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Supplementary Text 
Text S1. ECHO-AIR Model Details 

This work uses a novel open-access pipeline called Estimating Concentrations and 
Health Outcomes Automated ISRM Resource (ECHO-AIR) to estimate PM2.5 exposure 
concentrations. We developed ECHO-AIR to reduce barriers of entry in air pollution modeling. 
Our goal in creating this pipeline was to develop a resource that required little-to-no computer 
programming to empower users from government, industry, academia, and environmental justice 
groups to estimate PM2.5 concentration and health outcomes from emissions sources. 

The ECHO-AIR pipeline works by a series of two modules. First, ECHO-AIR estimates 
annual average change in PM2.5 concentrations as part of the Concentration Module. The 
Concentration Module utilizes the InMAP Source Receptor Matrix (ISRM), which links 
emissions sources to changes in receptor concentrations. A second and optional Health Module, 
not used here, permits estimation of excess mortality based on user-selected concentration-
response functions.   

ECHO-AIR is developed in Python and managed through Github, enabling the pipeline 
to be entirely open-access. The code can be downloaded by cloning the repository: 
https://github.com/echo-air-model/echo-air 

Detailed documentation has been written to explain the methodology, to walk the user 
through setting up and running the model, and to describe the input and output files. The 
documentation can be viewed via web browser here: https://echo-air-model.github.io/.  

Text S2. Validation and Comparison to Other Estimates 
Here, we aim to validate our results with previously published observations and model 

data. The observational record lacks the spatial, temporal, and chemical information to track the 
long-term evolution of primary and secondary PM2.5 contributions attributable to vehicles only 
across California at sufficient spatial resolution to quantify disparities. Accordingly, we 
interrogate the plausibility of our results by considering three fundamental questions that we can 
individually validate with independent peer-reviewed estimates of ambient PM2.5, NO2, and 
diesel particulate matter. First, are the changes we find in statewide PWM exposures from on-
road mobile sources consistent with California’s ambient total PM2.5 and NO2 concentrations? 
Second, are the changes in exposure and relative disparity in exposure by race-ethnicity 
comparable with estimated disparity by race-ethnicity for total PM2.5 and NO2? Finally, are the 
changes we model in overburdened communities consistent with state regulatory monitoring in 
these communities? 

For this discussion, we analyze two external datasets and briefly review observations 
from the literature. The first dataset is the annual mean PM2.5 concentration derived from satellite 
observations gridded at 0.01o by 0.01o (average ~1 km2 in California, 58).The second dataset is 
from the Center for Air, Climate, and Energy Solutions (59), which predicts concentrations of 
PM2.5 and NO2 via an empirical (land use regression) model with high fidelity as compared to 
monitoring sites (R2 = 0.84 and 0.81 for PM2.5 and NO2, respectively). NO2 is a useful analog for 
mobile source PM2.5, as on-road mobile sources are a major source of NOx emissions in 
California (in year 2000, 58% of NOx came from on-road sources) (39). In contrast, on-road 
mobile sources are only a small fraction (<10%) of California’s estimated primary PM2.5 



emissions (39), and a larger, but not dominant, source of total PM2.5 concentrations according to 
source apportionment studies (67–72).  

We first contextualize the magnitude of our on-road mobile source PWM PM2.5 
concentration (relative to total PWM PM2.5) against evidence from the literature. Our estimates 
of on-road mobile source PWM PM2.5 represent approximately ~10-20% of the total PWM PM2.5 
derived from satellites or empirically modeled (58, 59). This result is broadly in line with the 
available evidence from other modeling studies and in-situ source apportionment studies, which 
generally attribute ~10-25% of ambient PM2.5 to mobile sources depending on the setting and 
study year (67–72).  

Next, we find broadly similar temporal changes indicating sharply reduced 
concentrations but persistent relative disparity when considering these two gridded datasets. We 
recreate the analysis of PWM concentration over time (cf. Fig. 1a) using satellite derived PM2.5 
(Fig. S3A) and the empirically modeled PM2.5 (Fig. S3B) and NO2 (Fig. S3C) estimates. The 
reduction in total statewide PWM PM2.5 (~45% reduction based on satellite and empirically 
derived estimates) is less than the reduction in our estimated mobile-source reduction (~65% 
reduction). This result makes sense – models and in-situ source-apportionment observations alike 
indicate that on-road mobile sources contribute only a fraction of ambient PM2.5 in California, 
but mobile-source emissions of PM2.5 and its precursors have declined more rapidly. In contrast, 
the magnitude of empirically modeled PWM NO2 (~55% reduction) more closely resembles our 
result for the mobile source PM2.5 reduction; this finding is reasonable given that mobile sources 
account for a substantially larger fraction of ambient NO2 than ambient PM2.5.  
We then computed relative disparities from modeled and remotely sensed measurements of total 
PM2.5 and NO2 (Fig. S3B) to provide a point of comparison with Fig. 1b. Qualitatively, these 
results align closely with our core finding: relative disparities by race/ethnicity for total PM2.5
and NO2 persisted over the 2000-2019 time period. Considering the two PM2.5 datasets, we found 
slight reductions in relative disparity (e.g., reduction from ~9-10% to 7-8% for Hispanic 
Californians from 2000 – 2019). For empirically modeled total NO2, relative disparities by race-
ethnicity increased slightly (e.g., for Hispanic Californians, increasing from 14 to 15%), which is 
broadly consistent with our finding of modestly increasing disparities for PM2.5 from mobile 
sources (from 12-14%). Overall, the similarity between the relative disparity in exposure to NO2 
from the empirical model and the relative disparity in exposure to on-road mobile source PM2.5 
we estimate here instills confidence in our finding.  

As a final point of comparison for overburdened communities, we consider a 2016 
California Air Resources Board report on air quality in overburdened communities (60). 
Regulatory measurements of elevated concentrations of diesel particulate matter, PM2.5, and NO2 
in overburdened communities between 2000 and 2014 support our finding that there is sustained 
disparity in overburdened communities during our study period (60). Additionally, they 
estimated an approximate 65% reduction in diesel particulate matter concentrations in 
overburdened communities from 2000 to 2014. While we do not explicitly model diesel 
particulate matter, we can approximate exposure to diesel particulate matter by isolating our 
estimate of PWM exposure to exhaust-only primary PM2.5 from HDVs. For members of 
overburdened communities, our results are generally consistent with the findings from 
observations. From 2000-2014, our modeled results show PWM PM2.5 reductions of 73% and 
72% for AB617 and SB535 residents, respectively. In summary, available data from CARB 
regulatory monitoring supports our conclusions for overburdened communities.  



Text S3. Model Uncertainty and Sensitivity 
While the previous section validates our results against previous work, here we aim to 

discuss the potential uncertainties and bias associated with our modeling approach. The results 
and conclusions in this work are based on modeled concentrations from the ISRM (28, 73) using 
state regulatory emissions modeled from EMFAC (38). InMAP and the ISRM have been 
validated against measurement and comprehensive chemical-transport models to adequately 
estimate population-weighted mean exposures (28, 73). However, as with any model, results are 
potentially influenced by uncertainty, error, and bias. In this section, we discuss the sensitivity of 
our finding of persistent disparity to error and bias in the emissions estimates, reduced-
complexity model, and population dataset. 

