

Fig. S1 Linkage analysis of *WFZP-A*, *WFZP-D* and YM44 SSs phenotype. This linkage analysis was conducted using another batch of individuals in the F_2 population differing from those used in Fig. 2A.

Fig. S2 McrBC analysis of the promoter of *WFZP-D* in the P3 region in the individuals of F_2 crossed by KN9204 and YM44. *WFZP^{KN9204}* indicating individuals with the *WFZP-D* homozygous genotype deriving from KN9204, and *WFZP^{YM44}* indicating individuals with the *WFZP-D* homozygous genotype deriving from YM44.

KN199 WFZP-OE-1 WFZP-OE-2 WFZP-OE-3

Fig. S3 Western blotting of *WFZP* OE lines expressing the protein of WFZP fused with 3 FLAGs.

Fig. S4 Functional verification of *WFZP*. (A) The schematic diagram of the sequence of *BdFZP* in *Bdfzp* mutant. A G-to-A mutation occurred in AP2/ERF domain (red color). (B) The protein alignment of WFZP-A, B, D and BdFZP. (C) The spike of *Bd21-3*, *Bdfzp* and *Ubi::WFZP-D* in *Bdfzp*. Bars = 1cm in C.

Fig. S5 Statistics comparison of plant height (A) and spike length (B) between KN199, KN199^{*wfzp-a*}, KN199^{*wfzp-d*}, KN199^{*wfzp-a/d*} and *WFZP* OE lines. The error bars denote ± SE. Different letters mean significant difference at *P*<0.01.

Fig. S6 Effects of *WFZP* on seed coat cell proliferation. (A) Cross sections at the middle of seeds of KN199, KN199^{*wfzp-a*}, KN199^{*wfzp-d*}, KN199^{*wfzp-a/d*} and *WFZP* OE lines stained with Fluorescent Brightener 28. Figures in the bottom part were magnified figures in the pane in the upper part. (B) and (C) Statistics comparison of cell number (B) and cell length (C) in the cross section of the outer seed integuments of KN199, KN199^{*wfzp-a*}, KN199^{*wfzp-d*}, KN199^{*wfzp-a/d*} and *WFZP* OE lines. The error bars denote ± SE. Different letters mean significant difference at *P*<0.01. (D) and (E) The expression level of *TaGW5* (D) and *TaGW8* (E) in KN199, *WFZP OE*, and KN199^{*wfzp-a/d*} detected by qPCR. The error bars denote ± SE.

Fig. S7 The overall view of RNA-seq data. (A) The PCA result of RNA-seq data of different samples. (B) The overlapped DEGs between KN199^{wfzp-a/d}_vs_KN199 down-regulated genes and WFZP-OE_vs_KN199 up-regulated genes. (C) The overlapped DEGs between KN199^{wfzp-a/d}_vs_KN199 up-regulated genes and WFZP-OE_vs_KN199 down-regulated genes.

Fig. S8 The expression level of *WFZP-A*, *B* and *D* in KN199, KN199^{*wfzp-a/d*} and *WFZP* OE lines detected by RNA-seq (A) and qPCR (B to D). The error bars denote \pm SE.

Fig. S9 GO enrichment analysis of genes in the overlapped DEGs of KN199^{wfzp-a/d} up-regulated/down-regulated genes and *WFZP-OE* down-regulated/up-regulated genes. (A) Heatmap of genes down-regulated in KN199^{wfzp-a/d} and up-regulated in *WFZP-OE* line. (B) GO enrichment analysis of genes down-regulated in KN199^{wfzp-a/d} and up-regulated in *WFZP-OE* line. (C) Heatmap of genes up-regulated in KN199^{wfzp-a/d} and down-regulated in

WFZP-OE line. (D) GO enrichment analysis of genes up-regulated in KN199^{*wfzp-a/d*} and down-regulated in *WFZP-OE* line.

Fig. S10 Transcription factors in the KN199^{*wfzp-a/d*}_vs_KN199 down-regulated genes (A) and KN199^{*wfzp-a/d*}_vs_KN199 up-regulated genes (B).

Fig. S11 Heatmap of MADS family TFs, HD-ZIP family TFs and other development related genes in the overlapped DEGs of KN199^{wfzp-a/d} up-regulated/down-regulated genes and *WFZP-OE* down-regulated/up-regulated genes.

