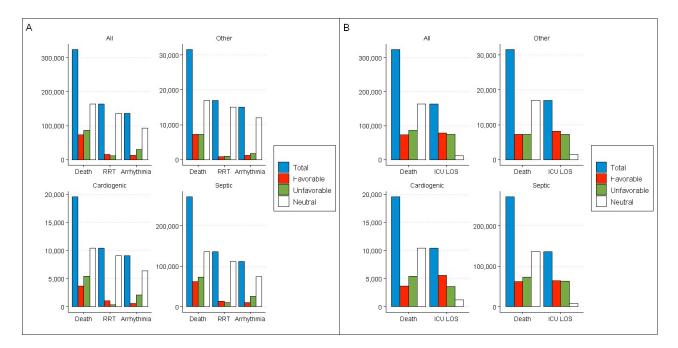
Exploration of Different Statistical Approaches in the Comparison of Dopamine and

Norepinephrine in the Treatment of Shock – SOAP II

Electronic Supplementary Appendix

INDEX


Analysis	Page
Additional Information for Win Ratio Analysis	2
Bayesian Analysis	3-5
APACHE II customization	6
Risk-based HTE	7-9
Effect-based HTE	10-12
Other Analysis	13

1. Additional Information for Win Ratio Analysis

Endpoint			Arm					
Death	New RRT	Arrhythmia	Norepinephrine	Dopamine				
No	No	No	348 (55%)	289 (45%)				
No	No	Yes	42 (31%	93 (69%)				
No	Yes	No	29 (62%)	18 (38%)				
No	Yes	Yes	4 (33%)	8 (67%)				
Yes	No	No	305 (49%)	315 (51%)				
Yes	No	Yes	45 (32%)	97 (68%)				
Yes	Yes	No	37 (56)	29 (44%)				
Yes	Yes	Yes	11 (55)	9 (45%)				

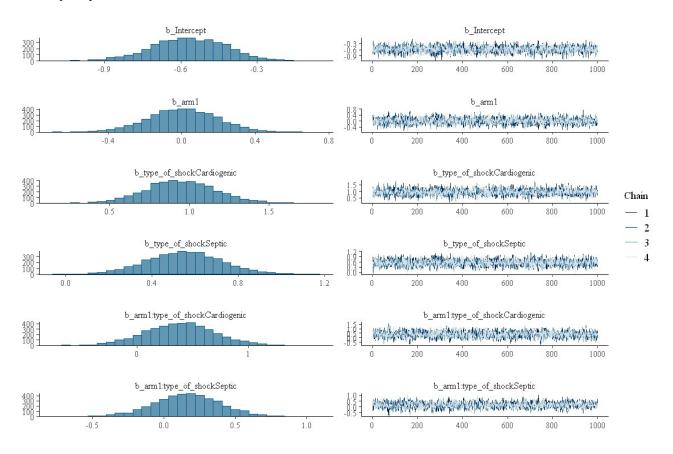
eTable 1 - Cross tabulation of events in the first hierarchical WR according to randomization arm

eFigure 1 - Number of pairs available for comparisons and wins, losses, and neutral comparisons among each endpoint, stratified according to show type for the first (A) and second (B) hierarchical approaches.

2. Bayesian Analysis

A similar syntax was used for most models for the Bayesian analysis. Model syntax and diagnostic plots are provided below.

Note that for all models Bayes Factors for model with and without interaction were done by creating a model with the interaction and one without it, and then comparing models using brms::bayes_factor(b1,b1ni), where "ni" refers to the model built without interaction.

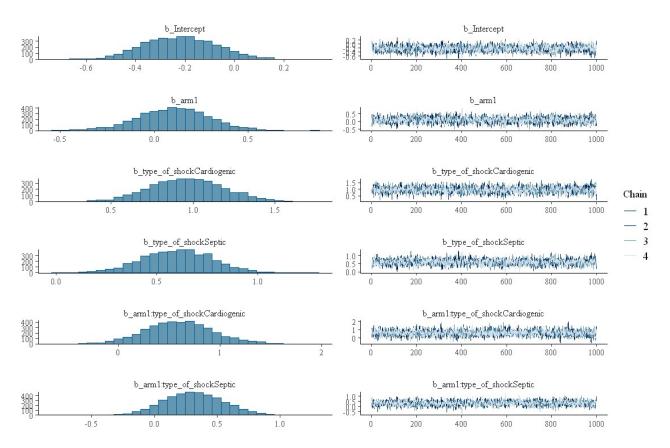

Coefficients and contrasts were extracted using {marginaleffects}

a. Model Syntax for primary endpoint (28-day mortality): Note that the neutral prior was applied to intervention arm, but the remaining priors were kept as uninformative (flat). The prior concentrates 95% of its probability mass between odds ratio of 0.5 to 2.0.

