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Figure S1. Multi-modal integration of RBP interaction data

Top: the three data modalities are shown on top; the datasets generated in this paper are highlighted with
solid line, and the data downloaded from publicly available resources is highlighted with dashed line.
Middle: each dataset was preprocessed into a table, where the columns are RBPs and the rows are gene
targets (shown in color for individual datasets). Every RBP was represented by a numeric column vector.
The gene targets correspond to: for Perturb-Seq - individual genes, for BiolD2 - protein binding partners,
for eCLIP - mRNA binding targets. Difference between two numeric row vectors is shown on the right in
the form of a histogram.

Bottom: the formulas applied at the key steps of the integration procedure are shown. (1): numeric column
vectors were normalized by applying z-score transformation. (2): For each dataset, the cosine distances
between pairs of individual RBPs were calculated. (3): The resulting distances were then transformed into
empirical p-values reflecting assay-specific inter-RBPs distances. (4): Finally, a single interaction score
was measured for each RBP pair by combining the p-values from the three assays using logit

aggregation.
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Figure S2. RBPs interaction heatmap inferred from individual data modalities

(A) A heatmap showing the pairwise distances between RBPs as informed by eCLIP data. Each row and
column represents a given RBP; the hierarchical clustering dendrogram of RBPs is shown on the left.
Known regulatory modules, consisting of previously annotated functional interactions, are marked with red
borders and labeled.

(B) A heatmap showing the pairwise distances between RBPs based on the Perturb-seq data.
Annotations as in (A).

(C) A heatmap showing the pairwise distances between RBPs based on the BiolD2 dataset. Annotations
as in (A).

(D) Upper triangle: the heatmap of IRIM as in Fig. 2A. Lower triangle: the heatmap showing the STRING
interaction confidence scores (multiplied by 1000) between RBPs'. The location of RBPs within the
heatmap is a symmetrical reflection of the upper triangle. The pairs of RBPs where the interaction score
could not be calculated are shown in gray. The same regulatory modules as in Fig. 2A are highlighted in
red and yellow.

Data used to generate this Figure are available in the Source Data File.
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Figure S3. RBPs integrated distances assessment

(A) Boxplots and dots representing fractions of the interactions confirmed by the external databases
among the RBP pairs with the inter-RBP distance lower than the certain quantile. Boxplots: 10* random
shuffles of the IRIM; dots: the real data. The distances, left-to-right: the integrated distances from Fig. 2A,
the distances from eCLIP and Perturb-seq integration, BiolD and Perturb-seq integration, and BiolD and
eCLIP integration (see Methods). The external databases, top-to-bottom: STRING, OpenCell, OpenCell
w/o STRING support, hu.MAP, hu.MAP w/o STRING support, Zanzoni et al., Zanzoni w/o STRING
support. Color fill denotes the external database used to calculate the fraction, size and line color denote
the right-tailed empirical p-value calculated from 10* shuffling iterations (as in Fig. 2F) and FDR-corrected
for the number of tested quantiles. Box plot bounds and center represent the first, second and third
quartiles, while whiskers represent minimum and maximum values in the data excluding outliers which
are more than 1.5 interquartile range from lower and upper quartiles and are depicted as dots.

(B) Density plots illustrating the consistency of IRIM. The distributions of the cosine distances shown in
the figure were obtained by shuffling 5%, 10%, 25%, 50%, 75% or 100% of the columns in the pairwise
integrated distance matrix (10 shuffles, see Methods). Each time we calculated the cosine distance as the
'distance between distance vectors' for the original RBP’s distance vector and (1) its modified version
from the shuffled matrix (i.e. distance to the original self), (2) the distance vectors to other RBPs (defining
closest, median, and the farthest cosine distances). Considering 90 initial RBPs, the procedure resulted in
90*10 = 900 estimates for each group and shuffling percent.

(C) Fuzzy clustering of IRIM. Rows represent RBPs, columns represent clusters. The functionally
pleiotropic groups of RBPs are highlighted in yellow. RBP groups from Fig. 2A are highlighted with solid
frames, other groups are highlighted with dashed frames. For the clustering, we used the c-means
algorithm with the degree of fuzzification set to 1.25, 10 clusters, and Manhattan distance.

(D) Vertices represent individual RBPs; edges depict the pairs of RBPs with an integrated distance less
than 0.05. The communities of RBPs, related to different groups of RNA processes, are colored and
highlighted, similar to Fig. 2.

Data used to generate this Figure are available in the Source Data File.
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Figure S4. The identified RBPs interactions correspond to common functionalities

Swarm Plots for RBP Partners of the 90 RBPs. Each swarm plot represents the ordering of neighboring
RBPs for a query RBP. Each point represents an individual RBP. The points are organized by the
integrated distance from the specified RBP to the query RBP. Points highlighted in red share the query
GO term annotation. The red-circled red dots are a part of the GO term that also includes the query RBP
(63 out of 87 RBPs annotated in GO, 72%, 3 RBPs are unannotated); the black-circled red dots represent
the GO terms that do not include the query RBP (28% of the annotated RBPs). The query RBP and the
query GO term are shown on the left. The common functions of RBPs with their closest neighbors were
tested by considering the GO terms that are enriched (NES score < -0.5, focusing on lower distance
values) among the close neighbors of each query RBP. These terms were then intersected with the GO
terms containing the query protein.