Emissions Inventory Uncertainty and Sensitivity 
With respect to the emissions inventory, while EMFAC is the state regulatory model for 

on-road mobile source emissions, emissions estimates can introduce error and bias that could 
influence our results (74). For completeness in this discussion, we decompose the emissions 
uncertainty in magnitude (relevant for our finding that population-weighted mean exposure has 
decreased for all Californians) and in space (relevant for our finding that disparities have 
persisted). Toward validation of our estimated changes in emissions over time, Yu et al. (50) 
found that EMFAC reasonably predicts the decrease in mobile-source NOx emissions in 
California for gasoline and diesel vehicles when compared with a fuel-based inventory. While 
the spatial distribution of emissions from EMFAC have not been formally validated in the 
literature, the spatial surrogates used to allocate emissions to the 1 km modeling grid use 
carefully compiled and highly resolved data from other California state agencies. To help 
constrain uncertainty in our results due to potential spatial inaccuracies in emissions allocation, 
we consider analogous mobile source inventories with activity-based spatial surrogates. A study 
of a similar on-road mobile source emissions model (Neighborhood Emission Mapping 
Operation, NEMO), for example, found high overall spatial correlation but potential 
underestimation of emissions inequality between satellite-derived estimates of NO2 and modeled 
NOx emissions (74). In Fig. 16A, we repeat our analysis using two independently derived and 
peer-reviewed emissions inventories: EDGAR (v6.1, 78) and NEMO (v2017, 91). As shown in 
Fig. 16A, while the relative disparities in exposure estimated using the coarser emissions from 
EDGAR are lower for all groups, the relative disparity in exposure is sustained. Similarly, the 
relative disparity in exposure when modeled with emissions from a single available year of data 
(2017) from NEMO are consistent with our overall findings. In Fig. 16B, we show that the high-
resolution spatial emissions allocation are not overly influencing our results. We repeat our 
analysis after re-gridding the EMFAC emissions to make our inventory coarser in space. Even 
with 4 km resolution emissions estimates, we find that exposure disparities persisted. 
Additionally, while EMFAC could have biases in its spatial emissions allocation, we believe our 
overall assessment of relative disparities for PM2.5 from on-road sources is robust, given the 
consistency in magnitude and direction of our results with disparities in empirically modeled 
NO2 concentrations (Fig. S3). Therefore, while there may be bias or uncertainty in the emissions 
inventory, we do not expect it to qualitatively affect our conclusions. 

Reduced-Complexity Model Uncertainty and Sensitivity 
A useful framework for discussing the uncertainty of the reduced-complexity model 

decomposes the model accuracy into two important axes: fidelity of the overall magnitude of 



exposure concentrations, and fidelity of the spatial distribution of the exposure concentrations. 
Because our results rely on the spatial relationships between population groups and exposure 
concentrations, inaccuracies in the magnitude of overall concentration will perturb the 
population-weighted mean concentrations but will not affect the exposure disparities. 
Accordingly, we focus on potential spatial inaccuracies in the model. To properly assess the 
effects of model error and bias on our conclusions, here, we perform two sensitivity analyses on 
our estimated relative disparities in exposure.  

First, we show that our result is robust against potential spatial and demographically 
linked biases in the model (Fig. S16B). To do this, we iterate through each of the racial-ethnic 
groups and perturb the concentrations by ±18% (the mean fractional error for InMAP versus 
WRF-Chem, 73) for cells where 50% or more of the population is of that specific racial-ethnic 
group. We then estimate the PWM for the individual group and the full population, from which 
we estimate the relative disparity. The relative disparity under the perturbed conditions for each 
group are shown as error bars in Fig. S16B. As shown in Fig. S16B, we find that even if model 
errors were spatially biased in a manner that was substantially correlated with the racial-ethnic 
population distribution, disparities persist. While there is now some overlap between the error 
bars for the relative disparity in exposure for Hispanic, Black, and Asian Californians, relative 
disparities between Californians of color and white Californians persist, even when 
concentrations are underestimated in communities of color and overestimated in white 
communities.  

Second, we test the sensitivity of our conclusion to potential errors in model performance 
associated with individual precursor pollutants. In Fig. S16C, we perform a systematic leave-
one-out analysis on relative disparity for each precursor pollutant. To do this, we estimate PWM 
exposures for each racial-ethnic group from the total PM2.5 concentrations (Fig. 1B) and each 
combination of four precursors. The relative disparity in exposure to total PM2.5 is represented by 
a point, the minimum and maximum relative disparity caused by leaving out a single precursor 
create the error bars, and the relative disparity from secondary PM2.5 only is indicated by a star. 
Again, we find that our results are robust to model error associated with any one of the precursor 
pollutants. 

Sensitivity to Population Dataset 
In our core analyses, we rely on static population data for year 2010, the midpoint of our 

2000 – 2019 analysis time frame. As a sensitivity analysis (Fig. S17), we also considered how 
our results would change using a year-2000 population estimate, which reflects the only other 
year for which a reliable demographic estimate is available for California from the decennial 
census. From 2000 to 2010, California’s Hispanic population grew by 28% while the white 
population decreased by approximately 5%, resulting in an overall larger share of the population 
identifying as Hispanic (32.4% Hispanic in 2000 and 37.6% Hispanic in 2010). Additionally, 
population migration occurred for all racial-ethnic groups in California, moving away from 
coastal cities toward more suburban or rural inland areas and decreasing overall segregation (92). 
We show that our finding that PWM exposure has decreased while relative disparity has 
persisted is recreated when using a static 2000 population dataset instead of a static 2010 
population dataset. While the changes across time and demographic group are consistent, one 
difference between our main result (Fig. 1) and the result of this sensitivity test (Fig. S17) is the 
overall magnitude of the PWM. The higher estimated PWM using a static 2000 population 
dataset is consistent with the two aforementioned population changes that occurred in California 



from 2000 to 2010. First, the lower PWM using 2010 population data is consistent with the 
population migration shifts away from cities, major roadways, and highways. Second, the 
increased fraction of California’s population that is Hispanic affects the statewide total PWM. As 
the Hispanic share of the population increases, the statewide and Hispanic PWMs may converge 
over time, which will ultimately affect the relative disparity metric (for this sensitivity test, we 
observed only a modest impact of this effect). Nonetheless, comparing the sensitivity of our 
results to the exposure for members of overburdened communities, we find <2% difference in 
PWM and relative disparity across all years (e.g., PWM in 2000 for members of AB617 
communities of 4.5 μg/m3 using 2000 Census data and 4.4 μg/m3 using 2010 Census data). 
Together, the similarities in exposure for members of overburdened communities and the shape 
of the PWM and relative disparity results suggest that the changes in the spatial distribution of 
emissions is a more important driver of disparity than the changes in the spatial distribution of 
the population. 



Fig S1. Emissions of PM2.5 precursors by on-road mobile source fleet relative to 2000. 
Changes in total statewide emissions of each on-road mobile vehicle pollutant modeled as a 
precursor for total PM2.5 concentration stratified by fleet type. Total statewide emissions are 
shown relative to the emissions in 2000. In the upper righthand corner of each panel, the 
approximate percent contribution to secondary PM2.5 concentration is shown. For primary PM2.5 
emissions (A), emissions are split by mode using hatching to represent the non-exhaust fraction 
(brake wear and tire wear). Emissions of SOx (E) are relatively unimportant, as the very low SOx 
emissions results in negligible secondary PM2.5. Emissions of primary PM2.5, NOx, and VOC 
have declined substantially from 2000 – 2019. Emissions of NH3 (C) were declining in the first 
decade, but widespread catalytic conversion usage has led to a modest increase in emissions 
during the second decade of the study. For NH3 and VOC (C-D), LDVs are responsible for the 
majority of statewide emissions; for PM2.5 and NOx, LDVs and HDVs contribute approximately 
evenly. The contribution of each precursor to total PM2.5 concentration is explored further in 
Figs. S11-S14. 



