can continuously

adapt and refine dose adjustment strategies and the pharmaco-

kinetic models in real time.
he TDM and control groups.

cillin-resistant pathogen (blue) in both the TDM and control groups on day 1

ausing pathogen (blue) in both the TDM and control groups on day 1 (following

nt and sepsis-causing pathogens exhibit similarities between the two groups,

ment in similar conditions (see Table S1).
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Figure 4. Features considered relevant by the evolutionary feature selection algorithm

Each bar denotes howmany times a feature was picked by GA for SOFA score prediction. Features used in the patient state analysis are highlighted as dark blue.

(A) Continuous features encompass various information (such as age, height, and body weight), laboratory (leukocyte count, hematocrit levels, and creatinine

levels), drug-related information (concentration and infusion rate), and physiological measurements (such as breathing rate, body temperature, and mean arterial

pressure).

(legend continued on next page)
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Another key role that wearable technology can play is the defi-

nition of an individualized reference healthy state. Our analysis

showed that patient states can be defined from measured phys-

iological parameters and observations, and the effect of therapy

can be quantified by comparing the instantaneous patient state

with a reference ‘‘healthy state.’’ In the current implementation,

we used the SOFA = 1 patient states as reference distribution,

and closeness to this reference distribution provided a proxy

measure for ‘‘being healthy’’ for all patients. In a 4P (predictive,

preventive, personalized, and participatory) medicine concept

enabled by wearable sensors,25,27 individualized healthy states

for patients can be learned, which would further increase the ac-

curacy of state space tracking of health status. Such advance-

ments underscore the importance of collaborative efforts among

clinicians, technology developers, and data scientists. By

emphasizing the significance of interdisciplinary collaboration,

this paper aims to underscore the importance of leveraging

advanced technologies to enhance patient care and outcomes

in TDM.

The proposed analysis in this study also reveals an intriguing

finding regarding the clinical relevance of the selected feature

set and its relationship to the SOFA score. The features

commonly used to calculate the SOFA score in clinical practice,

such as thrombocytes, urine, creatinine, the Glasgow Coma

Scale (GCS), and encephalopathy, were also found to be infor-

mative in this study. From a data science perspective, the calcu-

lation of the SOFA score can be viewed as a rule-based tech-

nique that reduces the dimensionality of the data, transforming

a 28-dimensional vector into a single scalar value. This interpre-

tation leads to two practical outcomes. First, it highlights the

need to understand the limitations of the SOFA score analysis

and how it can be interpreted. Second, it sheds light on the pro-

posed state-space patient trajectory analysis, which can be seen

as a high-dimensional, continuous version of the SOFA score.

At the first glance, reduction of all clinically relevant data as the

SOFA score can be considered as a practical way for interpreta-

tion. However, the way SOFA scores are calculated in current

practice can result in inaccurate clustering or classification of pa-

tients with different status. The SOFA score assesses the func-

tionality or degree of failure in six key systems: respiratory, car-

diovascular, hepatic, coagulation, renal, and neurological. It is

important to recognize that while two patients may have the

same SOFA score, their clinical situations differ significantly.

For instance, one patient may have impaired renal function re-

sulting in their score of 4, whereas another patient may experi-

ence minor issues across four different major systems. There-

fore, interpreting SOFA scores requires careful consideration of

the specific organ systems involved to obtain a comprehensive

understanding of each patient’s condition.

To address these limitations, our analysis provides a way to

maintain a ‘‘multidimensional’’ SOFA score based on Euclidean

distances. This allows for a quantitative assessment of themath-
(B) Discrete features consist of yes/no questions and ordinal variables, such as

replacement.

(C)Whether a pathogen could be detected in the patient. Microbiology reports cov

fungi, and other pathogens such as Chlamydia species; (D) whether a detecte

responsible for the sepsis episode. See Table S1 for more details.
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ematical similarity between patient states while preserving the

maximum amount of information. Hence, the method proposed

in this study can be interpreted as a continuous and extended

form of the SOFA score analysis. This proposed approach can

be considered as a ‘‘live map,’’ showing the state of the patient,

with respect to a reference healthy state distribution. By utilizing

this approach, it becomes possible to distinguish between pa-

tients with the same SOFA score but different physiological

states. This enhanced level of differentiation provides valuable

insights for clinical decision-making and patient management.

With such a tool, the added value of adaptive policies such as

TDM compared to pre-determined dosing strategies can also

be measured with ease, as it enables a quantitative feedback

system. For a potential TDM application, however, at least one

of the following should be true: (1) there must be a narrowmargin

for an effective dosage, such that there is a risk of underdose

(i.e., risk of antibiotic resistance)/overdose (risk of toxicity) treat-

ment, (2) clinically effective drug concentration or drug mix is

changing significantly for individuals and cannot be known a pri-

ori, or (3) the dose regimen is to be dynamically changed during a

treatment, and a patient response is needed to be tracked. In

such cases, proposed methodology can be followed, as it gives

a quantitative, objective measure of the treatment process.

The ‘‘multidimensional’’ SOFA score approach represents an

alternative interpretation of existing clinical data, offering seam-

less integration into established frameworks. Leveraging similar-

ity-based learning, a well-established domain within ML, our

approach utilizes readily available functions andmethods across

various programming languages. Conceptually, our approach

can be likened to a high-dimensional map, allowing for the

tracking of a patient’s progress across multiple dimensions.

