Supplemental Figures

Fig. S1. Chitin and chitosan DP6 did not induce similarly ROS production in *Arabidopsis* and grapevine cells. Relative H₂O₂ production in (a) *A. thaliana* or (b) *V. vinifera* cells 20 min post-treatment with chitin DP6 (100 μ g mL⁻¹), chitosan DP6 (100 μ g mL⁻¹) and flg22 (1 μ M) treatments or water (negative control). ROS production was measured by chemiluminescence of luminol according to Trdá et al. (2014) and results are expressed relatively to flg22 (positive control=100%). Values are means ± SE from three independent experiments (n=3). Asterisks indicate a statistically significant difference between control and the elicitor treatment (Tukey's pairwise test; *, P < 0.05, **, P < 0.01, ***, P < 0.001).

Fig. S2. The crab shell chitin also induced defense responses in grapevine cells. Activation kinetics of two mitogen-activated protein kinases (MAPKs) in grapevine cells treated with 100 μ g.mL⁻¹ of the unpurified crab shell chitin NA-COS-Y (Lloyd et al., 2014). MAPKs were detected by immunoblot with an antibody raised against the human phosphorylated extracellular regulated protein kinase 1/2 (α -pERK1/2). Fifteen μ g of proteins were loaded in each lane. Homogeneous loading was checked by Ponceau red staining. This result shows one representative experiment out of three.