Fig. S2. Maps of overburdened communities in California. 
The overburdened communities and geographic regions evaluated as part of this work are 
identified on two maps of California. (A) AB617 overburdened communities are marked by a 
circle with their names italicized. We also highlight three broad geographic regions (San 
Francisco Bay Area, Central Valley, Los Angeles Area), which we defined in terms of the 
counties associated with each region. (B) The SB535 overburdened communities are shaded in 
red. Inset maps show more detailed views into the San Francisco and Los Angeles metropolitan 
areas. While SB535 also includes tribal community areas, in this work we focus on the Census 
Tracts. All results computed for SB535 are at the statewide population-weighted mean. Because 
the population living in federally recognized tribal lands included in SB535 contribute a 
relatively small number of people, we do not anticipate that our results would change 
substantially upon inclusion of these areas. 



Fig. S3. Validation analyses to compare modeled results to other lines of evidence. 
Here, Fig. 1 is reproduced with two additional data sets derived from satellite observations of 
PM2.5 and an empirical model (land use regression) for PM2.5.and NO2. In panels (A) and (B), we 
estimate the PWM PM2.5 exposure for each racial-ethnic group and the statewide population 
using estimates derived from satellite observations and empirical model, respectively. In panel 
(C), we estimate the PWM NO2 exposure for each racial-ethnic group using estimates from the 
empirical model. Fig. 1B is reproduced for each of these datasets in panels (D) through (F). The 
gray shading in panels (A), (B), (C), and (D) superimpose the results by race-ethnicity from Fig. 
1 directly. As discussed in the “Validation and Comparison to Other Estimates” supplementary 
text, the consistency in the trends in ambient PWM and relative disparity in exposure here 
support the robustness of our findings. 



Fig. S4. On-road mobile-source PM2.5 exposure and relative disparity in exposure for 
additional demographic variables. 
Statewide population-weighted mean PM2.5 exposure concentrations and relative disparity in 
exposure attributable to on-road mobile sources are shown for two additional demographic 
variables. In the top row, we show the (A) population-weighted mean PM2.5 exposure 
concentration and (B) relative disparity for the four quartiles of CalEnviroScreen score relative 
to the two groupings of California’s overburdened communities described in the main text 
(AB617 and SB535, “disparity by policy”). In the second row, we show these same metrics for 
four quartiles of California’s income distribution (C, D). Income quartiles are defined as follows. 
Total population and median household income (adjusted to 2012 inflation) were queried at the 
block group level from the 2008-2012 American Community Survey. Income data were adjusted 
to 2010 using the Consumer Price Index. Block groups were then sorted by median income level 
and the percentile of the overall population was estimated as the cumulative number of people at 
that income level divided by the total population: < $40,892 Q1, $40,893-$58,452 Q2, $58,453-
$82,842 Q3, and >$82,843 Q4. Each quartile represents approximately 9.3 million Californians. 
In each year, relative exposure disparities (B, D) for each group are computed in reference to 
statewide average PM2.5 concentration attributable to on-road mobile sources. 



Fig. S5. Distributions of exposure to mobile-source PM2.5 for racial-ethnic groups. 
Variation in PM2.5 exposure distributions from on-road vehicle emissions for racial-ethnic groups 
in California in 2000 (lefthand column), 2010 (center column), and 2019 (righthand column). 
The rows represent each of the vehicle fleets: all vehicles (A-C), LDVs (D-F), MDVs (G-I), and 
HDVs (J-L). Boxplots are roughly centered around the means and indicate the following 
population-weighted statistics: median (central bar), mean (circle), 25th and 75th percentile 
(box), and 10th-90th percentiles (whiskers). Across the full exposure distributions and across 
time, white Californians experience among the lowest exposures to PM2.5 from on-road mobile 
sources, while Hispanic and Black Californians experience among the highest exposures. 
Comparing the disparity at the most exposed (90th percentile) Hispanic Californians versus 
white Californians, the disparity is the most severe in exposure to HDVs. Overall, we note the 
roughly similar patterns by race/ethnicity for each vehicle fleet type. 



Fig. S6. Cumulative distributions of exposure. 
Cumulative distributions of exposure are drawn for each vehicle fleet for each representative 
year. Cumulative distributions are estimated by finding the exposure concentration that 
corresponds to a uniform distribution of California’s population, consistent with the 
methodology used to create Lorenz curves for income or wealth distributions. The leftmost 
column shows emissions for 2000, the center column represents emissions in 2010, and the 
rightmost column shows the result of emissions in 2019. Distributions are drawn for each fleet 
type: (A-C) all vehicles, (D-F) LDVs, (G-I) MDVs, (J-L) HDVs. Across all years and fleet types, 
the top decile of the population receives over 20 percent of the total population-weighted 
exposure and the top 25% of the population receives 35-40% of the total population-weighted 
exposure. 



Fig. S7. Racial-ethnic population distribution by exposure decile across fleets in 2010. 
The distribution of race-ethnicity for the population within each decile of (A) full fleet, (B) 
LDVs, (C) MDVs, and (D) HDV exposure. The statewide racial-ethnic composition is shown for 
comparison. As shown here, the results using emissions in 2010 do not substantially vary from 
the results using 2000 or 2019 emissions shown in Fig. 2, although the magnitude of exposure is 
different. 



Fig. S8. Distribution of exposure reductions by race-ethnicity. 
Statewide (A) absolute and (B) percent changes in PM2.5 concentration from 2000 to 2019 from 
the full on-road mobile fleet are binned into deciles and the racial-ethnic composition of each 
decile of change is shown in comparison to the full statewide population. The left column (A) 
estimates absolute changes in concentration, following the methodology from recent vehicle 
electrification studies (e.g., 57, 71). (A) While the grid cells with the largest absolute reduction in 
concentration consist of more people of color than the statewide average (thus contributing to the 
reduction in absolute exposure disparity), (B) the smaller demographic differences in the 
percentage change in exposure highlight the persistent inequalities despite larger absolute 
reductions in communities of color. The difference between (A) and (B) arises in large part 
because the geographies with the largest absolute reductions in PM2.5 exposure from on-road 
mobile sources started out with the highest initial levels of exposure in 2000. 



Fig. S9. Contributions to disparity in exposure to mobile-source PM2.5 for each race-
ethnicity. 
This figure accompanies Fig. 3 (disparity for Hispanic Californians) by illustrating the disparity 
in exposure for each additional racial-ethnic demographic group. As with Fig. 3, we present three 
ways to disaggregate contributions from LDVs, MDVs, HDVs, and all other vehicles. The 
absolute disparity is estimated as the total population-wide on-road mobile-source exposure 
subtracted from the population-weighted mean exposure (A-D). The fractional contribution to 
disparity divides the absolute source contribution by the total absolute disparity (E-H). The 
relative disparity to each on-road mobile source compares an individual group’s exposure to each 
individual vehicle type to the statewide average exposure to that vehicle group (I-L). Asian 
Californians (leftmost column) are the only racial-ethnic group that does not experience 
uniformly positive or negative disparity in exposure from all fleets. In other words, unlike all 
other racial/ethnic groups, Asian Californians are more exposed to LDVs, MDVs, and all other 
vehicles than the statewide average Californian but less exposed to HDVs. As a result, the 
contribution to disparity in panel (E) only shows the fractional contribution to the higher-than-
statewide exposure disparity and HDVs are not included. For Black Californians (second column 
from the left), the relative contribution and source-specific relative disparity are very similar to 
those of Hispanic Californians (Fig. 3). White (second column from the right) and other 
(rightmost column) Californians are less exposed to all on-road mobile vehicles than statewide 
average, so note the opposite orientation of disparity in panels (C-D) and (K-L). 