Specifically, it enables assessment with respect to (1) their refer-

ence state if it exists (e.g., previous routine checkup measure-

ments), (2) their state compared to their previous measurements

during the treatment, and (3) a clinical database for a relevant

fraction of a population (gender, age, known diseases, etc.). De-

ploying the proposed methodology and the interpretation of the

results facilitated through a user-friendly graphical interface are

both straightforward, when reference states are accessible. Uti-

lization of the proposed approach would be very similar to SOFA

score practices, however, with the advantage of keeping all the

relevant information about patients (multidimensional) in a

continuous, distinctive framework (instead of using discrete,

overlapping ordinal SOFA classes).

Our study has revealed significant findings with implications

for ML-augmented disease classification, patient stratification,

and monitoring treatment response. Features identified with

ML techniques accurately reflected the recovery process of pa-

tients with sepsis in ICUs, providing valuable insights into ther-

apy progression and effectiveness. Importantly, continuous

monitoring of these features enabled precise measurement of

the recovery rate, emphasizing their potential as indicators of
the presence of metabolic acidosis, renal dysfunction, or the need for renal

er 36 different pathogens, including gram-positive and gram-negative bacteria,

d pathogen is resistant to piperacillin and (E) whether the pathogen type is



Article
ll

OPEN ACCESS
treatment response. By using artificial intelligence, we demon-

strated quantitatively that beta-lactam antibiotic TDM imple-

mentation leads to higher recovery rates and enhanced patient

outcomes. Our findings highlight that the state between healthy

and sick individuals can be differentiated from the temporal data,

which in turn can be used to quantify the recovery process as a

reliable measurement of the recovery rate. Additionally, TDM-

guided dosing was found to significantly alter the trajectory of re-

covery, underlining its potential for personalized medicine and

enhanced patient care.

Limitations of the study
The proposed methodology measures the mathematical dissim-

ilarity (i.e., Mahalanobis distance28,30–32) between the current

state of an individual patient at a given time and a reference

healthy state distribution (SOFA = 1 states available in the clinical

study). This is because the personalized healthy state of each in-

dividual is not available. In other words, statistics of the relatively

healthier patients in the clinical study are used to define a refer-

ence state, which may not perfectly represent being healthy for

each individual, introducing a sampling bias for both the control

and the TDM group. To minimize the impact of such bias, aggre-

gated Mahalanobis distances for the TDM and control groups

are compared, and the impact of TDM is reported cumulatively

for each group. The second limitation is the sample size, which

included 248 patients and 2,376 state vectors in total. The study

should be extended to a larger population for better generaliza-

tion of the outcomes. The original study from which the patient

data were taken did not include full demographic analysis of

the patients. Although this information does not directly impact

the analysis, its absence could be seen as a limitation.
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Deposited data

Patient data Hagel et al.2

Hagel et al.11
German Clinical Trials Register
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Software and algorithms
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, Dr. Can Dincer (dincer@imtek.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data processing and modeling were conducted on Python 3 using standard libraries that are publicly available: pandas,

numpy, scipy, scikit-learn, matplotlib, seaborn, plotly, category-encoders, deap, sklearn-genetic, statsmodels. The code uti-

lized in this study was tailored to the data collected in the clinical study2 and its unique data structure. Without access to

the data, the code holds little utility; however, interested readers may request access from the lead contact.

d This paper analyses existing data collected in the clinical study and can be accessed from an already published open-access

publication.2

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design and objectives
The data source used in this work had been published as a randomized, controlled trial, which involved patients admitted with severe

sepsis or septic shock and aimed to compare the clinical effectiveness of TDM-guided Piperacillin/Tazobactam antibiotic therapy

versus a fixed dosing strategy.2 The working hypothesis here is that the information regarding the recovery process is embedded

into the measured features. In other words, healthier states should be distinguishable from relatively sick states by comparing infor-

mative measured features at different times for a patient, or in between patients. Such an approach converts the problem of quan-

tifying the effect of TDM into a state trajectory analysis; that is, via monitoring the change in these features, recovery rate can be

measured in the state space. More importantly, it becomes possible to quantify relative recovery rates with or without TDM, as a

more effective therapy will change the recovery trajectory for the patient.

Details of the clinical study
A clinical trial was conducted to compare the effectiveness of TDM-guided antibiotic therapy with fixed dosing in improving clinical

outcomes in sepsis patients treated with piperacillin/tazobactam.2 The trial included 248 adult patients with severe sepsis or septic

shock who had received the therapy within the last 24 h before enrollment. It took place in 13 different locations in Germany between

January 2017 and December 2019 and was randomized, controlled, and patient blinded. The trial was registered at the German Clin-

ical Trials Register (GermanCTR), DRKS00011159, as required by the funding agency. All details of the trial can be accessed via

https://drks.de/search/de/trial/DRKS00011159.

The study recorded clinical, microbiological, and laboratory data from the day prior to randomization and then throughout the

following time points: day 14 post randomization, at the end of therapy, at discharge from the ICU, and at day 28. Patients were

randomly assigned (1:1) to either the TDM group or to the control group (no-TDM). Randomization was stratified by the participating

centers and performed by the investigators using an internet-based randomization tool. Following randomization, both the control
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and TDM groups were given an initial loading dose of 4.5 g of piperacillin/tazobactam, followed by a continuous infusion of the same

antibiotic. The total daily dose was 13.5 g (9 g in patients with an estimated glomerular filtration rate (eGFR) < 20 mL min�1). In the

TDM group, dosing of piperacillin/tazobactamwas guided by daily monitoring of piperacillin, starting on Day 1 post randomization (or

