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Supplementary Information 

Supplementary Methods 
MRI data acquisition. At the neonatal timepoint, after feeding, the infant was swaddled and 
positioned in a head-stabilizing vacuum fix wrap. A nurse familiar with neonate transport and 
resuscitation was present at all MRI scans. Heart rate and blood oxygenation were measured 
continuously throughout all scans, and infants were monitored visually via video. Based on 
visual monitoring through a camera, infants slept through scans as indicated by eye closure and 
minimal movements. Imaging was performed without sedating medications using a Siemens 3T 
Prisma scanner and 64-channel head coil. A T2-weighted image (sagittal, 208 slices, 0.8mm 
isotropic resolution, echo time [TE] = 563 ms, repetition time [TR] = 3200 ms) was collected. For 
the resting-state fMRI, functional imaging was performed using a blood-oxygen-level dependent 
(BOLD) gradient-recalled echo-planar multiband (MB) sequence (72 slices, 2.0-mm isotropic 
resolution, TE = 37 ms, TR = 800 ms, MB factor = 8). Scans were collected in both the anterior-
posterior (AP) and posterior-anterior (PA) direction; a typical session included two AP scans and 
two PA scans. Each scan was 420 frames, which is 5.6 min in length. 
 
At the toddler (two- and three-year) timepoints, during naptime or after bedtime, the child was 
allowed to fall asleep naturally in the presence of the parent. The child was then positioned in 
the scanner with the use of custom head padding and weighted cushions and blankets. 
Toddlers were monitored visually via video; based on video, toddlers slept through scans as 
indicated by eye closure and minimal movements. Imaging was performed without sedating 
medications using a Siemens 3T Prisma scanner and 64-channel head coil. A T1-weighted 
image (sagittal, 208 slices, 0.8mm isotropic resolution, TR = 2400 ms, TE = 2.22 ms) was 
collected. For the resting-state fMRI, functional imaging was performed using an identical BOLD 
gradient-recalled echo-planar MB sequence (72 slices, 2.0-mm isotropic resolution, TE = 37 ms, 
TR = 800 ms, MB factor = 8). Scans were collected in the AP direction; the scans were 420 
frames, which is 5.6 min in length. 
 
Network analysis. Residual mean BOLD time series were extracted from a 333-region cortical 
parcellation1, and we represented the functional connectivity matrix as a graph or network2. 
Regions were represented by network nodes, and the functional connectivity between region i 
and region j was represented by the network edge between node i and node j. We estimated the 
functional connectivity between any two brain regions by calculating the product-moment 
correlation coefficient r between the mean activity time series of region i and the mean activity 
time series of region j3. We used this encoding of the data as a network to produce an 
undirected, signed, and weighted adjacency matrix A. Correlations were subsequently r-to-z 
transformed. Because there is not yet consensus on the spatial layout of neonatal functional 
networks4–10, we assigned nodes to 13 large-scale systems (also sometimes called “networks”) 
based on the definitions of functional systems derived in healthy adults1.  
 
Prior evidence has demonstrated that the maintenance of edge weights is critical for an 
accurate understanding of the underlying biology of neural systems11,12, and work in applied 
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mathematics has demonstrated that graph-related calculations are markedly more robust in 
weighted graphs than in binary graphs13. In light of these two lines of evidence and recent work 
in the field developing methods sensitive to the topologies present in weak versus strong 
edges14, we maintained all edge weights without thresholding and studied the full graph 
including both positive and negative correlations15,16.  
 
Measures of functional network architecture  
System segregation. System segregation quantifies the difference in mean within-system 
connectivity and mean between-system connectivity as a proportion of within-system 
connectivity. Previous work has linked this measure to aging-related changes in brain networks 
and poorer cognitive ability across age17,18. In these analyses, we define system segregation as 
in  17, as:  
 

𝑎‾!"#$"% − 𝑎‾&'#!''%
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Where 𝑎‾!"#$"% is the mean edge weight between nodes within the same system and 𝑎‾&'#!''% is 
the mean edge weight between nodes of one system to all nodes in other systems. We 
assigned nodes to systems based on a 13-system partition1. Freely available MATLAB code 
from https://github.com/mychan24/system_matrix_tools was used to calculate system 
segregation. 
 