Fig. S10. Contributions to disparity in exposure to mobile-source PM2.5 for residents of 
overburdened communities. 
This figure accompanies Fig. 3 (disparity for Hispanic Californians) by illustrating the disparity 
in exposure for residents of the two classifications of overburdened communities. The disparity 
in exposure for residents of overburdened communities as defined in AB617 (lefthand column) 
and SB535 (righthand column) is broken down in three ways to disaggregate contributions from 
LDVs, MDVs, HDVs, and all other vehicles following the same methodology as Fig. 3 and Fig. 
S9. The fractional contributions to disparity from each fleet type for AB617 and SB535 
community members (A-D) on aggregate closely mirror that for Hispanic and Black 
Californians. However, the relative disparity from each mobile source is slightly different for 
AB617 community members (E), as they are most disparately exposed to PM2.5 resulting from 
emissions from LDVs. 



Fig. S11. Population-weighted mean exposure by precursor from the full mobile fleet. 
Contribution to total PM2.5 concentration from emissions of each precursor pollutant from the 
full vehicle fleet across time by racial-ethnic group. Here, we perform a similar analysis to Fig. 3 
of disaggregating results, but we show concentration from each individual precursor pollutant 
rather than fleet type. Contributions from primary PM2.5 emissions are split by emissions mode, 
using hatching to represent non-exhaust (brake wear, tire wear) PM2.5 emissions. The shape and 
contribution of each precursor does not change substantially between the statewide total 
population (A) and each racial-ethnic group (B-F). The relative contribution of each species is 
also roughly even across time and racial-ethnic group. 



Fig. S12. Population-weighted mean exposure by precursor from the LDV fleet. 
Contribution to total PM2.5 concentration from emissions of each precursor pollutant from the 
LDV fleet across time by racial-ethnic group. Here, we repeat the analysis from Fig. S11 but for 
the LDV fleet alone. Again, the shape and contribution of each precursor does not change 
substantially between the statewide total population (A) and each racial-ethnic group (B-F). 
From the LDV fleet, emissions of NOx, VOC, and NH3 are most important for population-
weighted mean exposures to total PM2.5. During the second half of the study, the importance of 
exhaust- and non-exhaust primary PM2.5 switch, leading to a roughly constant overall 
contribution from primary PM2.5. 



Fig. S13. Population-weighted mean exposure by precursor from the MDV fleet. 
Contribution to total PM2.5 concentration from emissions of each precursor pollutant from the 
MDV fleet across time by racial-ethnic group. Here, we repeat the analysis from Fig. S11 but for 
the MDV fleet alone. Again, the shape and contribution of each precursor does not change 
substantially between the statewide total population (A) and each racial-ethnic group (B-F). 
From the MDV fleet, emissions of primary PM2.5 and NOx are most important for population-
weighted mean exposures to total PM2.5. While relatively less important, contributions from NH3 
are increasing in the second half of the study, while contributions of VOC are declining. 



Fig. S14. Population-weighted mean exposure by precursor from the HDV fleet. 
Contribution to total PM2.5 concentration from emissions of each precursor pollutant from the 
HDV fleet across time by racial-ethnic group. Here, we repeat the analysis from Fig. S11 but for 
the HDV fleet alone. Again, the shape and contribution of each precursor does not change 
substantially between the statewide total population (A) and each racial/ethnic group (B-F). 
From the HDV fleet, emissions of primary PM2.5 and NOx are far more important for population-
weighted mean exposures to total PM2.5. During the second half of the study, the importance of 
VOC and NH3 switch, with NH3 becoming increasingly important for total PM2.5 formation from 
HDVs. Similarly, while still important for HDV-derived PM2.5, contributions from exhaust-mode 
primary PM2.5 have reduced, resulting in a higher fractional contribution from NOx. 



Fig. S15. Population-weighted mean exposure per unit emission for each fleet and racial-
ethnic group. 
We compare the per-unit impact of emissions of each precursor species from each vehicle type 
on population-weighted mean (PWM) exposure concentration for each race-ethnicity. 
Differences in this metric arise principally because of source patterns of proximity (i.e., on 
average, which vehicle types drive nearest to each group of people). This metric also depends on 
patterns of atmospheric transport and chemistry, but these patterns do not have a strong 
relationship with demographics. The box plots represent the distribution of this metric across the 
19 years. The median is represented by the central bar, the mean is shown as a circle, the upper 
and lower quartiles are represented by the box, and the whiskers show the 10th and 90th 
percentile. For each vehicle type, the PWM concentration per unit emissions experienced by 
Black and Hispanic Californians is substantially higher than that experienced by white 
Californians, reflecting in large part the differences in proximity to vehicle activity. We see 
especially large exposures per unit of emissions of LDV emissions because LDV emissions tend 
to be ubiquitously concentrated in residential areas. In broad contours, these results are very 
similar for each of the emitted species. 



Fig. S16. Sensitivity analyses demonstrate our finding of persistent relative disparities over 
time is robust to a wide range of potential biases and uncertainties in emissions inventory 
and model performance. 
Here, Fig. 1B is reproduced with error bars that show the sensitivity to four perturbations. The 
sensitivity tests are described in detail in the “Model Uncertainty and Sensitivity” subsection of 
the Supplementary Text. In Fig. S16A, we estimate relative disparity in exposure to emissions 
from two independent emissions inventories. The one-directional error bars indicate the relative 
disparity in exposure to emissions from the EDGAR model (gridded at 0.1o, or ~10 km); the 
relative disparity in exposure to emissions from the NEMO model (gridded at 1 km), which are 
only available for 2017, are indicated by a star. Regardless of the emissions model chosen, the 
relative disparities in exposure persist across time. In Fig. S16B, we show that our results are not 
influenced by error introduced by fine-scale spatial allocation. To do this, we re-grid the EMFAC 
emissions to a 2 km and 4 km grid. The error bars represent the relative disparity in exposure 
when emissions are gridded at 4 km and show minimal change in the magnitude or temporal 
pattern of disparity. In Fig. S16C, we perform a series of demographically linked perturbations to 
the modeled concentrations to simulate how spatial bias in the model could affect relative 
disparities in exposure. Error bars represent the range of relative disparities in exposure for each 
racial-ethnic group when concentrations are perturbed by ±18% in grid cells with 50% or more 
of the population. As shown in Fig. S16C, relative disparities in exposure persist, even if 
concentrations in predominantly Hispanic, Black, and Asian areas are overestimated and 
concentrations in predominantly white areas are underestimated. In Fig. S16D, we perform a 
systematic exclusion of each precursor pollutant and confirm that our results are robust to any 
model error associated with an individual precursor. The scenario where the excluded precursor 
is primary PM2.5 (i.e., all PM2.5 is secondary) is denoted with a star and represents the smallest 
relative disparity for all groups. 



Fig. S17. On-road mobile-source PM2.5 exposure and relative disparity in exposure for each 
demographic group using static 2000 population data. 
Here, Fig. 1 is recreated using a static 2000 Census population instead of the static 2010 dataset 
used throughout this manuscript to evaluate the sensitivity of our finding to the population data. 
The main findings previously described have not changed: even with a static 2000 population, 
the exposure concentrations have decreased for all racial-ethnic groups (A) but the relative 
disparity in exposures have persisted (B). A key difference is that the overall population-
weighted mean exposure concentration when using 2000 Census data is slightly higher for 
Californians of color, resulting in a higher relative disparity in exposure. This finding may 
suggest a population migration of people of color towards lower traffic areas between the 2000 
and 2010 Census. Assuming the trend of population migration continued towards 2020, we 
might expect that the PWM exposure concentrations for each group might decrease further 
towards 2019. However, the persistence of the relative exposure disparity regardless of 
population dataset year suggests that the spatial distribution of emissions is not markedly 
variable over time, thereby leading to relatively constant relative disparities over time. 