Data used to generate this Figure are available in the Source Data File.
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Figure S5. Estimating cell transcriptional response to RBP depletion with Perturb-seq

(A) A histogram and a Kernel Distribution Estimation Plot showing the number of single cell
transcriptomes sequenced for each individual RBP knockdown for the Perturb-seq dataset.

(B) Violin plots showing the number of genes sequenced, number of total reads, and percentage of reads
mapping to mitochondrial genes for the single cell transcriptomes sequenced. The cells whose
corresponding sgRNA was successfully identified are shown.

(C) PCA projections of the single cell transcriptomes. The cells carrying knock downs of a target RBP are
highlighted in red. The knockdown cells are highlighted for example proteins IGF2BP3 (top), SRSF10
(middle) and BUD13 (bottom).

Data used to generate this Figure are available in the Source Data File.
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Figure S6. BiolD2-mediated proximity protein labeling

(A) Western blot analysis of cell lysates collected from each of 50 RBP-BiolD2-expressing cell lines. HA
antibody along with either tubulin or GAPDH antibodies for endogenous controls were used. Full blots are
shown, the lanes are labeled by the fusion protein expressed; the bands corresponding to the correct
protein sizes are highlighted by red arrows. Notably, the presence of multiple bands in Western blots is
expected due to recognized post-translational modifications and self-biotinylation of RBPs (%, Suppl. Fig.
1A).

(B) Western blot analysis of elF3l in the lysate collected from elF3G-BiolD2-expressing cell line. Input
lysate, streptavidin pulldown sample, and negative control pulldown (without the addition of biotin) are
shown.

(C) Representative images of immunofluorescence assay results obtained for 5 RBPs WT (left) or fused
with BiolD2 (right). Blue corresponds to DAPI, green corresponds to RBP antibodies staining.

(D) Kernel Distribution Estimation Plot of pairwise cosine distances between proteomic profiles of all the
individual samples. The pairwise distances were grouped into categories based on two features: (1) if the
samples are “experiments” (+ biotin) or “control” (- biotin), (2) if the samples come from the same cell line
or two different cell lines. The distributions of pairwise distances within 3 representative categories are
shown in color.

(E) The ROC curves for predictors of gene ontology (GO) annotations from RBP protein neighborhoods.
BiolD2-based proximity labeling data was used to predict GO annotations of RBPs as described in
Methods. Then, the known GO annotations assigned to a given RBP were used to estimate the specificity
and sensitivity of the classifier. The curves corresponding to 3 types of GO annotations are shown in
color: BP, MF, and CC represent Biological Process, Molecular Function, and Cellular Component groups
of GO, respectively.

(F) Left: heatmap showing the number of proteins representing the most widely present Pfam families
among the top 500 neighboring proteins for each query RBP. Right: heatmap showing the fractions of
canonical RBPs (those with RNA binding domains), non-canonical RBPs (those with no RNA binding
domains that still bind RNA) and unannotated proteins among the top 100 neighboring proteins for each
query RBP.

(G) Examples of GO terms significantly depleted in the proximity labeling profiles, as reported by iPAGE.
Log fold change values were calculated for biotin-positive versus negative samples. These differences
are partitioned into 15 discrete proximity bins. Bins to the left contain proteins that are abundantly found in
the negative samples, whereas the ones to the right contain proteins found in biotin-positive samples. In
the heat map representation, rows correspond to pathways and columns to consecutive proximity bins.
Red entries indicate the enrichment of pathway genes in a given proximity bin. Enrichment and depletion
are measured using hypergeometric p-values (log-transformed).

Data used to generate this Figure are available in the Source Data File.
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Figure S7. TAF15 and ZC3H11A regulate alternative splicing

(A) RT-gPCR quantification of relative levels of TAF15 and ZC3H11A transcripts in the respective
knockdown cell lines. P from one-sided t-test performed on log-transformed expression estimates,
3.764*10° for TAF15-KD and 4.88*10* for ZC3H11A-KD.

(B) Scatter plots showing the correlations between biological replicates log2CPM for RNA-seq
experiments.

(C) Relative expression (in CPM) of TAF15 and ZC3H11A in the RNA-seq samples of WT and
knockdown cell lines.

(D) PCA analysis of RNA-seq samples for WT, TAF15-KD and ZC3H11A-KD cells. The first two principal
components are shown. Analysis was performed using log2CPM values.