Day 0 if the piperacillin concentration had already reached a steady state) for a maximum of 10 days. Use of antimicrobial combina-

tion therapy, termination or (de-) escalation of antimicrobial therapy was allowed at any time and at the discretion of the treating phy-

sicians. The target plasma concentration of free piperacillin was set to four times (with a range of ±20%) the minimal inhibitory con-

centration of the pathogen responsible for sepsis. For empirical therapy, the epidemiological cut-off (ECOFF) of Pseudomonas

aeruginosa (16 mg L�1) published by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) was utilized. In pa-

tients receiving TDM-guided therapywith piperacillin/tazobactam, a dose adjustment wasmade on 53.9% (312/579) of the treatment

days. In the control group, daily dose adjustments were based on patient renal function and did not utilize any TDM. Both patient

cohorts had blood samples taken daily to measure piperacillin concentrations. The TDM group received same-day analysis, report-

ing, and dose adjustments, while analysis in the control group could be performed on the same day or later, with samples kept at

�80�C until analyzed. Total piperacillin concentration measurements were performed on-site in study centers using either high-per-

formance liquid chromatography (HPLC) or liquid chromatography mass spectrometry (LC-MS/MS). The trial protocol was approved

by institutional review boards, published previously, andGermany’s Federal Institute for Drugs andMedical Devices (EudraCT: 2016-

000136-17, ref. 4041358). The primary endpoint was sepsis-related organ dysfunction measured by the mean daily total SOFA

scores over 10 days, discharge from the ICU or death, whichever occurred first. The mean SOFA score was calculated as the

mean of all daily SOFA scores for each patient.

It should also be noted that sepsis was defined according to the criteria valid at the time of initiation of the study (Sepsis-2 criteria). It

should also be noted that sepsis was defined according to the criteria valid at the time of initiation of the study (Sepsis-2 criteria).29 At

the time the study was planned and initiated, the old sepsis definitions were still valid. The inclusion criteria were not changed during

the ongoing study to comply with the newSepsis-3 definition. Interested readers are encouraged to refer to the original publication for

further details of the clinical study.2

METHOD DETAILS

Patient state and measure of similarity
Mahalanobis distance is a statistical measure used to assess the dissimilarity between a sample point and a distribution in a multi-

dimensional space, considering the structure of the data. The Mahalanobis distance from a patient state vector A to a reference dis-

tribution R with mean m and covariance S is calculated as:

DðA;RÞ =
�
ðA � mÞS� 1ðA � mÞT

�1=2

where S� 1 is the inverse of the covariance matrix of the reference distribution R. The Mahalanobis distance accounts for the corre-

lation between different measured variables by scaling the differences with the inverse covariance matrix.28 Considering the inter-

patient variance in the measured physiologically relevant features, it is considered that the Mahalanobis distance would be the

best fit to mathematically describe the dissimilarities between the patient states.

In particular, we used the Mahalanobis distance to measure dissimilarity between the patient state at a given time and a reference

‘‘healthy state distribution’’ based on the SOFA score. Firstly, we investigated the uniqueness of the SOFA scores during the Explor-

atory Data Analysis (EDA) phase, revealing that only six patient states have a score of SOFA = 0. As a result, second best SOFA score,

SOFA = 1 is used as a filter to create a state vector group as the reference distribution. Figure 1C depicts the measurement of Ma-

halanobis distances for each patient state at each day in a 2D feature space. Herein, blue and orange points mark the state vectors of

the patients in a 2D state space for the TDMand control groups, respectively. In both groups, patients start their recovery trajectory at

a certain sub-space of the 2D state space. The distance to the reference health state (for example, d1) is expected to be correlated

with the degree of dissimilarity with the state of ‘‘being healthy’’. As the therapy continues successfully, the patient should ‘‘move’’ in

the feature space toward the reference state and the rate of recovery is correlated with how fast the groups move from their initial

states (day of admission) to the reference zone, so called ‘‘healthy town’’. In other words, if the dose adjustment within TDM is bene-

ficial for the TDM group, there must be a distinct difference between how much closer they are to the healthy zone compared to the

control group. This is quantified by calculating the cumulative sum of theMahalanobis distance between the TDM/control groups and

the reference states for each day (t):

CumSumðtÞ =
XPðtÞ
p = 1

DMahalanobis p ðtÞ

Where p is the patient for which the distance (DMahalanobis p
) is being calculated for day t and PðtÞ the number of patients that are in the

TDM/control group at day t. To ensure the statistical significance of themeasured CumSum, daily values are normalized based on the

mean pairwise distance of SOFA = 1. In other words, normalized distances shown in Figure 2C report how far away the TDM/control

group to the reference state, if the distance between SOFA = 1 patients is equal to 1.
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It should be also noted here that since the feature set is heterogeneous (i.e., consists of continuous, categorical and ordinal vari-

ables), discrete ones should be first transformed into a pseudo-continuous representation, and then all features should be scaled for

an unbiased dissimilarity analysis. In this work, the features are first grouped into three sub-sets: continuous, discrete and discrete

pathogen-related features (see Figure S2). Then, discrete features are transformed via CatBoost30 to have a continuous feature

space. Next, all features are normalized with standard scaling before conducting the distance analysis. CatBoost and standard

scaling methods are fit by using only the training data to prevent data leakage.