Modularity. Statistics that quantify the modular structure of a network assess the extent to which 
a network’s nodes can be subdivided into groups or modules characterized by strong, dense 
intramodular connectivity and weak, sparse intermodular connectivity. We considered the most 
commonly studied mesoscale organization—assortative community structure—that is commonly 
assessed by maximizing a modularity quality function19,20. Unlike system segregation, the 
modularity quality index is independent of a mapping of nodes to functional systems. Higher 
modularity is indicative of a more highly segregated network at the mesoscale. Our approach is 
built on the modularity quality function originally defined by21 and subsequently extended to 
weighted and signed networks by various groups.  

Specifically, we follow 14 by first letting the weight of a positive connection between 
nodes 𝑖 and 𝑗 be given by 𝑎"()  , the weight of a negative connection between nodes 𝑖 and 𝑗 be 
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Then, the asymmetric generalization of the modularity quality index is given by: 
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where 𝑀" is the community to which node 𝑖 is assigned, and 𝑀( is the community to which node 
𝑗 is assigned. We use a Louvain-like locally greedy algorithm as a heuristic to maximize this 
modularity quality index subject to a partition M of nodes into communities. We ran the Louvain 
algorithm 100 times per network, and detected on average four (M = 3.76, SD = 0.51) 
communities using modularity maximization in our developmental sample. 
 
Clustering coefficient. To assess local network segregation, we used a commonly studied graph 
measure of local connectivity—the clustering coefficient— that is commonly interpreted as 
reflecting the capacity of the system for processing within the immediate neighborhood of a 
given network node22–25. We specifically used a formulation that was recently generalized to 
signed weighted networks26,27. This version is sensitive to nonredundancy in path information 
based on edge sign as well as edge weight and importantly distinguishes between positive 
triangles and negative triangles, which have distinct meanings in networks constructed from 
correlation matrices.  

We let the functional connectivity network of a single participant be represented as the 
graph 𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 are the vertex and edge sets, respectively. We let 𝑎"( be the 
weight associated with the edge (𝑖, 𝑗) ∈ 𝑉, and define the weighted adjacency matrix of 𝐺 as 𝐴 =
<𝑎"(=. The clustering coefficient of node 𝑖 with neighbors 𝑗 and 𝑞 is given by: 
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The clustering coefficient of the entire network was calculated as the average of the clustering 
coefficient across all nodes as follows: 
 

𝐶 =
1
𝑛
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In this way, we obtained estimates of the regional and global clustering coefficient for each 
subject in the sample. 
 
Participation coefficient. The participation coefficient is a measure of network integration that 
quantifies the diversity of a node’s connections across communities, and has been linked in 
older children and adolescents to developmental changes in network segregation28–30. A node 
has a high participation coefficient when it is evenly and strongly connected to many different 
systems. In these analyses, we define the participation coefficient 𝑃" of a node 𝑖 as: 
 

𝑃" = 1 −- C
𝑎"4
𝑠"
D
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where 𝑘 is a system in a set 𝐾 of systems, in this case defined by the a priori mapping of nodes 
to intrinsic functional systems, 𝑎"4 is the positive (negative) weight of edges between node 𝑖 and 
nodes in system 𝑘, and 𝑠" is the positive (negative) strength of node i. The participation 
coefficient was calculated separately on negative and positive weights31. 
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As in our analyses of local segregation, the participation coefficient of the entire network was 
calculated as the average positive (negative) participation coefficient across all nodes as 
follows: 

𝑃 =
1
𝑛
-𝑃"
"∈3

 

 
The average positive and negative participation coefficient for each participant’s network were 
averaged to obtain a global measure of network integration. 
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Supplementary Note 1 
To ensure that the environmental associations with changes in cortical network segregation 
observed were robust to methodological variation and potential confounds, we performed five 
sensitivity analyses. The first sensitivity analysis is described in the main text. In the second 
sensitivity analysis, GAMMs were rerun with only participants who had full data at two or more 
timepoints (Supplementary Figure 1). In a third sensitivity analysis, we refit GAMMs including a 
measure of pre-censoring motion, rather than the post-censoring measure used in our main 
analyses (Supplementary Figure 2). Finally, we conducted several pre-registered follow-up 
analyses related to changes in disadvantage over time. We first examined the extent of changes 
in indicators of disadvantage, finding that there was little social mobility during the study period 
(Supplementary Figure 3). Then, we reran GAMMs including the disadvantage factor calculated 
at Y1 and Y2, rather than at birth. 
 

