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Fig. S1. Differential expression and complementary analysis on an inde-pendent
dataset. A) A coarse clustering (leiden algorithm; resolution 0.1) was used for

differential gene expression analysis (logistic regression), which captured known markers
for each progenitor subtype (0: oRG; 1:vRG; 2:IPC). Additionally, samples from different
batches aggregate after normalization and integration (Butler et al.,, 2018). B) A
comparable dataset from (Polioudakis et al.,, 2019) was used to cross-validate findings
obtained with the reference dataset Trevino et al., 2021. Polioudakis et al., 2019
dataset was processed similarly under Seurat analytical framework and projected into a
shared low dimensional space, which allowed the discrimination of progenitor subtypes
as main axes of variation via principal component analysis. C) Genes that most
contribute to the first two principal component analysis in the shared low dimensional
space. D) and E) Force-directed graph of neural progenitors from Polioudakis et al.,
2019 dataset and projected principal tree on the force-directed graph, respectively. F)
Recapitulation of the expected dynamics for three marker genes as pseudotime
progresses.
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Fig. S2. A) A gene expression matrix, with cells as rows and features as columns, is approximated by
two new matrices of lower dimensions. A pattern matrix will capture the cell usage of each of the r
inferred gene expression programs, while a coefficient matrix will provide the activation of each
feature in each gene expression program. For dynamic trajectories, the expression of each gene can
be interpreted as a continuous function on (pseudo)time, and therefore the core algorithm of piNMF
(Hautecoeur and Glineur, 2020) aims to learn from the data a set of continuous functions as
meaningful dynamic gene expression programs whose number is determined by the factorization
rank, r. In order to obtain consensus programs, k-means clustering is used over all replicates (Kotliar
et al., 2019). B) A synthetic dataset (Cannoodt et al., 2021) enhances the evaluation of the piNMF
implementation, for instance with a simulated bifurfacting trajectory with three meaningful gene
expression programs. Analyses on this synthetic dataset can be reproduced with the notebook made
available at https://github.com/jjaa-mp/MultiLayered_IndirectNeuro. C) On one hand, a silhouette
score provides a stability measure for the r gene expression programs computed after a number of
iterations (blue line); on the other hand, the Frobenius norm is used as a cost function to measure the
accuracy in the reconstruction of the original gene expression matrix. In this simulated dataset,
increasing number of components above four notably reduces the stability of the results, while the
error, as expected, decreases as more components are computed. D) The executation time
significantly increases as the total number of components to be computed increases. As an estimate,
for a synthetic dataset with 2000 cells and 2000 genes, computing a total of eight different
components with 200 iterations per component requires above eight hours, with 64Gb of memory
available. E) piNMF is able to learn gene expression programs differentially activated on pseudotime
and across branches (scale 0 to 1 denotes activation of each gene expression program in each cell).
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Top 10 unique GO terms pseudotime-informed NMF - Modules 2 & 3

oRG_branch_M2 oRG_branch_M3 IPC_branch_M2 IPC_branch_M3

neurogenesis nervous system development cell projection organization nervous system development
brain development generation of neurons plasma membrane-bounded cell proj. system development
anatomical structure development neurogenesis cerebellum; molecular layer - neuropil[=Low] multicellular organism development

central nervous system development neuron differentiation extracellular region ical structure d
columnar/cuboidal epithelial cell differentiation multicellular organism development cerebral cortex; neuropil[High] neurogenesis
neuroepithelial cell differentiation system development structural constituent of cytoskeleton developmental process
forebrain development membrane protein binding generation of neurons
cell population proliferation anatomical structure development plasma membrane bounded cell projection neuron differentiation
central nervous system neuron differentiation extracellular region Dysgenesis of the basal ganglia multicellular organismal process
positive regulation of cell population proliferation neuron projection development cellular component morphogenesis regulation of cellular process