Feature engineering and selection
Mathematical similarity, which is type of unsupervised learning approach, relies on themeasureddistances in highdimensional feature

space, which makes feature engineering and selection very critical, particularly for the conducted analysis with limited number of pa-

tients and total number of daily observations (state vectors).30 In the current study, the primary clinical data is first analyzed in terms of

feature variance, missing data, outliers, and any other unphysical abnormalities (see Figure S1). The data preparation steps (see Fig-

ure S2) converted primary clinical data into 199 structured features for 248 patients (TDM:123, control:125) with variable trajectory

lengths (i.e., duration of the treatment at daily granularity), consisting of 2376 state vectors in total. Since the clinical data is limited,

highdimensional feature space (199dimensions) is found to be extremely sparse, the dimensionality of the problemhas to be reduced,

as the similarity analysis relies on distance, and the ‘‘signal/noise ratio’’ in distance-based (or error-based) approximations diminishes

exponentially as the number of features increases.30 In the context of conducting multidimensional SOFA score analysis through dis-

tance calculations within the latent space, concerns about interpretability can arise, particularly when utilized by scientists and clini-

cians from diverse backgrounds. There is a risk that such projections would merge different spatial and/or temporal features, making

theanalysis a blackboxmodel. Tomitigate theseconcernsandenhance interpretability, feature selectionwasemployed to simplify the

feature space prior to conducting distance calculations. This was also one of the reasonswhywe did not rely on neural network-based

dimensionality reduction techniques. Therefore, in thenext step,weappliedalternative feature selectionapproaches includingfiltering,

implicit and wrapper methods. For this particular problem, using genetic algorithms (GA) for feature selection31,33 (i.e., as a wrapper)

provided the best feature subset, and the methodology for feature selection is described here only for the GA implementation.

Firstly, we leave 10 patients out of the feature selection study to increase and test the generalizability of the similarity approach. The

feature selection procedure is shown in Figure 1B. The process starts with a train and test split for the selected 238 patients. The

training data is then passed to the Wrapper, which is a GA implementation with internal cross-validation (CV). A random forest

model32 was used as the estimator of the feature selection wrapper. The score needed to iteratively refine the feature subset is taken

as the SOFA scores, where the metric for the fitness is selected as the negative mean absolute error. The number of feature subset is

also scanned parametrically, starting from one to the maximum number of features to analyze the value of added information with

increased number of features. The CV scores are then examined to determine the optimum number of features. As the GA involves

randomness, feature selection process is repeated 100 times, where 100 generations are created at each run. The frequency of the

features selected by the last GA generations is given in Figure 4. It is seen that pathogen related data was rarely selected by the

model, typically less than 10% of the time. For the final set, the features that were picked more than 10% of the time were unionized

with a new GA iteration to cover potential multivariate correlations (Figure 4, dark blue). During the preliminary studies, various

shallow ML predictors with the feature selection loop were also evaluated. An ensemble, information-based random forest model

demonstrated the best generalizability and highest performance on test data, as well as for the patients left out of the analysis.

More details about the feature selection scores are presented in the Supplementary Information (see Figures S1–S3).

SOFA score and patient analysis
The cumulative Mahalanobis distance analysis described in the previous section provides a way to quantify the impact of TDMon the

patient status in the form of mathematical dissimilarity between the current state and a reference distribution. To further analyze how

the abstract distances translate into patient recovery, we examined the (i) temporal evolution of the patient SOFA scores, and (ii) mor-

tality rate for both TDM and control groups.

The SOFA score is a clinical tool utilized to evaluate the severity of illness and prognosis in critically ill patients. It involves assessing

six organ systems: respiratory, cardiovascular, hepatic, coagulation, renal, and neurological. Each organ system is assigned a score

ranging from 0 to 4, where higher scores indicate more severe dysfunction. The individual scores for each organ system are summed

to obtain a total SOFA score, which can range from 0 to 24. A higher score indicates more pronounced organ dysfunction and a

poorer prognosis for the patient. In the current study, SOFA scores are used in the supervised ML methods for feature selection,

and to interpret and discuss the calculated Mahalanobis distances. We also conducted statistical analysis on the distribution of pa-

tient health status by examining the multivariate feature distributions on the day of admission, as well as on the last recorded patient

data (state vectors). Patient analysis includes the comparison of the first day state vectors of the patients to justify the controlled clin-

ical trial with dimensionality reduction techniques qualitatively and the Mahalanobis distances quantitatively. Pathogen tests of the

TDM and control groups are also compared for the first day to ensure that TDM and control split of the patients is not biased toward

any group. In other words, the pathogen distributions and their piperacillin resistances should also be distributed in a balanced way

between the TDM and control group patients. Furthermore, for each day of the therapy, medians of the last recorded SOFA score for

alive patients and the day patients leave the clinical study are extracted from the log files to discuss the results obtained by the sim-

ilarity-based state analysis.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Kolmogorov-Smirnov (KS) test
When applied to a cumulative distribution function (CDF), KS test serves as a measure of dissimilarity between two distributions.

Given FðxÞ representing a theoretical CDF, and a sample of n observations from an empirical distribution function FnðxÞ, the
Kolmogorov-Smirnov test statistic DKS is defined as:

DKS = maxðjFnðxÞ � FðxÞjÞ
DKS yields the supremum of the absolute differences between the two distributions over the entire range of possible values, which

quantifies how well the empirical distribution function fits the hypothesized theoretical distribution. If DKS is small, the two distribu-

tions are considered to be similar, otherwise it indicates a significant dissimilarity between the empirical and theoretical distributions.

In this study, it is used to compare two cumulative distribution functions (CDFs), namely the TDM and control group data. In such a

scenario, the test assesses whether the two distributions differ significantly or not. Herein, the null hypothesis (H0) states that the two

distributions are two distributions, while the alternative hypothesis (H1) claims the opposite.

Hellinger distance
This is another measure of the similarity between two probability density functions (PDFs). The Hellinger distance DH between these

two PDFs fðxÞ and gðxÞ is defined as:

DHðf ;gÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5

Z � ffiffiffiffiffiffiffiffi
fðxÞ

p
�

ffiffiffiffiffiffiffiffiffi
gðxÞ

p �2

dx

s

Similarly, a large DH value suggests greater dissimilarity between the two distributions. It is worth to note that DH is bounded be-

tween 0 and 1. The threshold value is typically based on the context of the problem.

