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1. Additional Information for Win Ratio Analysis

eTable 1 — Cross tabulation of events in the first hierarchical WR according to randomization arm

Endpoint Arm

Death New RRT Arrhythmia Norepinephrine Dopamine
No No No 348 (55%) 289 (45%)
No No Yes 42 (31% 93 (69%)
No Yes No 29 (62%) 18 (38%)
No Yes Yes 4 (33%) 8 (67%)
Yes No No 305 (49%) 315 (51%)
Yes No Yes 45 (32%) 97 (68%)
Yes Yes No 37 (56) 29 (44%)
Yes Yes Yes 11 (55) 9 (45%)

eFigure 1 - Number of pairs available for comparisons and wins, losses, and neutral comparisons among each endpoint,

stratified according to show type for the first (A) and second (B) hierarchical approaches.
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2. Bayesian Analysis
A similar syntax was used for most models for the Bayesian analysis. Model syntax and diagnostic plots are provided
below.
Note that for all models Bayes Factors for model with and without interaction were done by creating a model with the

interaction and one without it, and then comparing models using brms::bayes_factor(b1,blni), where “ni” refers to the

model built without interaction.

Coefficients and contrasts were extracted using {marginaleffects}

a. Model Syntax for primary endpoint (28-day mortality): Note that the neutral prior was applied to intervention

arm, but the remaining priors were kept as uninformative (flat). The prior concentrates 95% of its probability mass

between odds ratio of 0.5 to 2.0.

myprior <- prior (normal(0,0.355), class="b",

bl <- brm(death ~ arm * type_ of_shock, family="bernoulli", chains = 4, cores = 4, seed =

coef="arml")

= myprior, data = df,save pars = save pars(all=TRUE))

eFigure 2 — Model diagnostics, including posteriors for intercept and interactions, as well as chains, for 28-day

mortality endpoint.
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b. Model Syntax for composite endpoint: Note that the neutral prior was applied to intervention arm, but the

remaining priors were kept as uninformative (flat). The prior concentrates 95% of its probability mass between odds

ratio of 0.5 to 2.0.

myprior <- prior (normal(0,0.355), class="b",

bl <- brm(composite ~ arm * type of shock, family="bernoulli", chains = 4, cores = 4, seed =

coef="arml")

prior = myprior, data = df,save_pars = save_pars(all=TRUE))

123,

eFigure 3 — Model diagnostics, including posteriors for intercept and interactions, as well as chains for composite

endpoints
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c. Model Syntax for DAFICU28: Note that the neutral prior was applied to intervention arm, but the remaining priors

were kept as uninformative (flat). The prior concentrates 95% of its probability mass between an estimate of -0.7 to 0.7

days alive.

myprior <- prior (normal(0,0.355), class="b",

bl <- brm(daficu28 ~ arm * type_of_ shock, family="gaussian", chains = 4, cores = 4, seed =

prior = myprior, data = df,save pars =

coef="arml")

save_pars (all=TRUE))

123,

eFigure 4 — Model diagnostics, including posteriors for intercept and interactions, as well as chains, for DAFICU28.
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2. APACHE II Customization Results

Customization was necessary due to the lack of crude data on reason for admission allowing original APACHE

II predictions to be calculated.

eFigure 5 — APACHE II discrimination (left) and calibration (right) in the SOAP II. Note that AUC for APACHE II was

reasonable (0.68) but calibration was excellent with the predicted probabilities never exceeding the observed

probabilities beyond 80% confidence levels.
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3. Risk-based HTE analysis
Like the Bayesian analysis presented in 2, a similar syntax was used for most models for the Bayesian risk-based HTE
analysis. Similarly, for all models Bayes Factors for model with and without interaction were done by creating a model
with the interaction and one without it, and then comparing models using brms::bayes factor(b1,b1ni), where “ni”
refers to the model built without interaction. Coefficients and contrasts were extracted using {marginaleffects}

The skeleton syntax for those models were:

myprior <- prior (normal(0,0.355), class="b", coef="arml")
bn <- brm(endpoint ~ arm * type_of_shock, family="family", chains = 4, cores = 4, seed = 123, prior

= myprior, data = df,save_pars = save pars (all=TRUE))

Where endpoint could be death or composite endpoint (using family = “bernoulli”) or DAFICU28 (in which case family
would be = “gaussian”).