myprior <- prior(normal(0,0.355), class="b", coef="arm1")</pre>

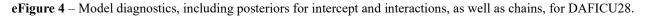
b1 <- brm(death ~ arm * type_of_shock, family="bernoulli", chains = 4, cores = 4, seed = 123, prior = myprior, data = df,save_pars = save_pars(all=TRUE))

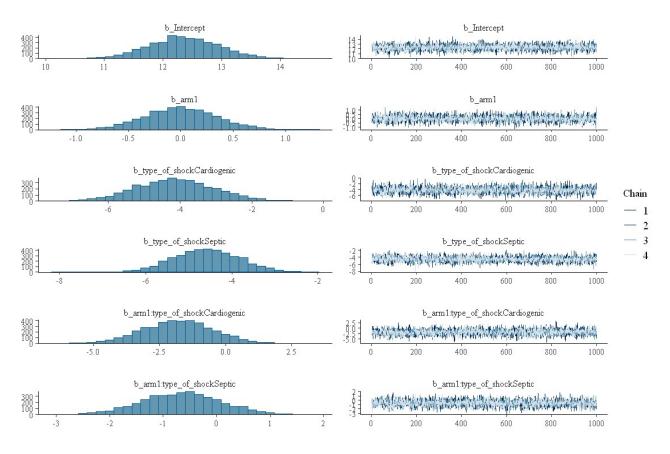
eFigure 2 – Model diagnostics, including posteriors for intercept and interactions, as well as chains, for 28-day mortality endpoint.


b. Model Syntax for composite endpoint: Note that the neutral prior was applied to intervention arm, but the

remaining priors were kept as uninformative (flat). The prior concentrates 95% of its probability mass between odds

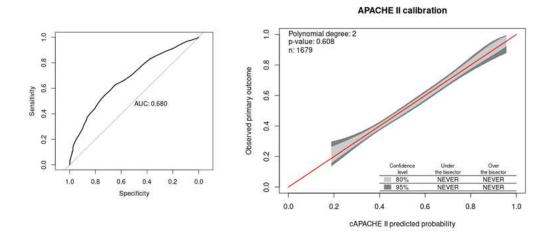
ratio of 0.5 to 2.0.


myprior <- prior(normal(0,0.355), class="b", coef="arm1")
b1 <- brm(composite ~ arm * type_of_shock, family="bernoulli", chains = 4, cores = 4, seed = 123,
prior = myprior, data = df,save_pars = save_pars(all=TRUE))</pre>


eFigure 3 – Model diagnostics, including posteriors for intercept and interactions, as well as chains for composite endpoints

c. Model Syntax for DAFICU28: Note that the neutral prior was applied to intervention arm, but the remaining priors were kept as uninformative (flat). The prior concentrates 95% of its probability mass between an *estimate* of -0.7 to 0.7 days alive.

myprior <- prior(normal(0,0.355), class="b", coef="arm1")
b1 <- brm(daficu28 ~ arm * type_of_shock, family="gaussian", chains = 4, cores = 4, seed = 123,
prior = myprior, data = df,save_pars = save_pars(all=TRUE))</pre>



2. APACHE II Customization Results

Customization was necessary due to the lack of crude data on reason for admission allowing original APACHE II predictions to be calculated.

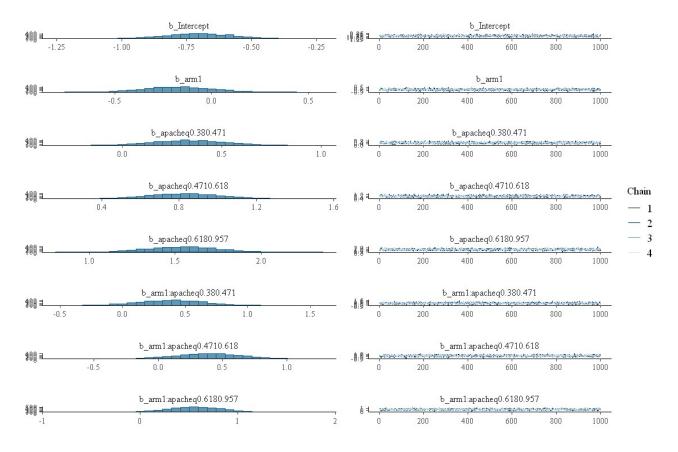
eFigure 5 – APACHE II discrimination (left) and calibration (right) in the SOAP II. Note that AUC for APACHE II was reasonable (0.68) but calibration was excellent with the predicted probabilities never exceeding the observed probabilities beyond 80% confidence levels.