Top 10 unique GO terms standard NMF — Modules 2 & 3

oRG_branch_M2 oRG_branch_M3 IPC_branch_M2 IPC_branch_M3

chromatin organization Cell Cycle regulation of cellular process DNA metabolic process

Abnormality of the palpebral fissures DNA metabolic process regulation of biological process DNA replication
Abnormal lip morphology DNA replication positive regulation of developmental process Cell Cycle
Abnormality of the philtrum Cell Cycle, Mitotic chromatin Cell Cycle, Mitotic
Abnormal upper lip morphology chromosome regulation of cell differentiation DNA-templated DNA replication
Thick eyebrow chromosome organization Factor: sp4 cellular response to DNA damage stimulus

Cryptorchidism cell cycle Factor: ZXDL Retinoblastoma gene in cancer

Abnormal eyebrow morphology cellular response to DNA damage stimulus biological regulation DNA repair
Facial hypertrichosis DNA-templated DNA replication Factor: ETF DNA strand elongation

hsa-miR-21-5p DNA repair regulation of developmental process chromosome

Fig. S3. Comparison of GO terms captured by NMF methods for transiently activated
modules. Gene expression modules 2 and 3 captured by piNMF are sequentially
activated as pseudotime progresses towards basal progenitor cell clusters. GOterms
associated to these modules, for either oRG or IP cell clusters, belong to cardinal
biological processes relevant for neural progenitor differentiation (upper table), while
stdNMF does not fully resolves transient gene expression programs and GO terms
are more generic (bottom table). Enrichment analysis was performed using
hypergeometric tests (Kolberg et al., 2023) where significant results were considered if
corrected p-value < .05
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Fig. S4. A) Similarly to the analysis on the oRG branch, piNMF better captures the
continuous nature of gene expression programs activated along pseudotime on the IPC
branch (see particularly heatmaps on the left), in contrast to stdNMF, specially for
transient modules 2 and 3. B) and C) Fac-torization rank selection can be guided by a
stability measure (silhouette score) of the resulting components (K-means clustering) over
many replicates, and an error metric (Frobenius norm) to evaluate the distance between
the original matrix and the NMF approximation. We observed, across branches (VRG to
either oRG or IPC), datasets (from Trevino et al., 2021 and Polioudakis et al., 2019) and
NMF algorithms (pseudotime-informed and standard NMF) factor-ization rank 4 as a
reasonable selection allowing cross-evaluations, according to high stability and
decreasing error. As there is not definitive solution for factorization rank selection, a
detailed examination of the modules recovered is always required. D) The evaluation of
key marker genes (Wilcoxon rank rum test; significant if adj. p-value < 0.01) for
cholesterol metabolism highlighted does not reveal a temporal signature among radial
glia at neurogenic stages (early vs. late as in (Trevino et al., 2021)); see comparison to
markers NR2F1 and CLU.
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Datasets integration

Trevino, Miiller,
Andersen et al., 2021
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Bhaduri, Sandoval-Espinosa et al,. 2021
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D
betweenness_centrality eigenvector_centrality betweenness_centrality eigenvector_centrality betweenness_centrality eigenvector_centrality

top 10 in VRG top 10 in VRG top 10 in oRG top 10 in 0RG top 10 in IPC top 10 in IPC
NR2F1 o| junp . JUND . KLF§ . SOX4 o| TEAPC .
EGRL 0 NR2F1 0 NR2F1 . EGR1 . JUN . EGR1 .
JUND . E2F1 . FOS . F0S . NHLH1 . SOX4 .
JUN . RPS17 . EGR1 . JUND . JUND . sox2 .
S0X2 . TFAP2C . KLF6 . AsCLL . sox2 . KLF6 .
KLF6 . BCLIIA | ® sox2 | e TFAP2C . NR2F1 . RPS17| ®
FOSB . EGRL | @ EVs | @ EGR2 . INSM1 . NHLHL | ®
FOS . KLF6 |® JN| e NR2FL [ ® EGR1 . HES6 | @
soxg| e 50X9 |@ S0X9 |® HSPAIB | ® KF6| o JUND |@
Jung [o ZNF320 |0 S0X3 |@ HSPALA [® E2F1 [0 AscL |o
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Fig. S5. Non-negative matrix factorization on an integrated dataset. A) Data from
reference dataset Trevino et al., 2021 was integrated with spatiotemporally matched PFC
and V1 samples from Bhaduri et al., 2021. B) and C) Apical to basal trajectory is
capture on the first two dimensions of a principal component analysis as well as the
bifurcation among branches on the integrated dataset. D) Gene regulatory network