Fig. S18. Exposure and relative disparity in exposure from non-exhaust mobile-source 
PM2.5 emissions for each demographic group. 
Statewide population-weighted mean exposure concentrations (A) and relative disparity in 
exposure (B) to emissions of only non-exhaust PM2.5 from on-road mobile sources during the 
study period. The Asian, Black, white, and other racial groups do not include those identifying as 
Hispanic. Here, we show that the population-weighted mean exposure to emissions of non-
exhaust PM2.5 has increased for all groups yet the relative disparity in exposure has remained 
constant. Notably, although the exposure concentration from non-exhaust sources is only 
approximately 1% of the current National Ambient Air Quality Standard, the magnitude of the 
relative disparity in exposure for all groups is larger for non-exhaust PM2.5 than for the full set of 
emissions shown in Fig. 1. While this is not equivalent to modeling the future all-electric fleet, 
we can use the non-exhaust emissions from the full vehicle fleet as an analog for current driving 
patterns and emissions that might be relevant to disparities in an all-electric future. This 
sensitivity analysis suggests that relative disparities may persist even in the “all-electric future” 
where all vehicles across the fleet have zero exhaust emissions. 



Table S1. 
Vehicle fleet classifications for EMFAC2021 vehicle types used in this study. 

EMFAC2021 Vehicle Type Description from EMFAC2021a GVWR (lb)b Fleet 

All Other Buses All Other Buses -- Other 
LDA Passenger Cars -- LDV 
LDT1 Light-Duty Trucks (ETW £ 3,750 lb) < 6,000 LDV 

LDT2 Light-Duty Trucks (ETW 3,751-5,750 
lb) < 6,000 LDV 

LHD1 Light-Heavy-Duty Trucks 8,501-10,000 MDV 
LHD2 Light-Heavy-Duty Trucks 10,001-14,000 MDV 
MCY Motorcycles -- Other 
MDV Medium-Duty Trucks 5,751-8,500 LDV 
MH Motor Homes -- Other 
Motor Coach Motor Coach -- Other 
OBUS Other Buses -- Other 
PTO Power Take Off -- HDV 
SBUS School Buses -- Other 
T6 CAIRP Class 4 

Medium-Heavy Duty CA 
International Registration Plan Truck 

14,001-16,000 MDV 
T6 CAIRP Class 5 16,001-19,500 MDV 
T6 CAIRP Class 6 19,501-26,000 MDV 
T6 CAIRP Class 7 26,001-33,000 MDV 
T6 Instate Delivery Class 4 

Medium-Heavy Duty Delivery Truck 

14,001-16,000 MDV 
T6 Instate Delivery Class 5 16,001-19,500 MDV 
T6 Instate Delivery Class 6 19,501-26,000 MDV 
T6 Instate Delivery Class 7 26,001-33,000 MDV 
T6 Instate Other Class 4 

Medium-Heavy Duty Other Truck 

14,001-16,000 MDV 
T6 Instate Other Class 5 16,001-19,500 MDV 
T6 Instate Other Class 6 19,501-26,000 MDV 
T6 Instate Other Class 7 26,001-33,000 MDV 
T6 Instate Tractor Class 6 Medium-Heavy Duty Tractor Truck 19,501-26,000 MDV 
T6 Instate Tractor Class 7 26,001-33,000 MDV 
T6 OOS Class 4 

Medium-Heavy Duty Out-Of-State 
Truck 

14,001-16,000 MDV 
T6 OOS Class 5 16,001-19,500 MDV 
T6 OOS Class 6 19,501-26,000 MDV 
T6 OOS Class 7 26,001-33,000 MDV 
T6 Public Class 4 

Medium-Heavy Duty Public Fleet 
Truck 

14,001-16,000 MDV 
T6 Public Class 5 16,001-19,500 MDV 
T6 Public Class 6 19,501-26,000 MDV 
T6 Public Class 7 26,001-33,000 MDV 
T6 Utility Class 5 Medium-Heavy Duty Utility Fleet 

Truck 

16,001-19,500 MDV 
T6 Utility Class 6 19,501-26,000 MDV 
T6 Utility Class 7 26,001-33,000 MDV 
T6TS Medium-Heavy Duty Truck -- MDV 

T7 CAIRP Class 8 Heavy-Heavy Duty CA International 
Registration Plan Truck ³ 33,001 HDV 

T7 NNOOS Class 8 Heavy-Heavy Duty Non-Neighboring 
Out-Of-State Truck ³ 33,001 HDV 



EMFAC2021 Vehicle Type Description from EMFAC2021a GVWR (lb)b Fleet 

T7 NOOS Class 8 Heavy-Heavy Duty Neighboring Out-
Of-State Truck ³ 33,001 HDV 

T7 Other Port Class 8 Heavy-Heavy Duty Drayage Truck at 
Other Facilities ³ 33,001 HDV 

T7 POAK Class 8 Heavy-Heavy Duty Drayage Truck in 
Bay Area ³ 33,001 HDV 

T7 POLA Class 8 Heavy-Heavy Duty Drayage Truck 
near South Coast ³ 33,001 HDV 

T7 Public Class 8 Heavy-Heavy Duty Public Fleet Truck ³ 33,001 HDV 
T7 Single Concrete/Transit Mix 
Class 8 

Heavy-Heavy Duty Single Unit 
Concrete/Transit Mix Truck ³ 33,001 HDV 

T7 Single Dump Class 8 Heavy-Heavy Duty Single Unit Dump 
Truck ³ 33,001 HDV 

T7 Single Other Class 8 Heavy-Heavy Duty Single Unit Other 
Truck ³ 33,001 HDV 

T7 SWCV Class 8 Heavy-Heavy Duty Solid Waste 
Collection Truck ³ 33,001 HDV 

T7 Tractor Class 8 Heavy-Heavy Duty Tractor Truck ³ 33,001 HDV 
T7 Utility Class 8 Heavy-Heavy Duty Utility Fleet Truck ³ 33,001 HDV 
T7IS Heavy-Heavy Duty Truck -- HDV 
UBUS Urban Buses -- BUS 
Notes: 
a. Descriptions and GVWR are from Table 6.1 in the EMFAC2021 Volume III Technical Document,

Version 1.0.0.
b. GVWR is not provided for all vehicle types.

Abbreviations: 
GVWR = gross vehicle weight rating 
ETW = emission test weight 



Table S2. 
California’s population breakdown by race and ethnicity. 

Racial/Ethnic 
Group b 

Population Breakdown (%) 

Statewide 
AB617 

Community 
c

Non-AB617 
Community 

c

SB535 
Community 

d

Non-SB535 
Community 

d

Asian 12.8 7.5 13.3 8.8 14.5 
Black 5.8 17.5 4.8 8.9 4.6 
Hispanic 37.6 65.5 35.3 62.7 27.4 
white 40.1 7.2 42.9 17.1 49.6 
other 3.6 2.4 3.7 2.5 4.1 
Notes: 
a. Population data is queried from the 2010 Census at the Census tract level.
b. The Asian, Black, white, and other groups include only people who do not identify as Hispanic. The

Hispanic group includes members of all races who identify as Hispanic.
c. Population by race and ethnicity at the tract level was apportioned to community boundaries defined

by the California Air Resource Board using area allocation.
d. Population by race and ethnicity at the tract level was filtered to those tracts included in SB535.



Table S3. 
Exposure and disparity to on-road vehicles by race-ethnicity. 