		Signal peptide	· • •	v	
AtCERK1/LYK1 OsCERK1 VvLYK1-1 VvLYK1-2 VvLYK1-3	1 1 1 1	MKLKIS-LIAPILL MEASTS-LLVLVLAAAAF- MKQKVCLGFF MVISSNSRNAIQILAFGFF MLVFRISRFELMLVFS	FSFFFAVESKOF -AAGTVTEAAGDGOS FVLLSVFCAVDSOCS HFLVLLCSKANAKOS SVLIFLSIGVESKOS	RTS <mark>C</mark> PLALASYY SAGCDLALASFY SRGCDLALGSYY SRGCDLALASYY SRGCDLALASYY	LENGITLSVINQNLN VTPNQNVTNMADLFG VWQGSNLTFISQLFQ VWDGSNLTYIRKIFG JIWNGTTLSFIATAFS
AtCERK1/LYK1 OsCERK1 VvLYK1-1 VvLYK1-2 VvLYK1-3	54 59 52 61 58	LysM1 SIAPYDQINFDPIIRYNSN GAANYRSIAPYNPN IISEILSYNS(EISEILKYNP) SISEIQSENP(NIKDKDRIQMGSRVI NIP <mark>N</mark> LDFINVG <mark>G</mark> RVN DIANQDSVEADIRIF QIENQDSIDTGSRIN DINDIDLIIVDTRIN	LVPF-PCECQP- NVYF-TCGCRSI RVPYSSCDCIN- NVPF-RCDCLN- NIPF-SCSCID-	GDFLGHNFSY JPGSPGATYLAGAFPF GPFLGKVFNY GPFLGHTFEY GPFLGHTFFY
		** *** LysM2	**	****	→ ▼▼
AtCERK1/LYK1 OsCERK1 VvLYK1-1 VvLYK1-2 VvLYK1-3	107 113 98 106 103	VRQEDTYERVAISNYANLI MSRGQIYTSVA-NYNNLI VQSGDTYELVAETYYSNLI TQFGDTYERIAERAFSNLI VDSNDTYNIIARTFYANLI	ITMESLQARNPFPAT ITAEWLQATNSYPAN ITSAWLQNFNSYAAN ITEDWVHRVNEYPPI ITVEWLERFNRYE <mark>A</mark> I	NIPL-SATINV NNIPD-TAVINA N IPDTDAYINV RIPD-DVQINV TEIPV-NAIINV	LVNCSCGDESVSKDE TVNCSCGDASISPDY TINCSCGNSTVSKDY TVNCSCGNRRVSMKY TVNCSCGNSRVSKKY
		LysM3			>
AtCERK1/LYK1 OsCERK1 VvLYK1-1 VvLYK1-2 VvLYK1-3	166 171 158 165 162	LFVTYPLRPEDSLSSIARS LFLTYPLRAEDTLASVAAT LFLSYPLRPEDNLTSVAES LFATYPLRDGENLSTVAAF LFVTYPL <mark>QP</mark> GESLSSIANI	SGVSADILQRYN IYGLSSQLDVVRRYN SEGLNASLLQSYN AAGITDDLVRRYN ESGLPSKLLQDYN	NPGVNFNSGNGI NPGMESATGSGI NPDSNFSAGSGI NPAADFSAGTGI NPGVDFSLGSGI	VYVPGRDPNGAPPF VYIPVKDPNGSYLPL VYIPTKDTSGSYRAL VFVPAKDONETYPPL VFIPGKDONGSYPPL
AtCERK1/LYK1 OsCERK1 VvLYK1-1 VvLYK1-2 VvLYK1-3	224 231 216 223 220	<u>Transmembra</u> SSKQDGVGAGVIAGIVIGV SP-GKGASAGAIAGGVVAG SSTGLAGGVIAGISIAA LS-NSGISSGVIAGISVAG LS-QNGISVGVIAGISVAG	INE	A-YRKNKSKGDS IFYRRRKAKQAT FYRKRKVKEAF RICKRKKVKKVI GIYKRKMG-KAF	;FSSSIPLSTKADH :LLQSSEDSTQLGT LLPTEEHSLQPGH .FFPAASEQQYMQHRQ ?LLPAAFEDQHMQPGQ
AtCERK1/LYK1 OsCERK1 VvLYK1-1 VvLYK1-2 VvLYK1-3	280 285 272 282 278	ASSTSLQSGGLGGAGV ISMDKVT-PSTIV-GP- PGIASDKAVESTGPA-FGS HGSASEETSDSAALV-GAZ YGSTLEKTSDSVALV-AAV Serine/Threonir	/SPGIAAISVDKSVE -S-PVAGITVDKSVE SSAGLTGITVDKSVE ASLGLVGITVDKSVE VSLELVGITADKSVE	EFS <mark>L</mark> EELAKATI EFSYEEL <mark>SN</mark> AT <mark>(</mark> EFSYEELAKA <mark>S</mark> I EFSYEELA <mark>T</mark> ATI EF T YEELAKAT <mark>N</mark>	NF <mark>N</mark> LSFKIGQGGFGA QGFSIGNKIGQGGFGA NFNLANKIGQGGFGS NFSLANKIGQGGFGS NFSAASKIGQGGFAL
AtCERK1/LYK1 OsCERK1 VvLYK1-1 VvLYK1-2 VvLYK1-3	337 339 331 341 337	YYAELRGEKAAIKKMDM <mark>E</mark> A YYAELRGEKAAIKKMDMQA YYAELRGEKAAIKKMDMQA YYAELRGEKAAIKKMDMQA YYAEL <mark>Q</mark> G <mark>Q</mark> KAAIKKMDMQA	ASK <mark>O</mark> FLAELKVLTRV ATHEFLAELKVLTHV ASREFLAELKVLTHV ASKEFLAELKVLTHV ASKEFLAELKVLTHV	/HHWNLVRLIGY /HHLNLVRLIGY /HHLNLVRLIGY /HHLNLVRLIGY /HH <mark>F</mark> NLVRLIGY	CVEGSLFLVYEYVEN CLE <mark>S</mark> SLFLVYEFIEN CVEGSLFLVYEYIEN CVEGSLFLVYEFIDN CVT <mark>GSLFI</mark> VYEYIEN
AtCERK1/LYK1 OsCERK1 VvLYK1-1 VvLYK1-2 VvLYK1-3	397 399 391 401 397	NL <mark>G</mark> QHL <mark>H</mark> GSGREPLPWTKF NLSQHLRGMGYEPLSWAAH NLSQHLRGSGRDPL <mark>Q</mark> WSSF NLS <mark>H</mark> HLRGSGKDPLPWSSF NLSQHLRGSG <mark>N</mark> DPLPWSTF	RVQIALDSARGLEYI RIQIALDSARGLEYI RVQIALDSARGLEYI RVQIALDSARGLEYI RVQIALD <mark>A</mark> ARGLEYI	IHEHTVPVYVH IHEHTVPVYIH IHEHTVPVYIH IHEHTVPVYIH IHEHTVPVYVH	DIKSANILID <mark>OK</mark> FRA DIKSANILIDKNYRA DIKSANILIDKNFHC DIKPANILIDK <mark>K</mark> FRA DIKSANILIDKN <mark>L</mark> RA
AtCERK1/LYK1 OsCERK1 VvLYK1-1 VvLYK1-2 VvLYK1-3	457 459 451 461 457	VADFGLTKLTEVG <mark>G</mark> SAT VADFGLTKLTEVGGTSMPJ VADFGLTKLTEVGSSSLP- VADFGLTKLTEVGS <mark>A</mark> SIP- VADFGLTKLT <mark>VA</mark> GSSSLP-	RGAMGTFGYM <mark>A</mark> PE IGTRVVGTFGYMPPE TRLVGTFGYMPPE TRLVGTFGYMPPE TRLVGTFGYMPPE	ET-VYGEVS <mark>a</mark> KV EYA <mark>R</mark> YGDVSPKV EYAQYGDVSPKV EYAQYGDVSPK EYAQFGAVTPK	/DVYAFGVVLYELISA /DVYAFGVVLYELISA /DVYAFGVVLYELISA DVEAFGVVLYELISA DVYAFGVVLYELISA