analysis on the integrated dataset recapitulates the prominence of KLF6 on oRG (top
gene on eigenvector centrality scores) in contrast to VRG and IPC. Despite its low
expression on IPC and in contrast to results on each independent dataset, KLF6
does appear in IPC top 10 transcription factors in the integrated dataset.
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Fig. S6. Evaluation of gene regulatory networks across algorithms and datasets. A)
Significant overlaps (hypergeometric test; ST5) but substantial variability are detected in
the TF-target gene pairs recovered by two machine learning-based Regression Models,
bagging ridge and bayesian ridge algorithms from the CellOracle software (Kamimoto et
al., 2023), when applied to the reference dataset Trevino et al., 2021 (between 43% to
55% depending on the cell cluster). More pronounced differences (overlaps between 12%
to 14%) are observed when contrasting GRN Datasets: TF-target gene pairs obtained with
CellOracle software compared to the regulatory networks (regulons) reported in
Polioudakis et al., 2019, a comparable dataset based on SCENIC as GRN software
(Aibar et al., 2017). B) Among CellOracle regression models, the bagging ridge model
reports higher linear regression-based R? values for the degree distribution of the
networks (log scale), and it was our choice for GRN analysis.
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Fig. S7. Networks measures (eigenvector centrality and betweenness central-ity) for two
independent datasets. Networks measures (eigenvector centrality and betweenness
centrality) for two independent datasets: A) Dataset from Trevino et al., 2021 and B)
Dataset from Polioudakis et al., 2019. Genes iden-tified as top 10 in both datasets
include KLF6, EGR1, JUN, or FOS for radial glial clusters and NHLH1, TFAP2C or
NEUROD?2 in intermediate progenitor clusters.
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Table S1. Gene ontology enrichment results for NMF gene expression modules -
reference dataset.

Available for download at
https://journals.biologists.com/dev/article-lookup/doi/10.1242/dev.202390#supplementary-data

Table S2. Gene ontology enrichment results for NMF gene expression modules —
testing dataset and integration.

Available for download at
https://journals.biologists.com/dev/article-lookup/doi/10.1242/dev.202390#supplementary-data

Table S3. Gene ontology enrichment results for cell type-specific KLF6 regulatory networks.

Available for download at
https://journals.biologists.com/dev/article-lookup/doi/10.1242/dev.202390#supplementary-data

Table S4. Gene ontology enrichment results for KLF6 targets across piNMF gene
expression modules.

Available for download at
https://journals.biologists.com/dev/article-lookup/doi/10.1242/dev.202390#supplementary-data

Table S5. Comparison gene regulatory networks across datasets and cell types.

Available for download at
https://journals.biologists.com/dev/article-lookup/doi/10.1242/dev.202390#supplementary-data
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Table S6. Associated genes to regulatory islands, deserts of introgression, and
positively selected regions across early and late gene expression modules.

Available for download at
https://journals.biologists.com/dev/article-lookup/doi/10.1242/dev.202390#supplementary-data

Table S7. Gene ontology enrichment results for TFs impacted by Homo sapiens-derived variants.

Available for download at
https://journals.biologists.com/dev/article-lookup/doi/10.1242/dev.202390#supplementary-data

Table S8. TF differential binding affinity analysis results.

Available for download at
https://journals.biologists.com/dev/article-lookup/doi/10.1242/dev.202390#supplementary-data
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