 
Supplementary Figure 1. Associations between the early environment and developmental 
increases in cortical network segregation, including only participants with two or more timepoints 
of data. a, Prenatal disadvantage moderates trajectories of local cortical network segregation. 
Trajectories represent the GAMM-predicted segregation values with a 95% credible interval 
band. b, The heterogenous patterning of the magnitude of age-by-disadvantage effects (F-
statistic) on local segregation is shown on the cortical surface. Regions that show significant 
age-by-disadvantage effects passing FDR correction at pFDR < 0.05 are outlined in black. c, 
Disadvantage associations with developmental increases in local segregation are enriched in 
sensorimotor systems. Boxplots show the magnitude of age-by-disadvantage effects; each point 
is an individual parcel (n = 286 parcels, excluding parcels with system assignment None). 
Boxplots show median and 25%-75% interquartile range; whiskers extend to 1.5 * interquartile 
range, points outside are shown as outliers. 
 
We additionally verified whether results are robust to only including participants with two or 
more timepoints of data collected. When limiting our sample to this subsample, due to a 
decrease in sample size (n = 105 unique participants), we have less power to detect significant 
effects, however, we still expect to observe effects in the same direction as those observed in 
our primary analyses. Global segregation (Fs(agexSES) = 2.35, p = 0.098, pFDR = 0.131), meso-
scale segregation (Fs(agexSES) = 9.24, p < 0.001, pFDR < 0.001), and local segregation 
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(Supplementary Figure 1a, Fs(agexSES) = 2.78, p = 0.049, pFDR = 0.100) show similar patterns of 
interactions, such that infants and toddlers exposed to greater prenatal disadvantage show a 
faster increase in cortical network segregation than infants and toddlers with less disadvantage 
exposure. We did not find evidence for moderating associations of disadvantage with 
developmental changes in network integration (Fs(agexSES) = 0.001, p = 0.999, pFDR = 0.999). The 
magnitude of disadvantage associations with developmental increases in local segregation 
differed across functional systems, with the strongest associations found in somatomotor-hand, 
somatomotor-mouth, dorsal attention, and frontoparietal systems (Supplementary Figure 1c). 
 

 
Supplementary Figure 2. Associations between the early environment and developmental 
increases in cortical network segregation, controlling for pre-censoring motion. a, Prenatal 
disadvantage moderates trajectories of local cortical network segregation. Trajectories 
represent the GAMM-predicted segregation values with a 95% credible interval band. b, The 
heterogenous patterning of the magnitude of age-by-disadvantage effects (F-statistic) on local 
segregation is shown on the cortical surface. Regions that show significant age-by-
disadvantage effects passing FDR correction at pFDR < 0.05 are outlined in black. c, 
Disadvantage associations with developmental increases in local segregation are enriched in 
sensorimotor systems. Boxplots show the magnitude of age-by-disadvantage effects; each point 
is an individual parcel (n = 286 parcels, excluding parcels with system assignment None). 
Boxplots show median and 25%-75% interquartile range; whiskers extend to 1.5 * interquartile 
range, points outside are shown as outliers. 
 
We included a measure of pre-censoring motion, the total framewise displacement across all 
frames, instead of post-censoring motion, as a subject-level covariate. Global segregation 
(Fs(agexSES) = 5.94, p = 0.003, pFDR = 0.004), meso-scale segregation (Fs(agexSES) = 9.70, p < 
0.0001, pFDR = 0.0002), and local segregation (Supplementary Figure 2a, Fs(agexSES) = 13.17, p < 
0.0001, pFDR < 0.0001) all show significant and similar patterns of interactions, such that infants 
and toddlers with greater exposure to prenatal disadvantage show a faster increase in cortical 
network segregation than infants and toddlers with less disadvantage exposure. We did not find 
evidence for moderating associations of disadvantage with developmental changes in network 
integration (Fs(agexSES) = 1.37, p = 0.255, pFDR = 0.255). The magnitude of disadvantage 
associations with developmental increases in local segregation differed across functional 
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systems, with the strongest associations found in somatomotor-hand, somatomotor-mouth, 
dorsal attention, and frontoparietal systems (Supplementary Figure 2c). 