AtCERK1/LYK1	513	GAVVKMTEAV-GEFRGLVGVFEESFKETDKEEALRKIIDPRLGDSYPFDSVYKMAELGKA
OsCERK1	519	EAIVRSTESS-SDSKGLVYLFEEALNSPDPKEGLRTLIDPKLGEDYPIDSILKLTQLAKV
VvLYK1-1	509	EAVVKDNGSV-AESKGLVALFEDVLNKPDPREDLRKLVDPRLEDNYPLDSVRKMAQLAKA
VvLYK1-2	519	EAIVKINEPIMPESKGLVALFEDVLSQPDPREDFVKLIDQRLGDDYPLDSIWKMAHLAKA
VvLYK1-3	515	EAIIKINGSTTTEARGLVALFENVLSWPDLREDFCELIDHRLGNDYPLDLIWKMAQLAKA
AtCERK1/LYK1	572	CTQENAQLRPSMRYIVVALSTLFSSTGNWDVG <mark>NE-QNEDLVS</mark> LMSGR
OsCERK1	578	CTQEDPKLRPSMRSVVVALMTLSSTSEFWDMNNLYENQCLVNLMSGR
VvLYK1-1	568	CTQENPQLRPSMRTIVVALMTLSSSTEDWDVGSFYDNQALVNLMSGR
VvLYK1-2	579	CTQENPQLRPSMRSIVVALMTLSSSTEDWDVGSFYENEALMNLMSGR
VvLYK1-3	575	CTQEDPQLRPSMQSVVVALMTLSSSTEDWDVRSVYENKALVNLMSGR