Multiple factor analysis of variance
Multi-factor analysis of variance (ANOVA) is a statistical method used to examine whether themean levels of various effects are equal

acrossmultiple factors or conditions simultaneously. This analysis typically involves a response variable (dependent) and one ormore

factor variables (independent). Each factor can have different levels, representing distinct conditions or categories. In this study, two

factors were investigated: ’Group’ (including TDM or Control) and ’Time’ (indicating treatment day). The dependent variable of inter-

est was the last recorded SOFA score for the patients left the study alive. By regressing the SOFA score against both ’Group’ and

’Time’, the individual contributions of these factors to variations in the dependent variable were assessed. Themodel fitting employed

Ordinary Least Squares (OLS) regression. Specifically, Type 2 ANOVA, also known as sequential ANOVA, was utilized, which eval-

uates the significance of each independent variable while adjusting for the effects of other independent variables in the model.

Computational analyses were conducted using the statsmodels library.

ADDITIONAL RESOURCES

The data used in this study is based on an already published clinical trial under German Clinical Trials Register (GermanCTR),

DRKS00011159.

Data preparation procedure
There were 12 files constituting the primary clinical data. In each, the patient data is encoded as follows:

rno: Ta-01-0001-3.

(1) 01: which site/hospital

(2) 0001: patient number

enabling to filter and process patient specific features, and create virtual patient cards. The content of each data is summarized

below:

dm: Demographic information. It includes features like age, gender, height, body weight, hospital admission date, ICU admission

date, type of assignment, where before ICU.

vs.: Physiological data such as PF Ratio (paO2/FiO2 ratio; only arterial measurement, lowest paO2 +associated FiO2)).

pip: Piperacillin therapy related data.

lb: Lab measurements are reported in this document.

mibi: Microbiology lab results.

sep: Sepsis related file. It contains information about site of infection, if sepsis happened and response to drug.

amic: Antimicrobial therapy related data.

amyk: Antifungal treatment related data.
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rand: Tells which patient gets the TDM and which one is the control group.

chir: Surgical drainage data.

ccmc: Clinical cure data. Most important column is the clinical cure. The rest is considered as supplementary data.

com: Additional comments for some patients. Not used in this work.

Data preparation pipeline starts with data cleaning. All primary files are treated individually to exclude uninformative, redundant

features. Furthermore, if there is more than one entry for a feature at a given day, they are filtered and saved as a list at the first

step. In other words, each patient has one entry for each feature, at every day where the length of the entry may vary from patient

to patient, feature to feature, or day to day. In the first iteration, all information filtered is kept as lists of entries for each day. Below,

the decision made during the data cleaning is summarized.

(1) For any feature, in any file, if the values are savedwith different units, they are all converted into the same unit (e.g., if majority is

reported as mg, all reported as mg and g information is converted to mg).

(2) A new ‘‘dead’’ feature is created. The entry implying that patient is dead or in palliation ([’Tod’, ’Patient verstorben’, ’verstor-

ben’, ’Versterben’, ’Pat. verstorben’, ’Tod des Patienten’, ’Palliation, Exitus’, ’Palliation’, ’Death’, ’Todesfall’]) was not consis-

tent and thus, we used filters to assign numerical values of 0 and 1 for alive and dead patients.

(3) underscoreX: Some features (e.g., START_X) denote whether corresponding feature has a missing value or not. As the infor-

mation is already in the feature itself, underscore columns are dropped.

(4) ICU day: Since the patients are taken in ICU shortly after hospital admission, the feature had little variance in between patients,

and dropped accordingly.

(5) Zero variance features are dropped, such as ‘‘zksno’’.

(6) We drop features with no information, or those repeat the information given in the other features: where_before_ICU, site,

time2, dsno, KONZENT_X new_dosage_day, VISITE_D_new, START_D_new,START_Z_new, STOPP_D_new, STOPP_Z_

new, KONZENT_Z_new, STOPP_Z_new, LARATENEU_D_new, LARATENEU_Z_new UNIT_C (after unit conversions), WIS-

TOFF_E, WISTOFF_C, ANTIMYK_B, hearthrate_NA, PF_unit(1:kPa-2:mmHg), new_dosage_day, comment_why_pip_

changed, pip_mic_na, other_pathogen, ’Randomization_day’, ’Randomization_time’, ’RANDOMNR_C0

(7) We also remove rows with ANTIMYK_B = = 1, as it contained no information.

(8) From the clinical cure data, only the columns ’Clinical_cure(1: healing-2:improvement-3:failure-9:na)’, ’Microbio_cure(1=>7–

9)’ are kept.

At the next step, the clean 11 data files that are saved in a different directory is read and combined under a single pandas

dataframe.

Next, we compute the length of each cell in the df to decide the time granularity of the state space analysis. Extracting the lengths of

features for each patient and for each day revealed that the study can be conducted only at daily granularity. As a result, features that

are recorded multiple times in some patients (in some days) are further processed.

(1) Columns that contain no information are dropped.

(2) For missing values (less than 5% column wise), numerical features are imputed with the column median value, while categor-

ical values are filled with the most frequent one.