3. Risk-based HTE analysis

Like the Bayesian analysis presented in 2, a similar syntax was used for most models for the Bayesian risk-based HTE analysis. Similarly, for all models Bayes Factors for model with and without interaction were done by creating a model with the interaction and one without it, and then comparing models using brms::bayes_factor(b1,b1ni), where "ni"

refers to the model built without interaction. Coefficients and contrasts were extracted using {marginaleffects}

The skeleton syntax for those models were:


myprior <- prior(normal(0,0.355), class="b", coef="arm1")</pre>

bn <- brm(endpoint ~ arm * type_of_shock, family="family", chains = 4, cores = 4, seed = 123, prior = myprior, data = df,save_pars = save_pars(all=TRUE))

Where endpoint could be death or composite endpoint (using family = "bernoulli") or DAFICU28 (in which case family would be = "gaussian").

Model diagnostic plots are also provided below.

eFigure 6 – Model diagnostics, including posteriors for intercept and interactions, as well as chains, for mortality for the HTE analysis with APACHE II quartiles.

eFigure 7 – Model diagnostics, including posteriors for intercept and interactions, as well as chains, for composite endpoint for the HTE analysis with APACHE II quartiles.

1 111 =		b_In	tercept				CON LAND	the first of the second		ercept	ment weeks were	adottor	
≇08 = -0.7	75 -0.5	0	-0.25	0.00	0.25	=8:99 - -	Ó	200	400	600	800	1000	
18 I.		b_	arm1				The second s	alasa ang kana ang kang kang kang kang kang	b_a	rm1 Mininguene	un an	gette gelands	
-0.50	-0.25	0.00	0.25	0.50	0.75	-0:90	Ō	200	400	600	800	1000	
388 I.		b_apache	q0.380.471			8.8 €	and the second s		b_apachec	10.380.471	4.000 Mar 1960		
	0.0		0.4	0.8			0	200	400	600	800	1000	
200 I		b_apache	a0.4710.618			Å.6, =L	the set	the second s	b_apacheq	0.4710.618		a ana ang ang ang ang ang ang ang ang an	Chain
*08		0.5	1.	0		0.9 -	Ö	200	400	600	800	1000	- 1
													— 2 2
111 a		b_apache	q0.6180.957		2004	2.4 =	and the	andread the and the set	b_apacheq		anticity of sportions to the	10 Augustation	- 3
1	1.0	b_apache 1.5		2.0	2.5	} ∦∎	yahudddan O	200		0.6180.957 600	800	1000	-3 -4
	1.0	1.5		2.0	2.5		0	200 b	400	terila mentuate chapateren	800	1000	
\$ ■	-0.5	1.5		2.0	2.5		0	200 b	400	600 neq0.380.471	800	1000	
\$ ₿₿ ⊒		1.5 b_arm1:apar 0.0	sheq0.380.471		2.5		0 	200 E 200 b	400 _arm1:apacl	600 neq0.380.471	800 800 8	1000	
	-0.5	1.5 b_arm1:apac 0.0 b_arm1:apac	cheq0.380.471		2.5		0 	200 E 200 b	400 _arm1:apacl	600 heq0.380.471 600 eq0.4710.61	800 800 8	1000	
⋬ ┋ ⋧┋┋	-0.5	1.5 b_arm1:apac 0.0 b_arm1:apac	cheq0.380.471	1.0	2.5		0 0 0	200 500 200 200 200 50 200 50	400 - arm 1: ap acl 400 - arm 1: ap ach 400 - arm 1: ap ach 400	600 600 neq0.380.471 600 eq0.4710.61	800 800 8 800 7	1000 1000 1000	

eFigure 8 – Model diagnostics, including posteriors for intercept and interactions, as well as chains, for DAFICU28 endpoint for the HTE analysis with APACHE II quartiles.