Fig. S12 The protein alignment of TaVRN1-A and BdVRN1 (A) and TaHOX4-A and BdHOX4 (B).

Fig. S13 1000-grain weight of cultivars with different haplotypes of *WFZP-B* (A) and *WFZP-D* (B) in ten growing environments. The error bars denote \pm SE. Different letters mean significant difference at *P*<0.05. Note that the number of cultivars with *WFZP-D-I*, *II* and *IV* were too few (2, 3 and 2 for each, Supplemental dataset S7), so only the other four haplotypes were analyzed.

No.	Site	Variation type	WFZP-B-I	WFZP-B-II	WFZP-B-III
1	-19871933	Indel	Del	Del	In
2	-1839	SNP	Т	Т	С
3	-18091808	SNP	СТ	СТ	ТС
4	-1747	SNP	Т	Т	С
5	-1726	SNP	С	С	т
6	-1419	SNP	Т	Т	С
7	-1208	SNP	Т	Т	С
8	-1187	SNP	A	A	G
9	-867	SNP	С	С	G
10	-785	SNP	A	А	G
11	-752750	Indel	Del	Del	In
12	-559	SNP	G	G	А
13	-545	SNP	т	т	С
14	-484	SNP	G	А	G
15	-482	SNP	А	А	G
16	-469	SNP	С	С	А
17	-424412	Indel	Del	Del	In
18	-392	SNP	Т	Т	С
19	-374	SNP	С	С	Т
20	-362	SNP	А	А	G
21	-330315	Indel	Del	Del	In
22	-311	SNP	Т	Т	С
23	-308	SNP	A	A	G
24	-269	SNP	G	G	А
25	-137	SNP	Т	Т	A
26	144	SNP	Т	Т	С
27	491	SNP	G	G	A
28	619	SNP	Т	Т	А

Table S1. The polymorphism of *WFZP-B*

Variations labeled with the same color were linked.

Variations highlighted were selected to develop molecular markers.

No.	Site	Variation type	WFZP- D-I	WFZP- D-II	WFZP- D-III	WFZP- D-IV	WFZP-D -V	WFZP- D-VI	WFZP- D-VII
1	-1974	SNP	G	G	G	С	С	С	G
2	-1425	SNP	G	G	G	А	А	А	G
3	-1410	Indel	In	Del	In	Del	In	Del	Del
4	-1344	SNP	т	т	т	С	С	С	т
5	-1261	SNP	т	т	т	G	G	G	т
6	-1183	SNP	т	т	т	С	С	С	т
7	-1166	SNP	С	С	С	т	т	т	С
8	-1164	SNP	С	т	С	т	С	т	т
9	-1063	SNP	т	С	С	т	т	С	т
10	-908	SNP	т	т	т	А	А	А	т
11	-843	SNP	С	А	С	А	С	А	А
12	-742	SNP	т	т	т	А	А	А	т
13	-528	SNP	А	G	А	G	А	G	G
14	-378	SNP	т	т	т	А	А	А	т
15	552	SNP	С	С	С	G	G	G	С

Table S2. The polymorphism of WFZP-D

Variations labeled with the same color were linked.

Variations highlighted were selected to develop molecular markers.

						P-	value		
environment	Years	location	Water and temperature	WI	EZP-A	W	FZP-B	W	FZP-D
			tomporataro	SNS	TGW	SNS	TGW	SNS	TGW
E1	2015	Shunyi	DS+HS	0.00496*	0.0075*	0.77482	0.03662*	0.96727	0.05439
E2	2015	Shunyi	DS	0.01641*	0.0001376*	0.74611	5.026E-06*	0.33573	0.02965*
E3	2015	Shunyi	WW+HS	0.02615*	0.22213	0.39132	0.03341*	0.92688	0.03128*
E4	2015	Shunyi	WW	0.08337	0.0006261*	0.93637	0.006*	0.74899	0.06958
E5	2016	Shunyi	DS+HS	0.02464*	0.53468	0.07453	0.07095	0.95462	0.02916*
E6	2016	Shunyi	DS	0.00316*	0.00358*	0.14227	5.388E-05*	0.733	0.01924*
E7	2016	Shunyi	WW+HS	0.18959	0.08703	0.18488	5.749E-05*	0.95009	0.66021
E8	2016	Shunyi	WW	0.02339*	6.935E-05*	0.14266	0.00689*	0.61586	0.0176*
E9	2016	Changping	WW	0.00663*	0.07545	0.05396	0.0001063*	0.93546	0.0554
E10	2016	Changping	DS	5.201E-05*	0.00313*	0.31636	0.0002177*	0.19367	0.0003555*

Table S3. Association analysis of WFZP with SNS and TGW

SNS, spikelet number per spike; TGW, thousand grain weight; DS, drought stress; HS, heat stress; WW, well-watered.