Year 
Racial-Ethnic Group 

Total Asian Black Hispanic white other 

Population-Weighted Mean Exposure a (μg/m3) 

2000 3.2 3.3 3.5 3.5 2.7 2.8 
2001 3.0 3.2 3.3 3.4 2.6 2.7 
2002 2.9 3.1 3.2 3.3 2.5 2.6 
2003 2.8 2.9 3.1 3.2 2.4 2.5 
2004 2.7 2.8 3.0 3.0 2.3 2.4 
2005 2.5 2.6 2.8 2.8 2.2 2.2 
2006 2.4 2.5 2.6 2.7 2.1 2.1 
2007 2.2 2.3 2.5 2.5 1.9 2.0 
2008 2.0 2.1 2.2 2.3 1.7 1.8 
2009 1.9 1.9 2.0 2.1 1.6 1.7 
2010 1.8 1.9 2.0 2.0 1.6 1.6 
2011 1.7 1.8 1.9 1.9 1.5 1.5 
2012 1.6 1.7 1.8 1.8 1.4 1.4 
2013 1.5 1.6 1.7 1.7 1.3 1.3 
2014 1.4 1.4 1.5 1.5 1.2 1.2 
2015 1.3 1.4 1.4 1.5 1.1 1.2 
2016 1.3 1.3 1.4 1.4 1.1 1.1 
2017 1.2 1.3 1.4 1.4 1.0 1.1 
2018 1.2 1.2 1.3 1.3 1.0 1.0 
2019 1.1 1.2 1.2 1.3 0.9 1.0 

Absolute Disparity b, c (μg/m3) 

2000 -- 0.2 0.3 0.4 -0.4 -0.3
2001 -- 0.2 0.3 0.4 -0.4 -0.3
2002 -- 0.1 0.3 0.4 -0.4 -0.3
2003 -- 0.1 0.3 0.3 -0.4 -0.3
2004 -- 0.1 0.3 0.3 -0.4 -0.3
2005 -- 0.1 0.3 0.3 -0.3 -0.3
2006 -- 0.1 0.3 0.3 -0.3 -0.3
2007 -- 0.1 0.2 0.3 -0.3 -0.2



Year 
Racial-Ethnic Group 

Total Asian Black Hispanic white other 

Absolute Disparity b, c (μg/m3) 

2008 -- 0.1 0.2 0.2 -0.3 -0.2
2009 -- 0.1 0.2 0.2 -0.2 -0.2
2010 -- 0.1 0.2 0.2 -0.2 -0.2
2011 -- 0.1 0.2 0.2 -0.2 -0.2
2012 -- 0.1 0.2 0.2 -0.2 -0.2
2013 -- 0.1 0.2 0.2 -0.2 -0.2
2014 -- 0.1 0.1 0.2 -0.2 -0.1
2015 -- 0.1 0.1 0.2 -0.2 -0.1
2016 -- 0.1 0.1 0.2 -0.2 -0.1
2017 -- 0.1 0.1 0.2 -0.2 -0.1
2018 -- 0.1 0.1 0.2 -0.2 -0.1
2019 -- 0.1 0.1 0.2 -0.2 -0.1

Relative Disparity b, d (%) 

2000 -- 5.4 10.4 11.8 -13.4 -10.5
2001 -- 5.2 10.5 12 -13.5 -10.6
2002 -- 5 10.6 12.3 -13.7 -10.8
2003 -- 4.7 10.6 12.3 -13.6 -10.8
2004 -- 4.5 10.5 12.3 -13.5 -10.7
2005 -- 4.3 10.8 12.6 -13.7 -10.8
2006 -- 4.1 10.6 12.3 -13.5 -10.5
2007 -- 4.2 10.8 12.6 -13.7 -10.7
2008 -- 4.3 10.7 12.4 -13.6 -10.5
2009 -- 4.3 10.3 11.9 -13.1 -10.2
2010 -- 4.2 10.6 12.4 -13.5 -10.6
2011 -- 4.3 10.8 12.6 -13.8 -10.7
2012 -- 4.4 10.8 12.6 -13.8 -10.8
2013 -- 4.5 10.4 12.4 -13.6 -10.6
2014 -- 4.7 10.2 12.2 -13.5 -10.7
2015 -- 5.0 10.7 12.8 -14.1 -11.2
2016 -- 5.0 10.7 12.9 -14.2 -11.3
2017 -- 5.6 11.5 13.8 -15.3 -12.2



Year 
Racial-Ethnic Group 

Total Asian Black Hispanic white other 

Relative Disparity b, d (%) 

2018 -- 5.7 11.1 13.3 -14.9 -11.8
2019 -- 6.3 11.6 14.0 -15.6 -12.4

Notes: 

a. The population-weighted mean exposure is estimated by multiplying the annual average PM2.5

concentration by the population of the demographic group of interest within that grid cell,
summing across all grid cells, and dividing by the total population:

𝑃𝑊𝑀! =
∑ #!,#×%!$
!%&
∑ #!,#$
!%&

b. A positive number indicates a higher than statewide average exposure disparity. Numbers shown
here may not subtract correctly due to rounding.

c. The absolute disparity for a racial/ethnic group is estimated as the statewide average exposure
(“Total”) subtracted from the group’s exposure:  DA,k = PWMk - PWMT

d. The relative disparity for a racial/ethnic group is the absolute disparity divided by the statewide
average exposure concentration:   DR,k = DA,k / PWMT



Table S4. 
Exposure to PM2.5 from on-road vehicles by AB617 community. 

Year Population-Weighted Mean Exposure a (μg/m3) by Community b 

All c AL BVHP CECH ECV ELABHC EOAK IBC IP1 RCHM 

2000 4.4 1.1 2.3 1.0 1.3 8.4 2.7 1.4 1.1 1.5 

2001 4.2 1.1 2.2 0.9 1.3 7.9 2.5 1.4 1.0 1.4 
2002 4.1 1.1 2.1 0.9 1.2 7.8 2.4 1.3 1.0 1.4 
2003 3.9 1.0 2.0 0.9 1.2 7.5 2.3 1.3 1.0 1.3 
2004 3.8 1.0 1.8 0.8 1.2 7.2 2.2 1.2 0.9 1.2 
2005 3.5 1.0 1.7 0.8 1.1 6.7 2.1 1.1 0.9 1.1 
2006 3.3 1.0 1.6 0.7 1.1 6.3 2.0 1.1 0.8 1.1 
2007 3.1 0.9 1.5 0.7 1.0 5.9 1.9 1.0 0.8 1.0 
2008 2.8 0.8 1.4 0.6 0.9 5.3 1.7 0.9 0.7 0.9 
2009 2.6 0.8 1.3 0.6 0.8 4.9 1.5 0.8 0.6 0.9 
2010 2.5 0.7 1.2 0.6 0.8 4.8 1.5 0.8 0.6 0.8 
2011 2.4 0.7 1.1 0.5 0.8 4.5 1.4 0.8 0.6 0.8 
2012 2.2 0.6 1.1 0.5 0.7 4.3 1.3 0.7 0.5 0.7 
2013 2.1 0.6 1.0 0.4 0.7 4.0 1.2 0.7 0.5 0.7 
2014 1.9 0.5 1.0 0.4 0.6 3.7 1.1 0.6 0.4 0.6 
2015 1.8 0.5 0.9 0.4 0.6 3.5 1.1 0.6 0.4 0.6 
2016 1.8 0.4 0.9 0.4 0.5 3.5 1.0 0.6 0.4 0.6 
2017 1.8 0.4 0.9 0.3 0.5 3.5 1.0 0.5 0.4 0.5 
2018 1.7 0.4 0.9 0.3 0.5 3.3 0.9 0.5 0.3 0.5 
2019 1.6 0.3 0.9 0.3 0.5 3.2 0.9 0.5 0.3 0.5 

