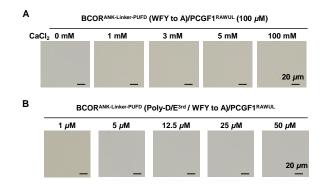
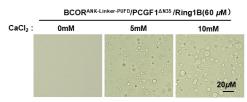
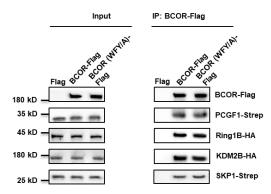
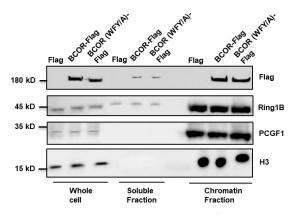
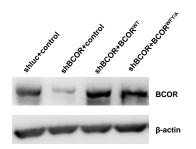

Supplementary Figure 1 SAXS data analysis for BCOR/PCGF1/KDM2B/SKP1 tetramer. (A) Guinier plots for BCOR¹⁶⁰⁷/PCGF1^{RAWUL}/KDM2B^{F-box-LRRs}/SKP1. (B) P(r) functions for BCOR¹⁶⁰⁷/PCGF1^{RAWUL}/KDM2B^{F-box-LRRs}/SKP1. (C) Guinier plots for BCOR^{ANK-linker-PUFD}/PCGF1^{RAWUL}/KDM2B^{F-box-LRRs}/SKP1. (D) P(r) functions for BCOR^{ANK-linker-PUFD}/PCGF1^{RAWUL}/KDM2B^{F-box-LRRs}/SKP1.

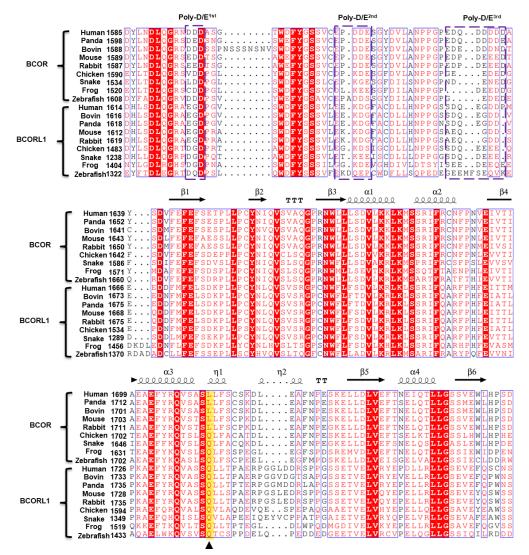

Supplementary Figure 2. Effect of magnesiumion or calcium on BCOR binding to KDM2B. (A-B) BCOR^{N1607}/PCGF1^{RAWUL} KDM2B^{LRRs} between and (A) Binding affinity or $KDM2B^{F\text{-box-LRRs}}\!/SKP1 \text{ dimer (B) is determined using ITC in the presence of } MgCl_2 \text{ at indicated}$ concentration. MgCl₂ at indicated concentration was placed at both of cell and syringe. (C) Binding affinity between BCOR^{ANK-linker-PUFD}/PCGF1^{RAWUL} and KDM2B^{F-box-LRRs}/SKP1 is determined using ITC in the presence of CaCl₂ at indicated concentration. CaCl₂ at indicated concentration was placed at both of cell and syringe. For (A-C), The K_d values are shown as mean \pm SD for triplicate experiments. (D) Effect of calcium on BCOR^{ANK-linker-PUFD}/PCGF1^{RAWUL} KDM2B^{F-box-LRRs}/SKP1 binding is determined BLI to using assay. BCOR^{ANK-linker-PUFD}/PCGF1^{RAWUL} dimer was labeled with biotin and immobilized onto a streptavidin biosensor. $KDM2B^{F-box-LRRs}/SKP1$ acts as analyte in the buffer containing $CaCl_2$ at indicated concentration.