Table S4. Primers used in this study

Primer name	Sequence	Aim and introduction	Reference			
Primers for construction						
WFZP-2DOE-F	CGACTCTAGAGGATCCTCAGTTCTGCCATGAGCATC	Clone WFZP-D into				
WFZP-2DOE-R	GCTTGGCGCGACTAGTGTTGTTTCTGTGGGAGAGGAAG	pTCK303-3FLAG vector				
VRN1-OE-F	CGACTCTAGAGGATCCATGGGGGGGGGGGAAGGT	Clone VRN1-A into				
VRN1-OE-R	GCTTGGCGCGACTAGTCCCGTTGATGTGGCTCACC	pTCK303-3FLAG vector				
TaHOX4-OE-F	CGACTCTAGAGGATCCATGAAGCGGCCCGGCGG	Clone TaHOX4-A into				
TaHOX4-OE-R	GCTTGGCGCGACTAGTCTTCCAGGGATCCGTCGG	pTCK303-3FLAG vector				
WFZP-pMN6-F	TTGACTGTATCGCCCGGGATGAGCATCCGCAGCAGCA	Clone WFZP-D into pMN6				
WFZP-pMN6-R	GGAAATTCGAGCTCGGTACCTCAGTGGGAGAGGAAGCTGAA	vector				
WFZP-A-P-F3	GACCCCATAAAGCCATAGATTAGG	Clone WFZP-A promoter into				
WFZP-A-P-R	GGCAGAAGTGAAGTGAGGTTGG	ENTR1A-T vector				
LUC-F1-Kpnl	CGGGGTACCCCGATGGAAGACGCCAAAAACATA	Clone LUC into the				
LUC-R1-Notl	ATTTGCGGCCGCTTTATTACAATTTGGACTTTCCGCC	promoter				
RLUC-F-Sall	ACGCGTCGACGTCGATGACTTCGAAAGTTTATGATCC	Clone R-LUC into ENTR1A-T				
RLUC-R-EcoRI	CGGAATTCCGTTATTGTTCATTTTTGAGAACTCG	vector				

Primers for genoty	yping		
Xwmc522-F	AAAAATCTCACGAGTCGGGC	SSRmarkerforlinkage	
Xwmc522-R	CCCGAGCAGGAGCTACAAAT		https://wheat.pw.usda.g ov/GG3
Cfd56-F	TTGCATAATTACTTGCCCTCC	analysis	
Cfd56-R	CTGGTCCAACTTCCATCCAT		
WFZP-D-P-F3	GACCCCATAAAGCCATGGATTAGG	Linkage analysis of WFZP-D	
WFZP-D-P-R2	CGTCTGAGATAACGCTTTTAGCTG	digested using <i>EcoNI</i> .	
WFZP_F3	GCTCACAGTCTCAGCAACCA	Linkage analysis of <i>WFZP-D</i> and SSs. WFZP_F3 +	(Dobrovolskaya et al.,
WFZP_2A_R3	CACTGGGCACCGGCATGGAA		2015)
WFZP-A-indel-F2	AGCCGCAGCCGTCCCCG	WFZP_2A_R3 used for first	
WFZP-A-indel-R2	AAGCGCCCGGGCTCCTG		
Me-4F	GCAGGCATCTTTACACCATCTTA	dCAPs primer of WFZP-A at	
WFZP-2A-R2	TGGCAGAAGTGAAGTGAGGT	-387 loci, Me-4F+2A-R2 used for first round PCR, 387F+	(Dobrovolskaya et al., 2015)
WFZP-A-387F	GCAAGGATTGTGGCATGCA	387R used for second round PCR, using <i>Hinfl</i> to digest the	
WFZP-A-387R	CAAAGAGATGAGGAGAATGTTGAG	PCR product	
WFZP-B-P-F1	GCGGATTAACTTTGACCTCTG	Indel marker for WFZP-B at	
WFZP-B-P-F5	GAGCATCTTCAACAGGCGTCA	used for first round PCR,	
WFZP-B-Indel-R	GGGAGCGACGAAGAGGTTT	round PCR	