(3) For the following features, if there is more than one measurement, daily average is used to represent the patient state:

’heathrate_min’, ’heathrate_max’, ’mean_art.bloodpressure_min’, ’mean_art.bloodpressure_max’,

’temp_min’, ’temp_max’, ’breathing_rate_min’, ’breathing_rate_max’, ’ph_min’, ’ph_max’,

’PF_ratio_min’, ’pO2_at_lowest_PF_ratio’, ’FIO2_at_lowest_PF_ratio’, ’urine_output(mL)’,

’urine_collection(h)’, ’kreatinin_min’, ’crp_max’, ’pct_max’, ’leukocytes_min’, ’leukocytes_max’,

’thrombocit_min’, ’pip_dosage(mg)’, ’kreatinin_max’, ’contd_inf_rate(mL/h)’, ’sample_conc(mg/L)’,

’new_dosage(mL/h)’, ’bicarbonate_min’, ’bicarbonate_max’, ’pip_dosage(mg).10, ’target_conc(mg/L)’

(4) Features that include explanations or notes taken during the clinical study is dropped, as therewere not sufficient examples for

text mining:

’Stop_reason(why_8)’, ’STARTGRUND_C0, ’STOPPGRUND_C0, ’reason’

(5) Columns start with the following is dropped as they contain repeated time information:

’rno’, ’STARTZ_Z0, ’STOPPZ_Z0, ’STOPP_D0, ’Stop_time’, ’Visite_’, ’day’, ’hour’, ’Date’, ’date’, ’KONZENT_D_new’

(6) Following columns are reorganized, before one hot encoding:

’type_of_ventilation(0:n-1:noninvasive-2:invasive)’, ’renal_replacement(0:n-1:y)’, ’Pneumo(0:n-1:y)’, ’Trach_secration(0:little-

1:abundant-2:ab_with_prulent)’, ’Infiltrate(0:n-1:diffuse-2:localized)’, ’ARDS(0:n-1:y)’,

’eye_response(4:spontaneous-3:after_prompt-2:on_pain_sti-1:no)’, ’Verbal(5:clear-4:confused-3:single_words-2:single_

sounds-1:no)’,
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’Motor(6=>1_getting_worse)’, ’GCS(1:raised-2:estimated)’, ’Drainage(0:n-1:y)’, ’pip_give(0:n-1:y)’, ’pip_give_type(1:empric-

2:targetted)’, ’Bolus_delivery(0:n-1:y)’, ’blood_sampling(0:n-1:y)’, ’Drainage_number’, ’new_dosage_reason(1:TDM-2:side-effect-

3:other)’,

’Clinical_cure(1:healing-2:improvement-3:failure-9:na)’, ’Microbio_cure(1=>7–9)’, ’change_in_pip(0:n-1:y)’, ’why_therapy_

stop(1=>8)’, ’CHECK1_B(0:n-1:y)’, ’CHECK2_B0, ’CHECK2_E0, ’CHECK3_B0, ’CHECK3_E0, ’CHECK4_B0, ’CHECK4_E0, ’Pathogen_
type(unique_values)’, ’can_cause_sepsis(0:unlikely-1:probable-9:unknown)’, ’pip_resistance(1:sensitive-2:intermediate-3:resis-

tant-9:not_tested)’, ’pip_mic(mg/l)’, ’target_based_on(0:no_patogen-1:patogen)’

(7) Columns with too many NaN values are dropped:

’bicarbonate_v_min’, ’bicarbonate_v_max’, ’APPLI_E0, ’GESDOSIS_N0, ’Antimic(0:n-1:y)’, ’CHECK1_E(day)’,

’CHECK2_E0, ’CHECK3_E0, ’CHECK4_E0, ’pip_mic(mg/l)’

(8) Columns related to time information were further filtered, together with meta columns:

’Sepsis_day’, ’Sepsis_hour’, ’reason’, ’pip_start_hour’, ’pip_stop_hour’

’Visite_day_pip_clean_reshape’, ’Visite_day_sep_clean_reshape’,

’Start_day_pip_clean_reshape’, ’Start_hour_pip_clean_reshape’, ’START_D0, ’STARTZ_Z0, ’STARTGRUND_E0, ’
STOPP_D0, ’STOPPZ_Z0, ’STOPPGRUND_E0, ’STOPPGRUND_C0, ’Visite_day_ccmc_clean_reshape’, ’site’,

’Visite_day_chir_clean_reshape’, ’Date_micobio_results’, ’Start_day’, ’Start_hour’,

’Start_reason(1=>6)’, ’STARTGRUND_C0, ’Stop_day’, ’Stop_time’, ’Stop_reason(1=>8)’, ’Stop_reason(why_8)’,

’blood_sampling_day’, ’blood_sampling_hour’, ’why_therapy_stop(1=>8)’, ’Stop_pip_day’, ’Stop_pip_hour’,

’new_dosage_hour’, ’new_dosage_reason(1:TDM-2:side-effect-3:other)’, ’KONZENT_D_new’,

’day_visited’, ’hospital_admission_date’, ’hospital_admission_hour’, ’ICU_date’, ’ICU_hour’,

’type_of_assigment’, ’where_before_ICU’

The data cleaning process conducted reduced the number of base features to 100, and number of patients to 253 so far.

Pathogen related information is then encoded. Herein, we created binarized features for each pathogen type, whether they cause

sepsis and whether that particular pathogen has pip resistance or not. For that purpose, we filter the pathogen data:

[’Pathogen_type(unique_values)’, ’can_cause_sepsis(0: unlikely-1:probable-9:unknown)’,

’pip_resistance(1:sensitive-2:intermediate-3:resistant-9:not_tested)’] where pathogen type can take values of:

101, 102, 103, 104, 106, 107, 108, 110, 111, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 301, 302, 303, 305, 501,

502, 503, 504, 505, 506, 507, 508, 509, 1051,1052]

After data encoding, pathogen information is binarized:
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with corresponding resistance and sepsis information:
Finally, the remaining data frame is split as continuous and discrete, based on the number of unique elements in a column. If it is

greater than 11, the column is considered to be continuous.