(E) Volcano plot showing the changes in gene expression upon TAF15 knockdown. TAF15 is highlighted
in red. The vertical dashed lines show log2FC thresholds of -1 and 1. The horizontal dashed line
corresponds to FDR of 0.05. In total, there are 930 genes passing [log2FC| > 1 and FDR < 0.05
(highlighted in blue)

(F) Volcano plot showing the changes in gene expression upon ZC3H11A knockdown with 565 genes
passing |log2FC| > 1 and FDR < 0.05 filters (highlighted in pink). The filters are shown as in (D).
ZC3H11A is highlighted in red.

(G) Sashimi plot illustrating the changes in intron retention event usage in CDC37 transcript upon TAF15
knockdown.

(H) Sashimi plot illustrating the changes in skipped exon usage in ASPM transcript upon ZC3H11A
knockdown.

(I) Sashimi plot illustrating the changes in skipped exon usage in WARS1 transcript upon ZC3H11A
knockdown.

(J) Genomic views of the CDC37 retained intron (left), ASPM skipped exon (middle), and WARS1 skipped
exon (right). Below, the RNA-seq profiles from WT, TAF15-KD and ZC3H11A-KD cells are shown. Y axis:
counts per million (CPM). TAF15 and ZC3H11A CLIP-seq peaks are shown at the bottom.

Data used to generate this Figure are available in the Source Data File.
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Figure S8. TAF15 controls mRNA translation and stability

(A) Distribution of RPFs, aligned on an inferred ribosome P-site, on a metagene, centered around the
translation start (left) or stop (right) site, for Ribo-seq of TAF15-KD and WT cells.

(B) Length distribution of ribosome protected footprints (RPFs) as determined by Ribo-seq.

(C) Volcano plot illustrating the changes in ribosome occupancy in TAF15-KD compared to control K562
cells, as determined by ribosome profiling analysis. The data points are colored according to thresholds in
effect size (InFC % In1.5) and significance (p-adjusted < 0.05, t-test). The genes passing both significance
filters are labeled.

(D) Scatter plots showing the correlations between biological replicates log2CPM for RNA-seq analysis of
a-amanitin treated and untreated WT and TAF15-KD cells. The different treatments and cell lines are
shown in color.

(E) PCA analysis of RNA-seq samples for a-amanitin treated and untreated WT and TAF15-KD cells. The
first two principal components are shown. Analysis was performed using log2CPM values.

(F) Volcano plot showing genes differential stability upon a-amanitin treatment, in TAF15-KD compared to
control K562 cells. TAF15 is highlighted red. The vertical dashed lines show log2FC thresholds of -1 and
1. The horizontal dashed line corresponds to FDR of 0.05. In total, there are 1015 genes passing |log2FC]|
> 1 and FDR < 0.05 (highlighted in dark gray).

(G) Venn diagram of TAF15 RNA regulons. Shown are the numbers of significantly enriched GO terms
(FDR < 0.05) for genes that exhibit significant changes in splicing, stability, or translation upon TAF15
knockdown, as captured by RNA-seq, Ribo-seq, and RNA-seq with a-amanitin, respectively. Manually
selected representative GO terms are shown for each part of the diagram. Results of one-sided fisher’s
exact test for each pairwise intersection are shown next to the corresponding area (p-value = 2.93*10""®
for differential translation and splicing intersection, 1.78*10%"* for differential stability and splicing, and
less than 107°% for differential translation and stability).

Data used to generate this Figure are available in the Source Data File.
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Figure S9. ZNF800 and QKI control gene expression at transcriptional and post-transcriptional
level
(A) RT-gPCR quantification of relative levels of QKI and ZNF800 transcripts in the respective knockdown

cell lines. P from one-sided t-test performed on log-transformed expression estimates, 0.0052 for QKI-KD
and 1.18*10* for ZNF800-KD.

(B) Histograms showing the fragment length distributions for ATAC-seq experiments for QKI-KD cells
(left), ZNF800-KD cells (middle), and WT cells (right). A single exemplar replicate is shown per
experiment.

(C) Scatter plots showing the correlations between biological replicates 10g2CPM for RNA-seq
experiments (top) and ATAC-seq experiments (bottom).

(D) Enrichment of ATAC-seq reads near transcription start sites (TSS) is shown with heatmaps and
Kernel Distribution Estimation (KDE) plots for WT cells (top), ZNF800-KD cells (middle), and QKI-KD cells
(bottom). Heatmaps: rows correspond to genes; columns correspond to genomic positions relative to
TSSs. Cell values show the number of ATAC-seq reads aligned to a given region. KDE plots show TSS
enrichment scores across genes. A single exemplar replicate is shown per experiment.

(E) Left: genomic view of PRC1 promoter region. ATAC-seq profiles of WT cells and QKI-KD cells are
shown. Right: binding of QKI to the PRC1 promoter region as measured by ChIP-gPCR in K562 cells.

(F) Left: genomic view of RPL10A promoter region. ATAC-seq profiles of WT cells and ZNF800-KD cells
are shown. Right: binding of ZNF800 to the RPL10A promoter region as measured by ChIP-gPCR in
K562 cells.

Data used to generate this Figure are available in the Source Data File.
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