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Fig. S1.

Experimental oyster pairing design used to determine the impacts of reproductive aging and quantify narrow-sense

heritability in offspring traits. We crossbred young, middle age and old oysters (12 females and 12 males) to create 36 full-sibling
families (F1 to F36). Each mother was mate with three fathers and vice versa to obtain 72 half-sibling combinations.
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Fig. S2.

Timeline of the sampling strategy based on natural life cycle of the Pacific oyster (Crassostrea gigas). We monitored larval
development (survival and growth between 2 and 40 days old) in laboratory followed by wintering in field conditions, with relatively
few selective pressures (no mortality observed). At the end of spring, we exposed spat oysters (40 to 365 days old) to two natural
environments to avoid pseudo-replication related to contrasted selective pressure between habitats. Extrinsic selection by pathogens
began with a peak of OsHV1 pVar in early June and followed by bacterial infection, especially Vibrio aestuarianus in Early fall of the
next year when oysters were adults (> 1 year old). We sampled offspring at different time to examine intrinsic and extrinsic pressures
on telomere dynamics and telomerase activity.
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Fig. S3.

Correlation matrix between parent proteomes and their sexes, age classes, and their averaged offspring traits. The heatmap
shows the Pearson r coefficient together with p-value, between protein expression modules (modules of colors obtained in WGCNA)
and individual traits averaged at individual scale (parent traits) or among their offspring (offspring traits). Colors stand for positive
(red nuance) or negative correlations (blue nuance) and color intensity for significance level. See methods for details.
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GO terms

Fig. S4.

Focus on gene ontologies (GOs) related to biological processes of telomere biology. A) Telomere maintenance GOs and B)
Oxidative stress and DNA damages GOs were identified within the same protein networks and increase both in females and in young

oysters.
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B-Oxidative stress and DNA damage
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Fig. Sb.
Distribution of TL by age classes in the Pacific oyster. We report the density of TL data among adults (> 2 yo, n = 24, blue ribbon)
and spat oysters before exposure to pathogenic pressure (< 1 yo, n = 443, red ribbon).
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Fig. S6.

Growth and survival rates in spat oysters without selective pressure. A) Growth rates remain negatively impacted by paternal age

after larval life, up to adult stage, and B) spat survival rates remain above 95% without pathogenic pressure.

40

w
o
|

Shell Length (mm)
N
o
|

-
o
|

I
150

200 250 300 350
Offspring age (days)

|
400

1.0

0.9

0.8

0.7

Intrinsic survival (%)

0.6

0.5+

T
50

100 150
Age (Days)

]
200

Parental age classes:

== Mother Young x Father Young

== Mother Young x Father Middle
Mother Young x Father Old

=== |\lother Middle x Father Young
Mother Middle x Father Middle
Mother Middle x Father Old
Mother Old x Father Young
Mother Old x Father Middle
Mother Old x Father Old



Fig. S7.

Multivariate telomerase gene expression in response to OsHV-1 challenge. RNAseq data were obtained from publicly available
projects (referred in Table S1, below). Each point is a replicate (a pool of 10 oysters) at a given time post-infection. We used the
difference in Log2 gene level at different time post-infection minus their basal expression at t0, before viral challenge. For statistics,
we considered the integrative score along the main axis (PC1), resulting from stimulation of TRIC, HSP90, GAR1, NHP2, NOP10,
and TCAB and inhibition of TERT and TIAR. TEP1 gene was uncorrelated to other telomerase genes in this analyze.
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Fig. S8.

Virus replication quantified in seawater. OsHV-1 DNA copies was quantified with gPCR from 500 pL of infected seawater during

the OsHV-1 pVar challenge in controlled conditions (21°C and food ad libitum). From 16th to 30th June, we exposed n = 4,325 spats

from 36 families distributed in 3 tanks (i.e., 40 receiving oysters par family and per tanks) to donor oysters previously impregnated for
48h to field viral load. After contact (grey arrow) between donors and receivers, viral replication was perceptible in seawater. See text
for details.
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Table S1.

Description of the three datasets retained to explore the conserved telomerase genes in response to OsHV-1 yVar. Table reports

the study identification and the method used for transcriptomic analyses. It also mentions the information onto sample strategy and
data processing.

Refere_nce in DOI I_\ICBI_’s Data Sample size (n pools of 10 Trimming opts.
the main text Bioproject oysters)
i Leading:20
llumina n = 36 pools of 10 oysters (3 A
10.1038/s41467- . ) . Trailing :20
(30) 018-06659-3 PRINA423079 | HiSeq 2500 repllc_ates per f_amlly_ and per Slidingwindow :30:30
2X75bp time post infection) L
Minlen:50
llumina Leading:20
10.1186/s12864- NextSeq 550 | n = 36 pools of 10 oysters (6 Trailing :20
(43) 020-6471-x PRINA423079 single-end replicates per family) Slidingwindow :30:30
76bp Minlen:40
[lumina n = 30 pools of 9 oysters (3 'II:re;Ii(ljiIrr\]g:'zz(())
(33) 10.1242/jebh.226233 | PRINA593309 | HiSeq 4000 replicates per temperature _ranfing - .
i . . Slidingwindow :30:30
2x126bp and per time post infection) Minlen: 100



https://www.ncbi.nlm.nih.gov/bioproject/PRJNA423079
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA423079
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA593309