Supplementary Figure 3. Little evidence for changes in disadvantage during the study period. 
a, Maternal education does not change significantly over the study period. b, Income-to-needs 
ratio does not change significantly over the study period. c, Area deprivation index (ADI) does 
not change significantly over the study period. d, Year one disadvantage moderates trajectories 
of local cortical network segregation. e, Year two disadvantage moderates trajectories of local 
cortical network segregation. f, Year three disadvantage moderates trajectories of local cortical 
network segregation. g, Year one disadvantage associations with developmental increases in 
local segregation across functional systems. h, Year two disadvantage associations with 
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developmental increases in local segregation across functional systems. i, Year three 
disadvantage associations with developmental increases in local segregation across functional 
systems. Boxplots show the magnitude of age-by-disadvantage effects; each point is an 
individual parcel (n = 286 parcels, excluding parcels with system assignment None). Boxplots 
show median and 25%-75% interquartile range; whiskers extend to 1.5 * interquartile range, 
points outside are shown as outliers. 
 
We first examined the extent of changes in concrete indicators of social disadvantage, finding 
that there was little evidence for social mobility during the study period: maternal education did 
not change significantly over time (Fs(child age) = 1.30, EDF = 1.30, p = 0.358), nor did income-to-
needs ratio (Fs(child age) = 1.01, EDF = 1.62, p = 0.485), nor did neighborhood deprivation (ADI, 
Fs(child age) = 1.45, EDF = 1.93, p = 0.193). We next examined whether our results were robust to 
using a disadvantage factor score from later timepoints, rather than the prenatal disadvantage 
factor score.  
 
We find that across timepoints, global segregation (Fs(agexSES_y1) = 2.72, p = 0.067; Fs(agexSES_y2) = 
3.32, p = 0.013; Fs(agexSES_y3) = 6.785, p = 0.001), meso-scale segregation (Fs(agexSES_y1) = 4.19, p 
= 0.016; Fs(agexSES_y2) = 5.87, p = 0.003; Fs(agexSES_y3) = 7.56, p < 0.001), and local segregation 
(Supplementary Figure 3d-f, Fs(agexSES_y1) = 4.83, p = 0.005; Fs(agexSES_y2) = 8.71, p < 0.001; 
Fs(agexSES_y3) = 8.91, p < 0.001) all show similar patterns of interactions, such that infants and 
toddlers with greater exposure to prenatal disadvantage show a faster increase in cortical 
network segregation than infants and toddlers with less disadvantage exposure. We found some 
evidence for moderating associations of disadvantage with developmental changes in network 
integration when using disadvantage factor scores from later timepoints (Fs(agexSES_y1) = 2.22, p = 
0.039; Fs(agexSES_y2) = 3.34, p = 0.028; Fs(agexSES_y3) = 2.43, p = 0.028). 
 
The magnitude of disadvantage associations with developmental increases in local segregation 
differed across functional systems, with the strongest associations found in somatomotor-hand, 
visual, somatomotor-mouth, dorsal attention, and parieto-occipital systems (Supplementary 
Figures 3g-i). 
 

 
Supplementary Figure 4. Associations between the early environment and developmental 
increases in cortical network segregation, using a longitudinal mixed model including a random 
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slope for child age. a, Prenatal disadvantage moderates trajectories of local cortical network 
segregation. Trajectories represent the GAMM-predicted segregation values with a 95% 
credible interval band. b, The heterogenous patterning of the magnitude of age-by-disadvantage 
effects (F-statistic) on local segregation is shown on the cortical surface. Regions that show 
significant age-by-disadvantage effects passing FDR correction at pFDR < 0.05 are outlined in 
black. c, Disadvantage associations with developmental increases in local segregation are 
enriched in sensorimotor systems. Boxplots show the magnitude of age-by-disadvantage 
effects; each point is an individual parcel (n = 286 parcels, excluding parcels with system 
assignment None). Boxplots show median and 25%-75% interquartile range; whiskers extend to 
1.5 * interquartile range, points outside are shown as outliers. 
 