SBM SCFR SDPC SELA SHFT SLA SSACF STCK WOAK WWLBC 

2000 4.1 2.7 3.5 6.1 1.3 6.1 2.2 2.2 2.7 3.8 

2001 3.9 2.5 3.3 5.8 1.2 5.8 2.1 2.1 2.5 3.6 
2002 3.8 2.5 3.3 5.6 1.2 5.7 2.1 2.0 2.4 3.5 
2003 3.7 2.4 3.1 5.4 1.2 5.4 2.0 1.9 2.3 3.4 
2004 3.6 2.4 3.0 5.2 1.2 5.2 1.9 1.9 2.2 3.2 
2005 3.4 2.3 2.8 4.8 1.1 4.8 1.8 1.8 2.1 3.0 
2006 3.2 2.2 2.6 4.5 1.1 4.5 1.8 1.7 2.0 2.8 
2007 3.0 2.1 2.5 4.2 1.0 4.2 1.7 1.6 1.9 2.6 
2008 2.7 1.9 2.3 3.8 0.9 3.8 1.5 1.5 1.7 2.4 
2009 2.5 1.7 2.1 3.5 0.8 3.5 1.4 1.3 1.6 2.2 



Year Population-Weighted Mean Exposure a (μg/m3) by Community b 
SBM SCFR SDPC SELA SHFT SLA SSACF STCK WOAK WWLBC 

2010 2.4 1.7 2.0 3.4 0.8 3.4 1.3 1.3 1.5 2.1 
2011 2.3 1.6 1.9 3.2 0.8 3.3 1.3 1.2 1.5 2.0 
2012 2.2 1.5 1.8 3.1 0.7 3.1 1.2 1.2 1.4 1.9 
2013 2.0 1.4 1.7 2.8 0.6 2.8 1.1 1.1 1.3 1.8 
2014 1.9 1.2 1.5 2.6 0.6 2.6 1.0 1.0 1.1 1.6 
2015 1.8 1.1 1.4 2.5 0.5 2.5 0.9 0.9 1.1 1.6 
2016 1.7 1.0 1.4 2.5 0.5 2.5 0.9 0.8 1.0 1.5 
2017 1.7 0.9 1.3 2.4 0.4 2.5 0.8 0.8 1.0 1.5 
2018 1.6 0.9 1.3 2.3 0.4 2.4 0.8 0.7 1.0 1.4 
2019 1.5 0.8 1.3 2.2 0.4 2.3 0.7 0.7 0.9 1.4 

Notes: 
a. The population-weighted mean exposure is estimated by multiplying the annual average PM2.5 concentration

by the population of the demographic group of interest within that grid cell, summing across all grid cells, and
dividing by the total population:

𝑃𝑊𝑀! =
∑ &!,#×%!$
!%&
∑ &!,#$
!%&

 
b. The communities are identified using abbreviated codes. These codes are as follows:

- AL = Arvin, Lamont
- BVHP = Bayview Hunters Point/Southeast San

Francisco
- CECH = El Centro, Heber, Calexico
- ECV = Eastern Coachella Valley
- ELABHC = East Los Angeles, Boyle Heights, West

Commerce
- EOAK = East Oakland
- IBC = International Border Community
- IP1 = Northern Imperial Phase 1
- RCHM = Richmond – San Pablo

- SBM = San Bernardino, Muscoy
- SCFR = South Central Fresno
- SDPC = Portside Environmental Justice Neighborhoods
- SELA = South East Los Angeles
- SHFT = Shafter
- SLA = South Los Angeles
- SSACF = South Sacramento - Florin
- STCK = Stockton
- WOAK = West Oakland
- WWLBC = Wilmington, Carson, West Long Beach

c. The “All” column refers to the combined population-weighted mean exposure across all communities.



Table S5. 
Exposure and disparity to on-road vehicles by income quartile. 

Year 
Income Quartile a 

Total Q1 Q2 Q3 Q4 

Population-Weighted Mean Exposure b (μg/m3) 

2000 3.2 3.5 3.2 3.0 2.9 
2001 3.0 3.3 3.1 2.9 2.8 
2002 2.9 3.2 3.0 2.8 2.7 
2003 2.8 3.1 2.9 2.7 2.6 
2004 2.7 3.0 2.7 2.6 2.4 
2005 2.5 2.8 2.6 2.4 2.3 
2006 2.4 2.7 2.4 2.3 2.1 
2007 2.2 2.5 2.3 2.1 2.0 
2008 2.0 2.2 2.1 1.9 1.8 
2009 1.9 2.1 1.9 1.8 1.7 
2010 1.8 2.0 1.8 1.7 1.6 
2011 1.7 1.9 1.8 1.6 1.5 
2012 1.6 1.8 1.6 1.5 1.5 
2013 1.5 1.7 1.5 1.4 1.4 
2014 1.4 1.5 1.4 1.3 1.2 
2015 1.3 1.5 1.3 1.3 1.2 
2016 1.3 1.4 1.3 1.2 1.1 
2017 1.2 1.4 1.3 1.2 1.1 
2018 1.2 1.3 1.2 1.1 1.0 
2019 1.1 1.2 1.1 1.1 1.0 

Absolute Disparity c, d (μg/m3) 

2000 -- 0.3 0.1 -0.1 -0.3
2001 -- 0.3 0.1 -0.1 -0.3
2002 -- 0.3 0.1 -0.1 -0.3
2003 -- 0.3 0.1 -0.1 -0.3
2004 -- 0.3 0.1 -0.1 -0.3
2005 -- 0.3 0.1 -0.1 -0.2
2006 -- 0.3 0.1 -0.1 -0.2
2007 -- 0.3 0.1 -0.1 -0.2



Year 
Income Quartile a 

Total Q1 Q2 Q3 Q4 

Absolute Disparity c, d (μg/m3) 

2008 -- 0.2 0.0 -0.1 -0.2
2009 -- 0.2 0.0 -0.1 -0.2
2010 -- 0.2 0.0 -0.1 -0.2
2011 -- 0.2 0.0 -0.1 -0.2
2012 -- 0.2 0.0 -0.1 -0.2
2013 -- 0.2 0.0 -0.1 -0.1
2014 -- 0.2 0.0 -0.1 -0.1
2015 -- 0.1 0.0 -0.1 -0.1
2016 -- 0.1 0.0 -0.1 -0.1
2017 -- 0.1 0.0 -0.1 -0.1
2018 -- 0.1 0.0 0.0 -0.1
2019 -- 0.1 0.0 0.0 -0.1

Relative Disparity c, e (%) 

2000 -- 10.3 1.9 -3.7 -8.4
2001 -- 10.4 1.9 -3.7 -8.5
2002 -- 10.7 2.0 -3.8 -8.8
2003 -- 10.8 2.1 -3.8 -9.0
2004 -- 11.2 2.2 -3.9 -9.3
2005 -- 11.6 2.3 -4.0 -9.7
2006 -- 11.6 2.3 -4.1 -9.7
2007 -- 11.6 2.3 -4.1 -9.7
2008 -- 11.5 2.2 -4.0 -9.6
2009 -- 11.3 2.2 -4.0 -9.5
2010 -- 11.5 2.3 -4.0 -9.7
2011 -- 11.6 2.3 -4.0 -9.8
2012 -- 11.5 2.3 -4.0 -9.8
2013 -- 11.2 2.3 -3.9 -9.5
2014 -- 10.9 2.3 -3.8 -9.4
2015 -- 11.1 2.4 -3.9 -9.6
2016 -- 11.8 2.7 -4.0 -10.3
2017 -- 12.1 2.7 -4.1 -10.6



Year 
Income Quartile a 

Total Q1 Q2 Q3 Q4 

Relative Disparity c, e (%) 

2018 -- 12.2 2.8 -4.1 -10.8
2019 -- 12.1 2.9 -4.1 -10.8

Notes: 

a. Income quartiles are defined as follows. Total population and median household
income (adjusted to 2012 inflation) were queried at the block group level from the
2008-2012 American Community Survey. Income data were adjusted to 2010
using the Consumer Price Index. Block groups were then sorted by median income
level and the percentile of the overall population was estimated as the cumulative
number of people at that income level divided by the total population: < $40,892
Q1, $40,893-$58,452 Q2, $58,453-$82,842 Q3, and >$82,843 Q4. Each quartile
represents approximately 9.3 million Californians.

b. The population-weighted mean exposure is estimated by multiplying the annual
average PM2.5 concentration by the population of the demographic group of
interest within that grid cell, summing across all grid cells, and dividing by the
total population: 𝑃𝑊𝑀! =

∑ (!,#×*!
$
!%&
∑ (!,#
$
!%&

c. A positive number indicates a higher than statewide average exposure disparity.
Numbers shown here may not subtract correctly due to rounding.

d. The absolute disparity for an income group is estimated as the statewide average
exposure (“Total”) subtracted from the group’s exposure:
DA,k = PWMk - PWMT

e. The relative disparity for an income group is the absolute disparity divided by the
statewide average exposure concentration.

