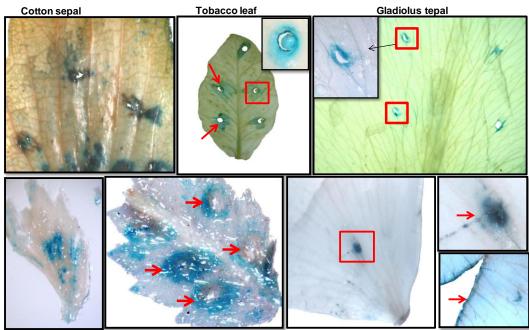
A strong early-acting wound-inducible promoter, *RbPCD1pro*, activates *cryIAc* expression within minutes of wounding to impart efficient protection against insects

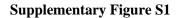
Saurabh Prakash Pandey^{1,2}, Amar Pal Singh^{1,3}, Shruti Srivastava¹, K. Chandrashekar^{4,5}, Aniruddha P. Sane^{1,2*}

¹Plant Gene Expression Lab, and ⁴Genomics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow-226001 India

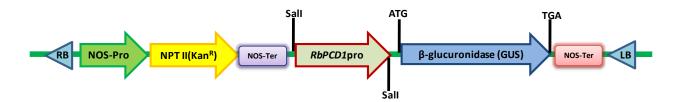

²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

³Current address: National Institute for Plant Genome Research, New Delhi, India

⁵Current address: IARI Regional Centre, Aundh, Pune - 411067, India

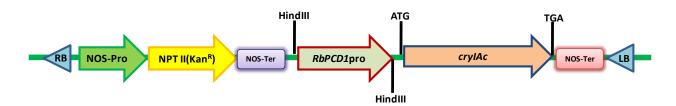

Supplementary figures

Supplementary Figure S1. Wound-induced activation of *RbPCD1pro::GUS* in different plants. Histochemical analysis of GUS activity in *RbPCD1pro::GUS* expressing transgenic chickpea and agroinjected cotton sepal, tobacco leaf, *Gladiolus* tepal and rose petal after wounding.



Transgenic chickpea leaves

Rose petal



Supplementary Figure S2A. Schematic representation of the *RbPCD1pro::GUS* expression cassette in pBI101 backbone used for plant transformation.

Supplementary Figure S2A

Supplementary Figure S2B. Schematic representation of the *RbPCD1pro::cryIAc* expression cassette in pBI101 backbone used for plant transformation.

Supplementary Figure S2B

Supplementary Figure S3. Growth phenotypes of transgenic Arabidopsis plants expressing *cryIAc* under the *RbPCD1* promoter.

Col-0

AtPCDCry 3-3-1

AtPCDCry 4-2-1

AtPCDCry 6-1-2

Supplementary Figure S3