Model diagnostic plots are also provided below.

eFigure 6 — Model diagnostics, including posteriors for intercept and interactions, as well as chains, for mortality for

the HTE analysis with APACHE II quartiles.
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eFigure 7 — Model diagnostics, including posteriors for intercept and interactions, as well as chains, for composite

endpoint for the HTE analysis with APACHE II quartiles.
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eFigure 8 — Model diagnostics, including posteriors for intercept and interactions, as well as chains, for DAFICU28

endpoint for the HTE analysis with APACHE II quartiles.
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4. Effect-based HTE analysis
This analysis was based on training a model in a train dataset (random 1,010 patients in SOAP II) using a statistical
model and using the model in the test dataset (remaining patients) using the composite endpoint as target. The model
was adjusted to age, type of shock, cardiomyopathy, and SOFA, all interacting with study arm. Note that priors for
effect size for all estimates (not only intervention) were the neutral prior previously defined but that in this situation no
flat priors were used in the analysis to make the model further skeptical to extreme effect sizes.

The model trained on train dataset was:

myprior2 <- prior(normal(0,0.355),class="b")

bslearner <- brm(composite ~ (age + type_of_ shock + cardiomyopathy + sofa)*arm,
family="bernoulli", chains = 4, cores = 4, seed = 123,prior=myprior2, data = train,
save_pars = save_pars (all=TRUE))

Once the model was defined, counterfactual probabilities were created in the test set (dftlearner), by changing patients

from control to intervention group. This was used to create a summary (sl, below) that included a recommendation for

each patient:
pred norepi <- dftlearner %>% mutate(arm = 0) %>% add_epred_draws (bslearner,seed=123) %>%
ungroup () %>% dplyr::select(id,pred norepi = .epred)
pred _dopamine <- dftlearner %>% mutate(arm = 1) %>%
add_epred draws (bslearner,seed=123) %>% ungroup() %>% dplyr::select(id,pred_dopamine
= .epred)
preds_all <- bind cols(pred norepi,pred_dopamine)
preds_all$cate <- preds_all$pred dopamine - preds all$pred norepi
preds_all$id<-preds_all$id...1
preds_all$id...1<-NULL
preds_all$id...3<-NULL
sl<- preds_all %>% group_ by (id) %>%
summarise (cateavg=median (cate),
catelow = quantile(cate,probs = 0.025),
catehigh = quantile(cate,probs = 0.975),
recommendation = as.factor(ifelse( (sum(cate<0)/n()) > 0.90, "dopamine",
ifelse( (sum(cate>0)/n()) > 0.90, "norepinephrine","none")))) %>%
ungroup ()
The “recommendation” variable is a factor of the recommendation made by the bslearner model to the test set. We then

proceed to assess whether receiving an intervention aligned with the recommendation is associated with differences in

composite endpoints.
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ttt<-left join(dftlearner,sl)

ttt_model <- brm(composite ~ arm * recommendation, family="bernoulli", chains = 4, cores
= 4, seed = 123, prior = myprior, data = ttt,save_pars = save pars(all=TRUE))

Note that the prior here was only applied to the enrolling arm. The model never recommended dopamine, so the
diagnostic plots only include the recommendation = “none” (considering recommendation = norepinephrine as default).
eFigure 9 — Model diagnostics, including posteriors for intercept and interactions, as well as chains, for composite

endpoint, arm, and recommendation in the test dataset.
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Characteristic

ADMISSION
Age, mean (SD)
Sex, n (%)

Female

Male
APACHE II, median (IQR)
Cardiomyopathy, n (%)

No

Yes
Type of shock, n (%)

Cardiogenic

Other

Septic
Mechanical Ventilation, n (%)
Renal replacement therapy, n (%)
SOFA, points, mean (SD)
OUTCOMES
New use of renal replacement therapy, n (%)
Arrhythmia
Days Alive and Free of ICU, mean (SD)
28-day mortality
Composite endpoint

Norepinephrine
N =858

64 (14)

213 (44%)
276 (56%)
22 (17, 30)

285 (58%)
204 (42%)

64 (13%)
43 (8.8%)
382 (78%)
363 (74%)
41 (8.4%)
9.9 (3.3)

56 (11%)
89 (18%)
8 (10)
244 (50%)
307 (63%)

eTable 2 — Comparison of patients in the test set according to S-learner model recommendation.

None
N =821

70 (12)

83 (46%)
97 (54%)
17 (13, 21)

54 (30%)
126 (70%)

51 (28%)
106 (59%)
23 (13%)
105 (78%)
7 (3.9%)
5.7 (3.0)

9 (5%)
29 (16%)
12 (12)
78 (43%)
93 (52%)
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5. Other Analysis

eFigure 10 — Probability of death according to heart rate and intervention arm. A spline was added for the hear rate to

account for non-linearities. P value for interaction = 0.187.
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eFigure 11 — Probability of death according to heart rate (in quartiles), type of shock, and intervention arm. P value for

interaction between heart rate and arm = 0.48.
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