          DR,k = DA,k / PWMT



Table S6. 
Population-weighted mean exposure by demographic group and vehicle fleet. 

Year 
Population-Weighted Mean Exposure a by Demographic Group 

Total Asian Black Hispanic white other AB617 b SB535 b

Full Fleet 

2000 3.2 3.3 3.5 3.5 2.7 2.8 4.4 4.1 
2001 3.0 3.2 3.3 3.4 2.6 2.7 4.2 3.9 
2002 2.9 3.1 3.2 3.3 2.5 2.6 4.1 3.8 
2003 2.8 2.9 3.1 3.2 2.4 2.5 3.9 3.6 
2004 2.7 2.8 3.0 3.0 2.3 2.4 3.8 3.5 
2005 2.5 2.6 2.8 2.8 2.2 2.2 3.5 3.3 
2006 2.4 2.5 2.6 2.7 2.1 2.1 3.3 3.1 
2007 2.2 2.3 2.5 2.5 1.9 2.0 3.1 2.9 
2008 2.0 2.1 2.2 2.3 1.7 1.8 2.8 2.6 
2009 1.9 1.9 2.0 2.1 1.6 1.7 2.6 2.4 
2010 1.8 1.9 2.0 2.0 1.6 1.6 2.5 2.3 
2011 1.7 1.8 1.9 1.9 1.5 1.5 2.4 2.2 
2012 1.6 1.7 1.8 1.8 1.4 1.4 2.2 2.1 
2013 1.5 1.6 1.7 1.7 1.3 1.3 2.1 1.9 
2014 1.4 1.4 1.5 1.5 1.2 1.2 1.9 1.8 
2015 1.3 1.4 1.4 1.5 1.1 1.2 1.8 1.7 
2016 1.3 1.3 1.4 1.4 1.1 1.1 1.8 1.7 
2017 1.2 1.3 1.4 1.4 1.0 1.1 1.8 1.6 
2018 1.2 1.2 1.3 1.3 1.0 1.0 1.7 1.5 
2019 1.1 1.2 1.2 1.3 0.9 1.0 1.6 1.5 

LDV Fleet 

2000 2.2 2.4 2.4 2.4 1.9 1.9 3.1 2.8 
2001 2.1 2.2 2.3 2.3 1.8 1.8 2.9 2.6 
2002 2.0 2.1 2.2 2.2 1.7 1.8 2.8 2.5 
2003 1.9 2.0 2.1 2.1 1.6 1.7 2.7 2.4 
2004 1.7 1.9 1.9 2.0 1.5 1.5 2.5 2.2 
2005 1.6 1.7 1.7 1.8 1.4 1.4 2.3 2.0 
2006 1.5 1.5 1.6 1.6 1.3 1.3 2.1 1.9 
2007 1.3 1.4 1.5 1.5 1.2 1.2 1.9 1.7 
2008 1.2 1.3 1.3 1.4 1.0 1.1 1.7 1.5 



Year 
Population-Weighted Mean Exposure a by Demographic Group 

Total Asian Black Hispanic white other AB617 b SB535 b

LDV Fleet 

2009 1.1 1.2 1.3 1.3 1.0 1.0 1.6 1.4 
2010 1.1 1.2 1.2 1.2 0.9 1.0 1.6 1.4 
2011 1.0 1.1 1.1 1.1 0.9 0.9 1.5 1.3 
2012 1.0 1.0 1.1 1.1 0.8 0.9 1.4 1.2 
2013 0.9 1.0 1.0 1.0 0.8 0.8 1.3 1.2 
2014 0.9 0.9 1.0 1.0 0.7 0.8 1.2 1.1 
2015 0.8 0.9 0.9 0.9 0.7 0.7 1.2 1.1 
2016 0.8 0.9 0.9 0.9 0.7 0.7 1.2 1.1 
2017 0.8 0.8 0.9 0.9 0.7 0.7 1.2 1.0 
2018 0.8 0.8 0.8 0.9 0.6 0.6 1.1 1.0 
2019 0.7 0.8 0.8 0.8 0.6 0.6 1.1 1.0 

MDV Fleet 

2000 0.3 0.3 0.3 0.3 0.2 0.3 0.4 0.4 
2001 0.3 0.3 0.3 0.3 0.2 0.3 0.4 0.4 
2002 0.3 0.3 0.3 0.3 0.2 0.3 0.4 0.4 
2003 0.3 0.3 0.3 0.3 0.2 0.3 0.4 0.3 
2004 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 
2005 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 
2006 0.3 0.3 0.3 0.3 0.2 0.3 0.4 0.3 
2007 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 
2008 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3 
2009 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 
2010 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 
2011 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 
2012 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 
2013 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
2014 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
2015 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
2016 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
2017 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
2018 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 
2019 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 



Year 
Population-Weighted Mean Exposure a by Demographic Group 

Total Asian Black Hispanic white other AB617 b SB535 b

HDV Fleet 

2000 0.6 0.6 0.7 0.7 0.5 0.5 0.8 0.8 
2001 0.6 0.6 0.6 0.7 0.5 0.5 0.8 0.8 
2002 0.6 0.6 0.6 0.7 0.5 0.5 0.8 0.8 
2003 0.5 0.5 0.6 0.6 0.5 0.5 0.7 0.8 
2004 0.6 0.5 0.6 0.6 0.5 0.5 0.8 0.8 
2005 0.5 0.5 0.6 0.6 0.5 0.5 0.7 0.8 
2006 0.5 0.5 0.6 0.6 0.5 0.5 0.7 0.8 
2007 0.5 0.5 0.6 0.6 0.4 0.5 0.7 0.7 
2008 0.5 0.5 0.5 0.5 0.4 0.4 0.6 0.6 
2009 0.4 0.4 0.5 0.5 0.3 0.4 0.5 0.6 
2010 0.4 0.4 0.5 0.5 0.3 0.4 0.5 0.6 
2011 0.4 0.4 0.4 0.5 0.3 0.4 0.5 0.6 
2012 0.4 0.4 0.4 0.4 0.3 0.3 0.5 0.5 
2013 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.4 
2014 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3 
2015 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3 
2016 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 
2017 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 
2018 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 
2019 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 

Notes: 
a. The population-weighted mean exposure is estimated by multiplying the annual average PM2.5 concentration

by the population of the demographic group of interest within that grid cell, summing across all grid cells, and
dividing by the total population:

𝑃𝑊𝑀! =
∑ &!,#×%!$
!%&
∑ &!,#$
!%&

 
b. Members of overburdened communities as designated by California’s AB617 and SB535 are included under

their respective policy names.
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