
Fig. S1. Differential expression and complementary analysis on an inde-pendent 
dataset. A) A coarse clustering (leiden algorithm; resolution 0.1) was used for 
differential gene expression analysis (logistic regression), which captured known markers 
for each progenitor subtype (0: oRG; 1:vRG; 2:IPC). Additionally, samples from different 
batches aggregate after normalization and integration (Butler et al., 2018). B) A 
comparable dataset from (Polioudakis et al., 2019) was used to cross-validate findings 
obtained with the reference dataset Trevino et al., 2021. Polioudakis et al., 2019 
dataset was processed similarly under Seurat analytical framework and projected into a 
shared low dimensional space, which allowed the discrimination of progenitor subtypes 
as main axes of variation via principal component analysis. C) Genes that most 
contribute to the first two principal component analysis in the shared low dimensional 
space. D) and E) Force-directed graph of neural progenitors from Polioudakis et al., 
2019 dataset and projected principal tree on the force-directed graph, respectively. F) 
Recapitulation of the expected dynamics for three marker genes as pseudotime 
progresses.
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Fig. S2. A) A gene expression matrix, with cells as rows and features as columns, is approximated by 
two new matrices of lower dimensions. A pattern matrix will capture the cell usage of each of the r 
inferred gene expression programs, while a coefficient matrix will provide the activation of each 
feature in each gene expression program. For dynamic trajectories, the expression of each gene can 
be interpreted as a continuous function on (pseudo)time, and therefore the core algorithm of piNMF 
(Hautecoeur and Glineur, 2020) aims to learn from the data a set of continuous functions as 
meaningful dynamic gene expression programs whose number is determined by the factorization 
rank, r. In order to obtain consensus programs, k-means clustering is used over all replicates (Kotliar 
et al., 2019). B) A synthetic dataset (Cannoodt et al., 2021) enhances the evaluation of the piNMF 
implementation, for instance with a simulated bifurfacting trajectory with three meaningful gene 
expression programs. Analyses on this synthetic dataset can be reproduced with the notebook made 
available at https://github.com/jjaa-mp/MultiLayered_IndirectNeuro. C) On one hand, a silhouette 
score provides a stability measure for the r gene expression programs computed after a number of 
iterations (blue line); on the other hand, the Frobenius norm is used as a cost function to measure the 
accuracy in the reconstruction of the original gene expression matrix. In this simulated dataset, 
increasing number of components above four notably reduces the stability of the results, while the 
error, as expected, decreases as more components are computed. D) The executation time 
significantly increases as the total number of components to be computed increases. As an estimate, 
for a synthetic dataset with 2000 cells and 2000 genes, computing a total of eight different 
components with 200 iterations per component requires above eight hours, with 64Gb of memory 
available. E) piNMF is able to learn gene expression programs differentially activated on pseudotime 
and across branches (scale 0 to 1 denotes activation of each gene expression program in each cell).
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Top 10 unique GO terms pseudotime-informed NMF – Modules 2 & 3

Top 10 unique GO terms standard NMF – Modules 2 & 3

Fig. S3. Comparison of GO terms captured by NMF methods for transiently activated 
modules. Gene expression modules 2 and 3 captured by piNMF are sequentially 
activated as pseudotime progresses towards basal progenitor cell clusters. GOterms 
associated to these modules, for either oRG or IP cell clusters, belong to cardinal 
biological processes relevant for neural progenitor differentiation (upper table), while 
stdNMF does not fully resolves transient gene expression programs and GO terms 
are more generic (bottom table). Enrichment analysis was performed using 
hypergeometric tests (Kolberg et al., 2023) where significant results were considered if 
corrected p-value < .05
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D