In our main analyses, we examined longitudinal development of functional network architecture 
using generalized additive mixed models (GAMMs), where we included a random intercept per 
participant. Here we include both a random slope and a random intercept per participant 
(uncorrelated), and find that our results are qualitatively similar. Global segregation (Fs(agexSES) = 
3.83, p = 0.023, pFDR = 0.030), meso-scale segregation (Fs(agexSES) = 7.31, p < 0.001, pFDR = 
0.002), and local segregation (Supplementary Figure 4a, Fs(agexSES) = 7.17, p = 0.008, pFDR = 
0.002) show similar patterns of interactions, such that infants and toddlers with greater exposure 
to prenatal disadvantage show a faster increase in cortical network segregation than infants and 
toddlers with less disadvantage exposure. There was a marginal moderating associations of 
disadvantage with developmental changes in network integration (Fs(agexSES) = 2.49, p = 0.084, 
pFDR = 0.084). The magnitude of disadvantage associations with developmental increases in 
local segregation differed across functional systems, with the strongest associations found in 
somatomotor-hand, somatomotor-mouth, dorsal attention, and frontoparietal systems 
(Supplementary Figure 4c). 
 

 
Supplementary Figure 5. Associations between the early environment and developmental 
increases in cortical network segregation, excluding outliers > 3 SD away from the mean. a, 
Prenatal disadvantage moderates trajectories of local cortical network segregation. Trajectories 
represent the GAMM-predicted segregation values with a 95% credible interval band. b, The 
heterogenous patterning of the magnitude of age-by-disadvantage effects (F-statistic) on local 
segregation is shown on the cortical surface. Regions that show significant age-by-
disadvantage effects passing FDR correction at pFDR < 0.05 are outlined in black. c, 
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Disadvantage associations with developmental increases in local segregation are enriched in 
sensorimotor systems. Boxplots show the magnitude of age-by-disadvantage effects; each point 
is an individual parcel (n = 286 parcels, excluding parcels with system assignment None). 
Boxplots show median and 25%-75% interquartile range; whiskers extend to 1.5 * interquartile 
range, points outside are shown as outliers. 
 
We excluded outlier observations, that is, observations at a timepoint that were > 3 SD away 
from the mean, and find that our results are qualitatively similar. Global segregation (Fs(agexSES) = 
2.91, p = 0.052, pFDR = 0.069), meso-scale segregation (Fs(agexSES) = 7.68, p < 0.001, pFDR = 
0.001), and local segregation (Supplementary Figure 5a, Fs(agexSES) = 13.32, p < 0.001, pFDR < 
0.001) show similar patterns of interactions, such that infants and toddlers with greater exposure 
to prenatal disadvantage show a faster increase in cortical network segregation than infants and 
toddlers with less disadvantage exposure. We found no evidence for moderating associations of 
disadvantage with developmental changes in network integration (Fs(agexSES) = 1.862, p = 0.156, 
pFDR = 0.156). The magnitude of disadvantage associations with developmental increases in 
local segregation differed across functional systems, with the strongest associations found in 
somatomotor-hand, somatomotor-mouth, dorsal attention, and frontoparietal systems 
(Supplementary Figure 5c). 
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Supplementary Note 2 

 
Supplementary Figure 6. Associations between prenatal psychosocial stress and 
developmental increases in cortical network segregation. a, Prenatal psychosocial stress 
moderates trajectories of global cortical network segregation. b, Prenatal psychosocial stress 
does not significantly moderate trajectories of meso-scale cortical network segregation. c, 
Prenatal psychosocial stress does not significantly moderate trajectories of local cortical 
network segregation. Plots display fitted network segregation trajectories from GAMM models 
plotted by age for participants from low psychosocial stress backgrounds (orange) and high 
psychosocial stress backgrounds (blue) with a 95% credible interval. Psychosocial stress was 
modeled continuously; for visualization purposes here we show model trajectories from lowest 
and highest deciles. Individual points represent individual scans, with lines indicating scans from 
the same participant. 
 