•

Fig. S3. Alignment of AtCERK1/LYK1, the rice OsCERK1 and its putative orthologs in grapevine (VvLYK1-1/-2/-3). Protein sequences were aligned with T-Coffee. Black and gray shading representing identical and positive amino acids, respectively, was visualized with Boxshade. The predicted signal peptide, the lysin motifs (LysM), the transmembrane region and the serine/threonine (S/T) kinase are shown. The residues of the chitin-binding site in AtCERK1/LYK1 LysM2 are indicated by asterisks and their conservation is highlighted in the grades of green. The residues E110, E114 and I141 bind to N-acetyl moieties of (GlcNAc)₅, while Q109, T112, Y113, A138, T139, N140, P142 and L143 interact with hydroxyl and hydroxymethyl groups of glucose part (Liu *et al.*, 2012). Conserved Cys residues (in red) form disulfide bridges (indicated by arrows). The RD type of kinase is highlighted in blue. SNPs between the NCBI reference sequence from *V. vinifera* cv Pinot Noir (PN40024) and cv Cabernet-Sauvignon are highlighted in purple (VvLYK1-1: Q99H, L220I, A221S, H264Q, S265T, S313T, D514E, K543R, P547A; VvLYK1-2: K67T, E73K, G95R, I186V, E216G, R279G, H574Q; VvLYK1-3: F116Y, I142L, V250A, A493E, L564F) or in orange when compared to cv Gamay (VvLYK1-1: no SNP; VvLYK1-2: no SNP; VvLYK1-3: -224A, V250A, A493E, I517V, Q577L). Residues S266, S268, S270, S274 and T519 (indicated by •) were found to be phosphorylated in AtCERK1/LYK1 after chitin treatment (Petutschnig *et al.*, 2010). A: Ala, C:Cys, D:Asp, E:Glu, F:Phe, G:Gly, H:His, I:Ile, K:Lys, L:Leu, M:Met, N:Asn, P:Pro, Q:Gln, R:Arg, S:Ser, T:Thr, V:Val, W:Trp, Y:Tyr.

Fig. S4. Necrosis observed in response to the over-expression of *VvLYK1-2* in *Nicotiana benthamiana*. Symptoms observed 2d after leaf infiltration with (1) *A. tumefaciens* GV3101 alone (negative control), (2) *A. tumefaciens* GV3101 containing the construct *RPV1^{TIR1-193}* (positive control; Williams et al. 2016), (3) *A. tumefaciens* GV3101 containing the construct *pART27-VvLYK1-2*.

Fig. S5. Immunodetection of MAPKs in *Arabidopsis* mutants *Atlyk1-5* in response to chitosan. Plants of the different Arabidopsis *Atlyk* mutants have been treated with 1 mg.mL⁻¹ chitosan DP6 for 10 min before protein extraction. Activation of the two MAPKs was detected by immunoblot with an antibody raised against the human phosphorylated extracellular regulated protein kinase 1/2 (α -pERK1/2). Fifteen μ g of proteins were loaded in each lane. Homogeneous loading was checked by Ponceau red staining. Similar results were obtained in three independent experiments.