Fig. S4. A) Similarly to the analysis on the oRG branch, piNMF better captures the 
continuous nature of gene expression programs activated along pseudotime on the IPC 
branch (see particularly heatmaps on the left), in contrast to stdNMF, specially for 
transient modules 2 and 3. B) and C) Fac-torization rank selection can be guided by a 
stability measure (silhouette score) of the resulting components (K-means clustering) over 
many replicates, and an error metric (Frobenius norm) to evaluate the distance between 
the original matrix and the NMF approximation. We observed, across branches (vRG to 
either oRG or IPC), datasets (from Trevino et al., 2021 and Polioudakis et al., 2019) and 
NMF algorithms (pseudotime-informed and standard NMF) factor-ization rank 4 as a 
reasonable selection allowing cross-evaluations, according to high stability and 
decreasing error. As there is not definitive solution for factorization rank selection, a 
detailed examination of the modules recovered is always required. D) The evaluation of 
key marker genes (Wilcoxon rank rum test; significant if adj. p-value < 0.01) for 
cholesterol metabolism highlighted does not reveal a temporal signature among radial 
glia at neurogenic stages (early vs. late as in (Trevino et al., 2021)); see comparison to 
markers NR2F1 and CLU.
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PFC
V1

Datasets integration

Bhaduri, Sandoval-Espinosa et al,. 2021

Trevino, Müller, 
Andersen et al., 2021 

A B

D

C

Fig. S5. Non-negative matrix factorization on an integrated dataset. A) Data from 
reference dataset Trevino et al., 2021 was integrated with spatiotemporally matched PFC 
and V1 samples from Bhaduri et al., 2021. B) and C) Apical to basal trajectory is 
capture on the first two dimensions of a principal component analysis as well as the 
bifurcation  among  branches on the  integrated  dataset.  D)  Gene  regulatory  network 
analysis on the integrated dataset recapitulates the
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Cluster Bagging 
ridge 

Bayesian 
ridge 

vRG 0.83 0.79

oRG 0.79 0.75

IPC 0.86 0.77

Linear regression R² values

A B

Degree distribution (log scale)

Fig. S6. Evaluation of gene regulatory networks across algorithms and datasets. A) 
Significant overlaps (hypergeometric test; ST5) but substantial variability are detected in 
the TF-target gene pairs recovered by two machine learning-based Regression Models, 
bagging ridge and bayesian ridge algorithms from the CellOracle software (Kamimoto et 
al., 2023), when applied to the reference dataset Trevino et al., 2021 (between 43% to 
55% depending on the cell cluster). More pronounced differences (overlaps between 12% 
to 14%) are observed when contrasting GRN Datasets: TF-target gene pairs obtained with 
CellOracle software compared to the regulatory networks (regulons) reported in 
Polioudakis et al., 2019, a comparable dataset based on SCENIC as GRN software 
(Aibar et al., 2017). B) Among CellOracle regression models, the bagging ridge model 
reports higher linear regression-based R2 values for the degree distribution of the 
networks (log scale), and it was our choice for GRN analysis.
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A

Trevino 2021 dataset Polioudakis 2019 dataset

B

Fig. S7. Networks measures (eigenvector centrality and betweenness central-ity) for two 
independent datasets. Networks measures (eigenvector centrality and betweenness 
centrality) for two independent datasets: A) Dataset from Trevino et al., 2021 and B) 
Dataset from Polioudakis et al., 2019. Genes iden-tified as top 10 in both datasets 
include KLF6, EGR1, JUN, or FOS for radial glial clusters and NHLH1, TFAP2C or 
NEUROD2 in intermediate progenitor clusters.
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Table S1. Gene ontology enrichment results for NMF gene expression modules  - 
reference dataset. 

Table S2. Gene ontology enrichment results for NMF gene expression modules – 
testing dataset and integration. 

Table S3. Gene ontology enrichment results for cell type-specific KLF6 regulatory networks. 

Table S4. Gene ontology enrichment results for KLF6 targets across piNMF gene 
expression modules. 

Table S5. Comparison gene regulatory networks across datasets and cell types. 
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Table S6. Associated genes to regulatory islands, deserts of introgression, and 
positively selected regions across early and late gene expression modules. 

Table S7. Gene ontology enrichment results for TFs impacted by Homo sapiens-derived variants. 

Table S8. TF differential binding affinity analysis results. 
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