Pairwise distance analysis on day 1
After the data preparations, without any further dimensionality reduction/feature selection procedure, we checked the similarity be-

tween patients in Day 1 in the high dimensional feature space. This is done by computing the pairwise distance between patient i and

all remaining patients, followed by an averaging. Figure S2A shows the mean Euclidian distance for each patient. Results revealed

that the majority of the patients are at a similar distance to the rest of the patients, whether the patient is part of the control or TDM

group. It should be noted that the distances are calculated after scaling, so as not to be biased with respect to large magnitude

features.

Details of feature selection via wrapper
Wrapper methods employ iterative search procedures to select subsets of features for themodel. Thesemethods repeatedly provide

feature subsets to the model and use the resulting model performance to guide the selection of the next subset for evaluation. The

goal is to identify a smaller set of features that outperforms the original set-in terms of predictive performance.Wrappermethods offer

the advantage of exploring a wider range of feature subsets than simple filters or models with built-in feature selection. However, the

main drawback is the excessive computational time required to find the optimal or near optimal subset, particularly if the estimator is

a computationally demandingmodel like neural networks. It should be also noted that wrappers can overfit to the training data, hence

requires cross validation-based training procedures.

Wrapper methods can adopt either a greedy or non-greedy approach to feature selection. A greedy search chooses the search

path based on the direction that seems the best at the current moment to achieve immediate benefits. While this strategy can be

effective, it may reach a locally optimal setting where further improvements become difficult. In contrast, non-greedy searchmethods

such as genetic algorithms (GA) re-evaluate previous feature combinations and have the flexibility to move in a direction that initially

appears unfavourable but shows potential benefits in subsequent steps. This allows the non-greedy approach to avoid getting trap-

ped in a local optimum, in which greedy search methods might got caught.

GAs employ a strategy inspired by natural evolution to effectively discover optimal solutions. They generate a set of candidate so-

lutions for the optimization and allow them to reproduce and create new solutions usingmating andmutations. Through competition,

the most evolutionarily fit solutions, i.e., the optimal ones, have a greater likelihood of surviving and propagating into the next gen-

eration (natural selection). This iterative process enables genetic algorithms to gradually improve solutions over time and has demon-

strated convergence for a diverse range of problems. For feature selection, the genetic material becomes the indices of feature col-

umns of the original base dataframe, while the length of the genetic material defines the number of selected features. The fitness of a

feature subset is calculated via an estimator. Herein, estimator solves a regression task: given the feature set, how accurate the

model can predict the labels. In this work, SOFA scores are used as the label and the regression model is chosen to be either a dis-

tance-based linear model (multivariate linear regression, Lasso, ElasticNet), or information-based nonlinear models (Random For-

ests). In other words, we used supervised machine learning methods as the fitness function.

Considering the heterogeneous nature (i.e., continuous, categorical and ordinal features all together) of the patient data, we ap-

proached the feature selection with GA in 4 different ways based on (i) the estimator type being used (distance- or information-based)

and (ii) whether the data is treated as a whole (199 features passed) or a sub-GA selection is conducted for the continuous, discrete

and pathogenic features. For the former, as the distance-based supervised ML models require to work with scaled, continuous fea-

tures, discrete data is first transformed with CatBoost, and then all features are scaled via a standard scalar. If random forest is used,

features are kept as they are; that is, no transformation and no scaling. Secondly, as the dimensionality of the problem is large (199

features), it is considered worthy to investigate a ‘‘divide and conquer’’ approach: a different GA wrapper is used for continuous,

discrete and pathogen features, to pick up informative features independently in lower dimensional space. Although lower
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dimensionality helps to identify patterns in low data limit, this split assumes that continuous, discrete and pathogen feature selections

do not have cross correlations. In accordance, we checked SOFA score prediction capabilities based on 4 scenarios.

(1) All features are passed to a single GA wrapper as they are (no CatBoost transformation, no scaling) with random forest esti-

mator.

(2) Discrete features are transformed with CatBoost; then all features are scaled with standard scaler. Next, transformed and

scaled features are passed to a single GA wrapper with a distance-based linear regression model.

(3) Feature set is split into three; continuous, discrete and discrete pathogen data. These 3 subsets of features are passed to 3

different GA wrapper as they are (no CatBoost transformation, no scaling) with random forest estimator.

(4) Feature set is split into three; continuous, discrete and discrete pathogen data. Discrete and discrete pathogen data are trans-

formed with CatBoost independently; then all three subsets are scaled with standard scaler. Later, transformed and scaled

subsets are passed to 3 different GA wrapper with its independent distance-based linear regression model.

For all cases, we first leave 10 patients out completely from the state space database, to leave of some patients for better gener-

alizability. Then, we further conducted a 4:1 train-test split to ensure that feature selection procedure will not leak any information

about the evaluation of the state space trajectory analysis. In the next step, we passed the train set of the patient states directly

to the GA-based wrapper. Since we did not a priori how many features are enough to represent the patient state, we sweep through

number features, starting from 1 tomaximumnumber of features. For instance, in the case of Feature Set A, GAWrapper is called 199

times, for number of features 1,2,3, ., 198, 199. For each number of features, (e.g., number_of_feature = 15), we initialize a popu-

lation of 160 individuals, with randomly selected 15 features. Herein, the genes of an individual contain the indices of 15 randomly

picked features. Then, for each individual, a different estimator is being trained with a cross validation scheme (cv = 5). The negative

mean absolute error of that individual’s cv scores is saved as the fitness. Then, the same is applied to all 160 individuals. This is fol-

lowed by a parent selection, mating and mutation, which enables to update the gene pool. The whole GA process is applied for 100

generations, yielding the best feature sub-set (e.g., best 15 sub-features among 199). Lastly, the trained estimator with the best

feature subset is used to generate repeated k-fold cv scores (RepeatedKFold(n_splits = 10, n_repeats = 3). Scores are saved.