coverage Incomplete Incomplete Incomplete Incomplete Incomplete Expression validated with RNA-Seq data coverage coverage coverage coverage > > > > > > > > > > Expression validated with EST No ESTs No ESTs No ESTs 2 ESTs 2 ESTs data 1 EST 1 EST 1 EST ≻ ≻ ~ > > ~ > Unknown Unknown Unknown Unknown Unknown ength¹ 1 878 $1\,866$ 2 028 1 815 2 200 1 845 1 947 2 078 Gene 2 037 2 167 (dq) Suggested new gene VvLYK3-3 VvLYK1-2 VvLYK3-2 VvLYK4-2 **VVLYK1-1** VvLYK1-3 VvLYK5-2 **VVLYK4-1** VvLYK5-1 VvLYK3-1 **ΔΥΥΥΚ VvLYK8 ΔΝΓΥΚ9** VvLYK2 *VVLYK6* name Arabidopsis homolog No match No match No match No match Closest AtLYK3 AtLYK4 AtLYK5 AtLYK1 AtLYK2 AtLYK3 AtLYK3 AtLYK4 AtLYK5 AtLYK1 AtLYK1 Not described Not described Not described Zhang et al. annotation Previous ννμχ **VvLYK4** *Δν*ΓΥΚ6 VVLYK10 VVLYK5 **Δνμχ ΔΛΓΥΚ9** ΓΛΓΥΚΊ **ννμyk2** VvLYK12 *ν*ν*LYK* VVLYK11 2009) XP_010657225.1 XP_019080819.1 XP_002283628.2 XP_002272814.3 XP_010649202.1 XP_002277331.3 XP_002280070.1 002276830.3 XP_019074828.1 010655365.1 002269408.1 XP_002281880.2 XP_010655366.1 XP_002269472.2 **New sequence NCBI Protein** Ř Ř Ř XM_010658923.2 XM_010657064.2 XM_002283592.4 XM_019219283.1 XM_002272778.4 XM_002269372.3 XM_010650900.2 XM_002277295.4 XM_002280034.2 XM_002281844.3 XM_002276794.3 XM_010657063.2 XM_019225274.1 XM_002269436.4 **NCBI mRNA** MF939897 BLASTn match on emb AM480420.1 LOC100256178 LOC100248488 LOC100259809 LOC100257218 LOC100262323 LOC100256626 LOC100250732 LOC100242712 LOC100264999 LOC100258108 LOC100264758 LOC100248852 LOC100255092 LOC100264694 Not annotated: NCBI Gene

¹ Gene length based on Cabernet Sauvignon sequence - verified by RNA Seq data. Genes in bold = putative pseudogene

Table S1. The Vitis vinifera VvLYK family contains 15 putative genes in the grapevine genome.

Supplemental Tables

Table S2. Percentage of amino acid identity or similarity between VvLYK1-1/-2/-3 and AtCERK1/LYK1 or OsCERK1.

	whole protein sequence		LysM domain		Kinase domain	
	Identity	Similarity	Identity	Similarity	Identity	Similarity
VvLYK1-1 vs AtCERK1	60%	73%	46%	68%	77%	85%
VvLYK1-2 vs AtCERK1	57%	71%	44%	65%	74%	84%
VvLYK1-3 vs AtCERK1	56%	69%	51%	68%	70%	80%
VvLYK1-1 vs OsCERK1	61%	73%	44%	58%	80%	91%
VvLYK1-2 vs OsCERK1	58%	71%	42%	57%	79%	89%
VvLYK1-3 vs OsCERK1	56%	70%	43%	61%	74%	86%

Results were obtained with the NCBI protein BLAST program on the whole protein sequence or the LysM ectodomain or the kinase domain. Protein sequences used: AtCERK1/LYK1 (NP_566689), OsCERK1 (A0A0P0XII1), VvLYK1-1 (XP_010657225), VvLYK1-2 (XP_010655366), VvLYK1-3 (XP_010655365). Lys Motifs (LysM, PF01476) and Kinase domain (PF07714) were annotated with SMART. The signal peptide and the outer juxtamembrane region were not included in each LysM domain.

Table S3. Primers used in this study. For each primer, gene family, name used (ID), sequence (5'-> 3') and usage are reported. Underlined <u>cacc</u> is used for Gateway directional TOPO cloning. Letters in bold indicate restriction sites added to the 5' end of gene-specific primer sequences to facilitate cloning.