100 -		b_Intercept				19 L	10-March Rus	t i se bite di dige	b_Inte			and the second second	
¥⊎∥ 1 11	12	13	14		15	12 -	Ó	200	400	600	800	1000	
ĝ₿ ∃		b_arm1					liyaye avdaya	i na second taken an state	b_a		and a state of the s	et and the second s	
-1.0	-0.5	0.0	0.5	1.0		-4:6	Ó	200	400	600	800	1000	
ậ₿į ± ,	b.	_apacheq0.380.47	1			±ậ∎_	t yania	a a a a a a a a a a a a a a a a a a a	b_apacheq		and the state of the	hippeterstatet	
-6	-4		-2		Ö	-0	Ó	200	400	600	800	1000	
\$]]] =	b_	apacheq0.4710.61	18			_ F\$ =L	desparations	an and and and good	b_apacheq(ange tais ar det reke	page and the second	Chain
-11	-9	-7		;	-3	-14	Ó	200	400	600	800	1000	-1
3 ₿₿ ≡	b_	apacheq0.6180.95	57						b apacheq(1 6180 957			-2 -3
						cấ ∄	the state	a the second second			an war-disawara abab hal	and stand of the second stand	
£8₿ ≠	-10	-8		-6		-fÍ₹	esneterne O	200			800	1000	— 4
		-8 m1:apacheq0.380.		-6			Ō	200	400	600 600 neq0.380.471	800	1000	— 4
¥88 = 200 ≡ _4				-6		_⊨ ®₁_ 	Ō	200	400	600 600 neq0.380.471	800	1000	— 4
₽88 ± -4	b_ar -2	m1:apacheq0.380.	471			.© _₫ ₹_	0 <u>potoeles</u> 0	200 1 200 200 6	400 _arm1:apach 400 _arm1:apach	600 600 neq0.380.471 600 eq0.4710.61	800 	1000 	— 4
¥8∏ ≡	b_ar -2	m1:apacheq0.380.	471		4		0 <u>potoeles</u> 0	200 1 200	400 _arm1:apach 400 _arm1:apach	600 600 neq0.380.471 600 eq0.4710.61	800 	1000 	— 4
₽80 ±4 4 ₽88 ≠	b_ar	m1:apacheq0.380. 0 n1:apacheq0.4710	.618		4	.© _₫ ₹_	0 <u>protocolors</u> 0	200 1 200 6 200 200	400 _arm1:apach 400 _arm1:apach	600 eq0.380.471 600 eq0.4710.61 600	800 800 800 800	1000 1000 1000	— 4

4. Effect-based HTE analysis

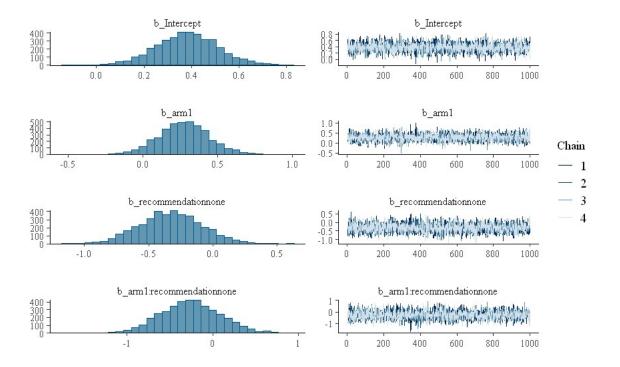
This analysis was based on training a model in a train dataset (random 1,010 patients in SOAP II) using a statistical model and using the model in the test dataset (remaining patients) using the composite endpoint as target. The model was adjusted to age, type of shock, cardiomyopathy, and SOFA, all interacting with study arm. Note that priors for effect size for all estimates (not only intervention) were the neutral prior previously defined but that in this situation no flat priors were used in the analysis to make the model further skeptical to extreme effect sizes.

The model trained on train dataset was:

```
myprior2 <- prior(normal(0,0.355),class="b")
bslearner <- brm(composite ~ (age + type_of_shock + cardiomyopathy + sofa)*arm,
family="bernoulli", chains = 4, cores = 4, seed = 123,prior=myprior2, data = train,
save_pars = save_pars(all=TRUE))</pre>
```