The process continues with the next number of features (e.g., number of features = 15 + 1 = 16) until themaximum number of features

is reached.
e8 Cell Reports Medicine 5, 101681, August 20, 2024
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Figure S1. Example of a master data frame for patient records, related to Fig. 1b-c. Only the first 11 
features of 5 patients are shown in the table. Herein, each row represents a patient, and each column 
contains variable length lists of features. The shape of the data frame at this step was (254,152), denoting 
152 features for 254 patients. First 11 column of the data is depicted below to demonstrate the df 
structure. 

  



 

 

 

Figure S2. Details of similarity analysis and feature selection using decision model, related to Fig. 1-
4 a) Mean pairwise distance in high dimensional feature space between patients for the day of admission. 
b) Predictive accuracy of the estimator with increasing number of features. For Scenario A, y axis denotes 
the -MAE of predicting the patient’s SOFA score given the feature subset in repeated k-fold analysis. The 
predictive accuracy of the feature subset yielded such plateaus in all feature selection scenarios A-D, 
indicating that adding more features do not contribute to the model accuracy after a threshold, due to the 
limitations dictated by the sparsity of the dataspace.  What differed between scenarios A-D was the negative 
MAEs, and the number of features it yields for its maximum accuracy. Overall, scenario A yielded the highest 
accuracy at lower number of features. c) Variations in repeated k-fold analysis for feature selection with GA 
(number_of_feature = 23). Each point shows the -MAE of the last generation of each 100 runs. This analysis 
further enables us to investigate the frequency of features being selected during the stochastic evolutionary 
process. d) Impact of using implicit feature selector as an estimator in GA wrapper. y axis denotes the -MAE 
in SOFA score predictions. lr: linear regression.  

 



 

 

Figure S3. Fluctuations in patient SOFA score trajectories, related to Fig. 3. Patient health state jumps 
significantly between SOFA scores on a daily basis. Each curve represents a patient. Blue: TDM, Black: 
control. 

 

  

  



 

Table S1. Detected pathogens data including type of pathogen and their occurrence in control and 
intervention groups responsible for sepsis episodes. Related to Fig. 4c-d. We fed the pathogen data to 
the decision model and found that pathogen-related data didn't make the cut very often, less than 10% of 
the time. But for the final feature set, we took the ones that were picked more than 10% of the time and 
threw them into another round of GA to make sure we covered any potential connections between them. 
Table is adapted from the original clinical study2. 

 

 All patientsa 

(n=253) 
TDM 

(n=126) 
No-TDM 
(n=127) 

Gram-positive pathogen, No (%) 

 Staphylococcus aureus, Methicillin-
 susceptible 

34 (6.7) 17 (6.2) 17 (7.4) 

 Staphylococcus aureus, Methicillin-
 resistant 

1 (0.2) 1 (0.4) 0 

 Coagulase-negative staphylococci 
 Methicillin-susceptible 

26 (5.1) 14 (5.1) 12 (5.2) 

 Coagulase-negative staphylococci 
 Methicillin-resistant 

6 (1.2) 5 (1.8) 1 (0.4) 

 Streptococcus pneumoniae 3 (0.6) 1 (0.4) 2 (0.9) 

 Enterococcus faecalis 31 (6.1) 14 (5.1) 17 (7.4) 

 Enterococcus faecium 32 (6.3) 18 (6.5) 14 (6.1) 

 Other Streptococcus species 33 (6.6) 22 (8.0) 11 (4.8) 

 Otherb 18 (3.6) 11 (4.0) 7 (3.0) 

Gram-negative pathogen, No (%) 

 Escherichia coli 86 (17.0) 50 (18.2) 36 (15.7) 

 Klebsiella species 59 (11.7) 30 (10.9) 29 (12.6) 

 Proteus species 25 (5.0) 14 (5.1) 11 (4.8) 

 Enterobacter species 27 (5.3) 14 (5.1) 13 (5.7) 

 Pseudomonas species 31 (6.1) 18 (6.5) 13 (5.7) 

 Serratia species 8 (1.6) 4 (1.5) 4 (1.7) 

 Citrobacter species 11 (2.2) 8 (2.9) 3 (1.3) 

 Acinetobacter species 2 (0.4) 1 (0.4) 1 (0.4) 

 Haemophilus species 3 (0.6) 1 (0.4) 2 (0.9) 

 Stenotrophomonas maltophilia  12 (2.4) 3 (1.1) 9 (3.9) 

 Otherc 26 (5.1) 16 (5.8) 10 (4.3) 

Fungi, No (%) 

 Candida albicans 13 (2.6) 7 (2.5) 6 (2.6) 

 Other Candida species 8 (1.6) 2 (0.7) 6 (2.6) 

 Aspergillus species 3 (0.6) 2 (0.7) 1 (0.4) 

 Otherd 6 (1.2) 1 (0.4) 5 (2.2) 

Othere, No (%) 1 (0.4) 1 (0.4) 0 
 

a Multiple responses per patient possible 
b Other includes other gram-positive bacteria (e.g., Bacillus species, Corynebacterium species, Listeria 
species, Nocardia species). 
c Other includes other gram-negative bacteria (e.g., Legionella, Moraxella, Neisseria, Salmonella) 
d Other includes Phycomyces species, Coccidioides, Zygomyces, Rhizopus, Mucor, and Microsporum 
species. 
e Other includes Mycobacteria species, Chlamydia species, Mycoplasma species 
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