As social disadvantage and psychosocial stress are moderately correlated at birth in our sample 
of children (t(259) = 7.81, r = 0.436, p < 0.001, 95% CI = [0.33, 0.53]), we investigated whether 
there were effects of psychosocial stress independent of disadvantage. Thus, we examined 
whether prenatal psychosocial stress was associated with measures of functional network 
architecture after controlling for prenatal disadvantage. We found that when controlling for the 
age-by-disadvantage interaction, global segregation shows an age-by-psychosocial stress 
interaction that does not pass FDR correction (Fs(agexSES) = 3.19, p = 0.042, pFDR = 0.169), while 
meso-scale segregation (Fs(agexSES) = 0.70, p = 0.495, pFDR = 0.496) and local segregation 
(Fs(agexSES) = 0.91, p = 0.402, pFDR = 0.496) do not show even marginally significant interactions 
(Supplementary Figure 6). In all models, age-by-disadvantage interactions remain significant 
when including psychosocial stress in the model (p’s < 0.05). We found no evidence for 
moderating associations of psychosocial stress with developmental changes in network 
integration when controlling for disadvantage (Fs(agexSES) = 2.39, p = 0.093, pFDR = 0.1986). 
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Supplementary Table 1. Participant demographics at birth. 
Variable N = 2611 
Age at scan (months) 41.3 (38.0 - 45.0) 
Child race  
    Black 156 / 261 (60%) 
    Chinese 2 / 261 (0.8%) 
    Multiracial 3 / 261 (1.1%) 
    Other 1 / 261 (0.4%) 
    Other Pacific Islander 1 / 261 (0.4%) 
    White 98 / 261 (38%) 
Child ethnicity  
    Not Hispanic or Latino 253 / 261 (97%) 
    Hispanic or Latino 6 / 261 (2.3%) 
    Unspecified 2 / 261 (0.8%) 
Child sex  
    Male 141 / 261 (54%) 
    Female 120 / 261 (46%) 
Gestational age (weeks) 38.9 (37.0 - 41.6) 
Birthweight (g) 3,274.0 (2,200.0 - 4,627.0) 
Area Deprivation Index 67.5 (6.0 - 100.0) 
Income to Needs Ratio 2.7 (0.4 - 9.4) 
Highest level of parent education completed  
    Less than 12th grade 22 / 251 (8.8%) 
    High school degree/GED 101 / 251 (40%) 
    Some college/vocational school 44 / 251 (18%) 
    College degree (4 years) 29 / 251 (12%) 
    Graduate degree 55 / 251 (22%) 
Insurance status (private) 135 / 261 (52%) 
Healthy Eating Index 58.7 (33.0 - 80.7) 
Socioeconomic disadvantage factor score -0.1 (-2.2 - 1.5) 
1Mean (Range); n / N (%) 
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Supplementary Table 2. Bivariate correlations between disadvantage variables at birth. 
  Area 

Deprivation 
Index (ADI) 

Income-to-Needs 
Ratio (INR) 

Healthy 
Eating Index 

Insurance 
status 

Maternal 
education 

Area Deprivation Index (ADI)  1.00         

Income-to-Needs Ratio (INR) -0.62***  1.00       

Healthy Eating Index -0.28***  0.34***  1.00     

Insurance status 
(private/individual or 
public/uninsured) 

-0.53***  0.67***  0.27***  1.00   

Maternal education -0.61***  0.71***  0.40***  0.59***  1.00 

*** p < 0.001 
Spearman’s correlation test, two-sided, was used to assess bivariate correlations. No multiple corrections adjustment 
was applied in this table. 
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Supplementary Table 3. Variables comprising the socioeconomic disadvantage factor at 
each timepoint. 

Birth Year 1 Year 2 Year 3 
INR, 1st trimester INR, 1 year INR, 2 years INR, 3 years 
INR, 2nd trimester Maternal education Maternal education Maternal education 
INR, 3rd trimester ADI at 4 months ADI at 16 months ADI at 28 months 
Maternal education ADI at 8 months ADI at 20 months ADI at 32 months 
ADI at birth ADI at 12 months ADI at 24 months ADI at 36 months 
Insurance status    
Healthy Eating Index    

 
ADI: Area Deprivation Index, national percentile 
INR: Income-to-needs ratio  
Insurance status: private/individual or public/uninsured 
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Supplementary Table 4. Sample sizes for each set of timepoints 
Birth only Y2 only Y3 only Birth-Y2 Birth-Y3 Birth-Y2-Y3 Y2-Y3 

160 13 3 42 26 33 4 
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