Supplementary Figure 3 LLPS assay of $BCOR^{ANK-linker-PUFD}$ (Poly-D/E^{3rd} to A)/PCGF1^{RAWUL} dimer (A), or $BCOR^{ANK-linker-PUFD}$ (Poly-D/E^{3rd} to A) (B).


Supplementary Figure 4. Effect of MgCl₂ and CaCl₂ on inducing phase separation of BCOR^{ANK-linker-PUFD}/PCGF1^{RAWUL} hetero-dimer with concentration of 100 μ M


Supplementary Figure 5. The importance of aromatic residues on linker of BCOR for $CaCl_2$ induced phase separation of $BCOR^{ANK-linker-PUFD}/PCGF1^{RAWUL}$ (A), and phase separation of $BCOR^{ANK-linker-PUFD}$ (Poly-D/E^{3rd} to A)/PCGF1^{RAWUL} (B).


Supplementary Figure 6. Calcium induced LLPS of $BCOR^{ANK-Linker-PUFD}/PCGF1^{\Delta N35}/Ring1B$


Supplementary Figure 7. The importance of aromatic residues (WFY) on linker for BCOR binding to KDM2B/SKP1 is assessed using Co-IP assay. Expressing plasmids for BCOR (wild or mutant), PCGF1, KDM2B or SKP1, were co-transfected into HEK293T cells. Co-IP was performed with anti-Flag magnetic beads, after 48h transfection. The western-blotting data is representative of two independent experiments.

Supplementary Figure 8. The subcellular localizations of BCOR, RING1B and PCGF1 are determined by a biochemical fractionation assay in 293T cells upon transient expression of the Flag-tagged BCOR (wild type or mutant). Whole-cell extracts, the soluble and chromatin-binding fractions are analyzed by western-blotting. The western-blotting data is representative of two independent experiments.

Supplementary Figure 9. Western blot analysis knockdown efficiency of BCOR in HEK293T cells, as well as the level of over-expressed BCOR (wild type or mutant) in HEK293T cells that knockdown endogenous BCOR.

Supplementary Figure 10. Sequence alignment for BCOR and BCORL1 from different species.

KDM2B	PCGF1	Score
K1111	K234	3
K1304	K244	6
K1304	K255	3
K1304	K180	4
K1304	K184	3
K1139	K180	3
K1139	K190	8
K1139	K159	3
K1334	K255	3
K1334	K184	5

Supplementary table 1. Residues cross-linked by BS_3 between KDM2B and PCGF1

KDM2B	BCOR	Score
K1187	K1674	11
K1187	K1568	7
K1304	K1674	11
K1304	K1711	4

Supplementary table 2. Residues cross-linked by BS₃ between KDM2B and BCOR

SKP1	BCOR	Score
K78	D1555	4
K80	D1522	5
K121	E1484	4
K128	E1518	3
K142	D1555	3

Supplementary table 3. Residues cross-linked by EDC between SKP1 and BCOR

	BCOR ^{N1607} /PCGF1 ^{RAWUL} /	BCOR ^{ANK-linker-PUFD} /PCGF1 ^{RAWUL} /		
	KDM2B ^{F-box-LRRs} /SKP1	KDM2B ^{F-box-LRRs} /SKP1		
Data Collection Parameters				
SEC-SAXS column	Superdex 200 Increase 10/300GL			
Loading concentration	10 mg/ml			
Flow rate	0.5 mL/min			
Solvent	20 mM Tris-HCl pH 7.5, 150 mM NaCl			
Structural Parameters				
From Guinier fit				
Rg (Á)	32.90	39.25		
From $P(r)$				
Rg (Á)_	33.42	41.33		
Dmax (Á)	109	136		
Molecular Mass Determination				
MW (kDa) from Q(p)	73.17	105.83		
MW (kDa) from V(c)	71.97	101.45		
Estimate MW (kDa)	68.78	91.18		
Ab initio analysis				
χ^2 (GASBOR)	1.060	1.005		
Rigid-body modeling Validation				
χ^2 (CRYSOL)	1.04	1.73		

Supplementary table 4. SAXS sample details and parameters