WFZP-B-484F	CATTCCCTCCTTTTACTCCT	dCAPs primer of <i>WFZP-B</i> at -484 loci, 484F+P-R used for	
WFZP-B-484R	TATGGTCTTATAGGGACTTATAAGTAC	first round PCR, 484F+484R used for second round PCR,	
WFZP-AB-P-R	GGCAGCGAATGCTCCGAGAAG	using Scal to digest the PCR product	
WFZP-D-P-F3	GACCCCATAAAGCCATGGATTAGG	dCAPs primer of WFZP-D at	
Me1R	GTATCATCAGCGGTCAAAGTTAACG	-1974 loci, P-F3+Me1R used for first round PCR, 1974F+	
WFZP-D-1974F	TGATCCTTGTCCAAGCATTTGTCGA	1974R used for second round PCR, using Sall to digest the	
WFZP-D-1974R	CTCTCACATGAGGGGGGGGGG	PCR product	
Me-3F	GCCTGCAAATTCTGGGTG	dCAPs primer of WFZP-D at	
Me-3R	CTTCAATTATATGGCCCTACATGT	-1063 loci, Me3F+Me3R used for first round PCR, 1063F+	
WFZP-D-1063F	TCTCCTATGTTCATTCTAGTGTGCA	1063R used for second round PCR, using <i>ApaLI</i> to digest the	
WFZP-D-1063R	GATACATGCCAAAATGCTACAC	PCR product	
Me-3F	GCCTGCAAATTCTGGGTG	dCAPs primer of WFZP-D at	
Me-3R	CTTCAATTATATGGCCCTACATGT	-843 loci, Me3F+Me3R used for first round PCR, 843F+	
WFZP-D-843F	GGCAAGCTCTCTTCTTCGATT	843R used for second round PCR, using <i>Hinfl</i> to digest the	
WFZP-D-843R	GCCTTGCATGCTTTGATGAT	PCR product	
Primers for qPCR	or ChIP-PCR		
WFZP_F3	GCTCACAGTCTCAGCAACCA	apon of WEZR A	(Dobrovolskaya et al.,
WFZP_2A_R2	TGGCAGAAGTGAAGTGAGGT		2015)

WFZP_F5	ACGACATGGTCGCCTCGT	aPCR of WEZP-B	(Dobrovolskaya et al.,
WFZP_2B_R3	CGGTGCATTTGCTTCAGTGT		2015)
WFZP_F5	ACGACATGGTCGCCTCGT		(Dobrovolskaya et al.,
WFZP_2D_R5	CTGGCTGGTGCATTTGTTG		2015)
WFZP-D-OE-q-F	CACATTGGCAGCTCGTACCA	qPCR of WFZP-D in WFZP	
WFZP-D-OE-q-R	TGGGGAAGAGGAAGTCGTG	overexpression lines	
VRN1-q-F	GATCAAACTCAGCCTCAAACCA		
VRN1-q-F	CCGCATCCTCTGCCCTCT		
TaHOX4-q-F	TGGCCAGCCCCAATCATAT		
TaHOX4-q-R	GGCTCCAGCTTGTTCTCCA		
BdVRN1-q-F	GCTCTGCAGAAGGAACTTGTGG		(Boom at al. 2014)
BdVRN1-q-R	CTAGTTTGCGGGTGTGTTTGCTC	aDCD of aslasted serves	(Ream et al., 2014)
BdHOX4-q-F	GAGATCAAGGAGCTGAAGGG	qPCR of selected genes	
BdHOX4-q-R	CTGGAGTCGCTGTCGGAATA		
TaGW5-A-F	CACGGTTCATGGCAGTGAG		
TaGW5-A-R	CACATGATTGATCACAACGATG		
TaGW5-D-F	GTGCAACCGGGTGGAGGA		
TaGW5-D-R	TCACCACCTCCTGCAAGG		