Gene Family	ID	Sequence (5'-3')	Usage	
	VvLYK1-1_RT_F	tacatgccaccagaatacgc	Semi-quantitative RT-PCR	
	VvLYK1-1_RT_R	aaggtcctctcgtggatcag	Semi-quantitative RT-PCR	
	VvLYK1-1_R2	taaacagatccaaagccacc	Genotyping	
	VvLYK1-1_F2	gtgggcttgtttacattcctac	Genotyping	
	VvLYK1-1_qF	tggctttgttcgaggatgtg	qPCR	
VVLYKI-I	VvLYK1-1_qR	cgagtgggtagttatcttcaagc	qPCR	
	VvLYK1-1_Xho_F	cgc ctcgag caaatgaaacagaaggtggg	Vector construction	
	VvLYK1-1_Xba_R	cgc tctaga aaggaaaaatggtgaagtattg	Vector construction	
	VvLYK1-1_GW_F	caccatgaaacagaaggtgggtttaggg	Gateway construction	
	VvLYK1-1_GW_R	ggcccttccagacattagattgacgagg	Gateway construction	
	VvLYK1-2_RT_F	cgtcttgtgggtacatttgg	Semi-quantitative RT-PCR	
	VvLYK1-2_RT_R	tcctcaaacaaagcaacgag	Semi-quantitative RT-PCR	
	VvLYK1-2_F2	cccgaatttgtaaaaggaag	Genotyping	
	VvLYK1-2_R2	cacaggaactgtatgctcatg	Genotyping	
	VvLYK1-2_qF	gaccagaggcttggagatga	qPCR	
VVLTRT-2	VvLYK1-2_qR	catcccaatcttcggttgatga	qPCR	
	VvLYK1-2_Xba_R	cgctctagatgctaccttcctgacattag	Vector construction	
	VvLYK1-2_Xho_F	ggc ctcgag aaacatggtcatttcatcaac	Vector construction	
	VvLYK1-2_GW_F	caccatggtcatttcatcaaacagcaggaacgc	Gateway construction	
	VvLYK1-2_GW_R	ggcccttcctgacattagattcatcagagcc	Gateway construction	
	VvLYK1-3_RT_F	ttcttcattgcccactcgtc	Semi-quantitative RT-PCR	
	VvLYK1-3_RT_R	caagtcctcttgcttcagtgg	Semi-quantitative RT-PCR	
	VvLYK1-3_R2	atatcctatcaggcgaaccag	Genotyping	
	VvLYK1-3_F2	gttgatttcagccttggtagtg	Genotyping	
VVIVK1-3	VvLYK1-3_qF	ggcaatgactacccacttgac	qPCR	
VVETICI-5	VvLYK1-3_qR	ttagtgcgacaactactgactg	qPCR	
	VvLYK1-3_Xba_R	cgc tctaga cacactatcttcctgacatc	Vector construction	
	VvLYK1-3_Xho_F	gcg ctcgag ccatctttgctagggtttc	Vector construction	
	VvLYK1-3_GW_F	caccatgttggtttttagaatctcaagg	Gateway construction	
	VvLYK1-3_GW_R	ggctcttcctgacatcagattcactagagc	Gateway construction	
	AtEF1_F	tgagcacgctcttcttgctttca	Semi-quantitative RT-PCR	
	AtEF1_R	ggtggtggcatccatcttgttaca	Semi-quantitative RT-PCR	
Housekeeping	AtOLI_qF	gagctgaagtggcttccatga	qPCR	
genes	AtOLI_qR	cgtccgacatacccatgatcc	qPCR	
	VvEF1a_qF	gaactgggtgcttgataggc	qPCR	
	VvEF1a_qR	aaccaaaatatccggagtaaaaga	qPCR	
	AtFRK1_qF	tgaaggaagcggtcagattt	qPCR	
Defense genes	AtFRK1_qR	ctgactcatcgttggcctct	qPCR	
	VvCHIT4C_qF	gcaaccgatgttgacatatca	qPCR	
	VvCHIT4C_qR	cgtcgccctagcaagtgag	qPCR	
	VvSTS1.2_qF	aggaagcagcattgaaggctc	qPCR	
_ cloned gonod	VvSTS1.2_qR	tgcaccaggcatttctacacc	qPCR	
	VvPAL_qF	agtctccatggacaacacccg	qPCR	
	VvPAL_qR	tgctcagcactttcgacatgg	qPCR	
	VvRBOHD_qF	caccaccatgcttcagtccctccat	qPCR	
	VvRBOHD_qR	agcgatcttcttgaagacttgtcgcc	qPCR	