Once the model was defined, counterfactual probabilities were created in the test set (dftlearner), by changing patients from control to intervention group. This was used to create a summary (s1, below) that included a recommendation for each patient:

```
pred norepi <- dftlearner %>% mutate(arm = 0) %>% add epred draws(bslearner,seed=123) %>%
ungroup() %>% dplyr::select(id,pred_norepi = .epred)
pred_dopamine <- dftlearner %>% mutate(arm = 1) %>%
add epred draws (bslearner, seed=123) %>% ungroup () %>% dplyr::select(id, pred dopamine
= .epred)
preds_all <- bind_cols(pred_norepi,pred_dopamine)</pre>
preds all$cate <- preds all$pred dopamine - preds all$pred norepi
preds_all$id<-preds_all$id...1
preds_all$id...1<-NULL
preds all$id...3<-NULL
s1<- preds all %>% group by(id) %>%
      summarise(cateavg=median(cate),
      catelow = quantile(cate,probs = 0.025),
      catehigh = quantile(cate,probs = 0.975),
      recommendation = as.factor(ifelse( (sum(cate<0)/n()) > 0.90, "dopamine",
      ifelse( (sum(cate>0)/n()) > 0.90, "norepinephrine", "none")))) %>%
      ungroup()
```

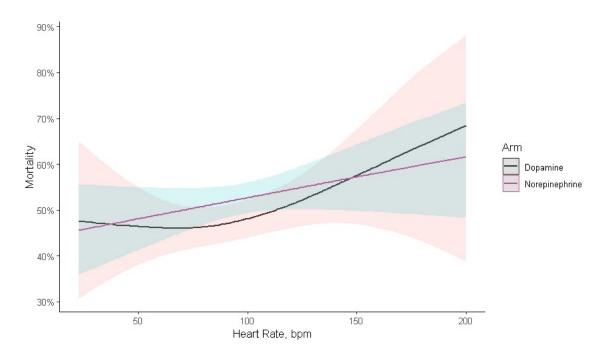

The "recommendation" variable is a factor of the recommendation made by the bslearner model to the test set. We then proceed to assess whether receiving an intervention aligned with the recommendation is associated with differences in composite endpoints.

ttt<-left_join(dftlearner,s1)</pre>

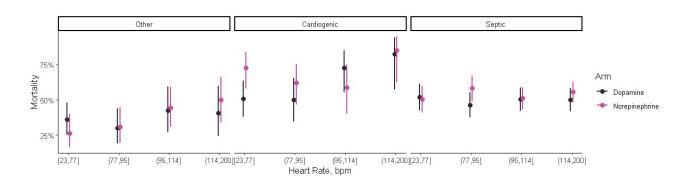
ttt_model <- brm(composite ~ arm * recommendation, family="bernoulli", chains = 4, cores
= 4, seed = 123, prior = myprior, data = ttt,save_pars = save_pars(all=TRUE))
Note that the prior here was only applied to the enrolling arm. The model never recommended dopamine, so the
diagnostic plots only include the recommendation = "none" (considering recommendation = norepinephrine as default).</pre>

eFigure 9 – Model diagnostics, including posteriors for intercept and interactions, as well as chains, for composite

endpoint, arm, and recommendation in the test dataset.



eTable 2 – Comparison of patients in the test set according to S-learner model recommendation.


Characteristic	Norepinephrine N = 858	None N = 821
ADMISSION	11 050	1, 021
Age, mean (SD)	64 (14)	70 (12)
Sex, n (%)		
Female	213 (44%)	83 (46%)
Male	276 (56%)	97 (54%)
APACHE II, median (IQR)	22 (17, 30)	17 (13, 21)
Cardiomyopathy, n (%)		
No	285 (58%)	54 (30%)
Yes	204 (42%)	126 (70%)
Type of shock, n (%)		· · ·
Cardiogenic	64 (13%)	51 (28%)
Other	43 (8.8%)	106 (59%)
Septic	382 (78%)	23 (13%)
Mechanical Ventilation, n (%)	363 (74%)	105 (78%)
Renal replacement therapy, n (%)	41 (8.4%)	7 (3.9%)
SOFA, points, mean (SD)	9.9 (3.3)	5.7 (3.0)
OUTCOMES		
New use of renal replacement therapy, n (%)	56 (11%)	9 (5%)
Arrhythmia	89 (18%)	29 (16%)
Days Alive and Free of ICU, mean (SD)	8 (10)	12 (12)
28-day mortality	244 (50%)	78 (43%)
Composite endpoint	307 (63%)	93 (52%)

5. Other Analysis

eFigure 10 – Probability of death according to heart rate and intervention arm. A spline was added for the hear rate to account for non-linearities. P value for interaction = 0.187.

eFigure 11 – Probability of death according to heart rate (in quartiles), type of shock, and intervention arm. P value for interaction between heart rate and arm = 0.48.