TaGW8-7A-RTF	GCAGGCAGCATTTTGGTGTA		(Ma et al. 2010)		
TaGW8-7A-RTR	TGGGGATGTGTTCAGTCTGC		(Ma et al., 2019)		
TaGW8-7B-RTF	CTGACTCCAGTGCTGGACTCA		(Ma at al. 2010)		
TaGW8-7B-RTR	GTTGCTCATTTTCCCCCACA		(Ma et al., 2019)		
TaGW8-7D-RTF	ACAGGCAGCATTTTGGTCTC		(Ma at al. 2010)		
TaGW8-7D-RTR	TCTGGCCAACATCGATACCG		(Ma et al., 2019)		
VRN1-ChIP-F1	GGAAACCAAGTAATCACTAACTTG				
VRN1-ChIP-R1	TGCGGTGTATCTCCAAGAATG				
VRN1-ChIP-F2	GACCTAGCCAGCAGCATT				
VRN1-ChIP-R2	GAAGGGAAAGAGCGGAGTT				
VRN1-ChIP-F3	CCTCACCCAACCACCTGA	ChIP-PCR of certain regions of			
VRN1-ChIP-R3	CAACCCTACGCCCCTACC	selected genes			
TaHOX4-ChIP-F1	CTATGGGAGATGTCCTAAACC				
TaHOX4-ChIP-R1	ACATTACACTCCAGCAAAGAA				
TaHOX4-ChIP-F2	CTCTTCTCGCAGTAATCGG				
TaHOX4-ChIP-R2	GGAGGGAGGAGGGGTTT				
Primers for amplifying templates of in situ probes					
WFZP- FSP6	GATTTAGGTGACACTATAGAATACATGAGCATCCGCAGCAGCAG	To amplify templates of in situ			

WFZP- RT7	TGTAATACGACTCACTATAGGGCGATCAGTGGGAGAGGAAGCTG	probes of selected genes	
VRN1-FSP6	GATTTAGGTGACACTATAGAATACATGGGGGGGGGGGAAGGT		
VRN1-RT7	TGTAATACGACTCACTATAGGGCGACCCGTTGATGTGGCTCACC		
TaHOX4-FSP6	GATTTAGGTGACACTATAGAATACATGAAGCGGCCCGGCGG		
TaHOX4-RT7	TGTAATACGACTCACTATAGGGCGACTTCCAGGGATCCGTCGG		
Primers for McrBC	C analysis		
Me-1F	GACCCCATAAAGCCATGGATTAGG		
Me-1R	GTATCATCAGCGGTCAAAGTTAACG		
Me-2F	AGTCTGAGTGGTCAAGACGCG		
Me-2R	AAACACGGCACCCAATCC		
Me-3F	GCCTGCAAATTCTGGGTG	McrBC analysis of certain	
Me-3R	CTTCAATTATATGGCCCTACATGT	WFZP-D	
Me-4F	GCAGGCATCTTTACACCATCTTA		
Me-4R	GGATGAGATGGCGTGATAGG		
Me-5F	GACTGGCACAACATTCTCCTCC		
Me-5R	TGCTGCTGCGGATGCTCA		
Primers for SAAB			

SAAB- oligonucleotide	GAGAGGATCCAGTCAGCATGNNNNNNNNNNNNNNNNNNNN	
SAAB-F	GGGCTGGCAAGCCACGTTTGGTG	(Smith et al., 2002)
SAAB-R	CCGGGAGCTGCATGTGTCAGAGG	

Reference

- Dobrovolskaya, O., Pont, C., Sibout, R., Martinek, P., Badaeva, E., Murat, F., Chosson, A., Watanabe, N., Prat, E., Gautier, N., Gautier, V., Poncet, C., Orlov, Y.L., Krasnikov, A.A., Berges, H., Salina, E., Laikova, L. and Salse, J. (2015) *FRIZZY PANICLE* Drives Supernumerary Spikelets in Bread Wheat. *Plant Physiology* **167**, 189-199.
- Ma, L., Hao, C., Liu, H., Hou, J., Li, T. and Zhang, X. (2019) Diversity and sub-functionalization of TaGW8 homoeologs hold potential for genetic yield improvement in wheat. *Crop Journal* **7**, 830-844.
- Ream, T.S., Woods, D.P., Schwartz, C.J., Sanabria, C.P., Mahoy, J.A., Walters, E.M., Kaeppler, H.F. and Amasino, R.M. (2014) Interaction of Photoperiod and Vernalization Determines Flowering Time of Brachypodium distachyon. *Plant Physiology* **164**, 694-709.
- Smith, H.M.S., Boschke, I. and Hake, S. (2002) Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. *P Natl Acad Sci USA* **99**, 9579-9584.