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Supplementary figures 1-6
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Supplementary Fig. 1 | RFA terms can be accurately inferred from noisy and partial data by
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regression, but RBA terms cannot be. From the simulated measurements in Fig. 1c, truncated RFA and
RBA models of every order and the full model (fifth order) were inferred by regression, either using all
genotypes or a random 50%. The inferred terms are plotted against the true values.
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Supplementary Fig. 2 | The sigmoid link function does not oversimplify the genetic architecture by
absorbing specific epistatic interactions. a, A 10-site, 2-state genetic architecture was simulated under
realistic conditions; the distribution of RFA terms at each order was estimated from the CH65-MA90
dataset, in which virtually all genotypes are within the dynamic range of measurement. The genetic
architecture for the simulation was then obtained by randomly sampling terms up to order three, scaling
each order of terms to adjust the complexity of the genetic architecture. Measurement noise was then
simulated to account for 5% of total phenotypic variance. Nonspecific epistasis was not simulated. b,
RFA inferences on the simulated data with or without the sigmoid link function. Each panel shows the
true phenotype for every genotype and the phenotype predicted by the fitted RFA model. The out-of-
sample R* determined by cross-validation is shown. ¢, Difference in the out-of-sample R* of RFA with or
without the sigmoid link function determined for 10 independent simulations. d, Distribution of inferred
genetic scores and the sigmoid link function when nonspecific epistasis is modeled. The sigmoid range is
inferred to be sufficiently wide that all genetic scores lie within the linear regime of the sigmoid.
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Supplementary Fig. 3 | RFA of the 20 combinatorial mutagenesis datasets. Out-of-sample R* was
computed as described in Fig. 4a with or without modeling nonspecific epistasis. Datasets are ordered by
the total number of genotypes indicated in parentheses.
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Supplementary Fig. 4 | Regularization has minimal impact on the fraction of variance attributed to
each model order. Each panel shows the out-of-sample R* computed under a range of L1 regularization
strengths (M) for the indicated dataset and model order. Within the panel, the dots and error bars show the
mean and standard error of out-of-sample R* across cross-validation replicates. The greatest A with an out-
of-sample R’ that does not differ significantly from the maximum out-of-sample R* was chosen. The
chosen A and its out-of-sample R* are shown.
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Supplementary Fig. 5 | Inferred RFA and RBA terms in four example datasets. RFA and RBA terms
were inferred by fitting a third-order model with the sigmoid link. RFA terms become smaller as the order
increases, whereas the opposite holds for RBA terms.
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Supplementary Fig. 6 | RBA of the 20 combinatorial mutagenesis datasets. Either the published

“wild-type” genotype (red circle) or 500 randomly sampled genotypes (boxplot) were used as reference
genotype. R* for higher-order mutants was computed as in Fig. 4c; negative R* values are shown as zero
Datasets are ordered by the total number of genotypes shown in parentheses.



1. Comparison with other formalisms

Here we provide more numerical examples to illustrate the contrast between reference-free analysis
(RFA) and reference-based, Fourier, and background-averaged analyses.

1.1. Reference-based analysis

The apparent complexity of the genetic architecture depends on the choice of reference genotype

Reference-based analysis designates a single genotype as wild-type and all others as mutants of increasing
order. The phenotype is decomposed into the effects and interactions of mutations: the phenotype of a
point mutant differs from the wild-type by the effect of the point mutation, that of a double mutant by the
effect of the two point mutations and their pairwise interaction, and so on. The apparent complexity of the
genetic architecture—the fraction of phenotypic variance attributable to each order of effects—varies
depending on the choice of wild-type genotype. By contrast, RFA offers a unique description that
minimizes the variance attributable to higher-order effects.

To illustrate this contrast, we simulated a genetic architecture consisting of 6 sites and 5 states (labeled 1
to 5) by taking the genotype (1, 1, 1, 1, 1, 1) as reference; 50, 25, and 12.5% of first-, second-, and third-
order effects were sampled from the standard normal distribution, and all other effects were set to zero.
We refer to the sampled genetic architecture as G1. When the phenotype is computed from the first-order
effects, the squared correlation with the true phenotype is 0.30. This is the fraction of phenotypic variance
explained by the first-order reference-based model defined with respect to the genotype (1, 1, 1, 1, 1, 1).
The second-order model explains 78% of variance, and the third-order model 100%.

How does the same genetic architecture appear from the point of view of another genotype? Table S1
summarizes the variance partition under five randomly chosen reference genotypes.

Table S1. Reference-based analysis of the simulated genetic architecture G1.

Reference R?, first-order model | R% second-order model | R?, third-order model
(1,1,1,1,1,1) 10.30 0.78 1.00
(2.1.3,3.4.2) | 0.23 0.54 1.00
(2,5,1,2,4,1) |0.18 0.65 1.00
(1,2,4,1,4,1) |0.04 0.69 1.00
(4,2,3,1,5,5) |0.06 0.62 1.00
(2,3,3,2,2,5) 10.24 0.34 1.00

All analyses agree that there are up to third-order effects, but they differ markedly on the complexity of
the genetic architecture. The reference genotype used for simulation offers the simplest description; this is
because epistatic interactions were simulated to be sparse with respect to that genotype but this sparsity is
not conserved when the reference is switched. For example, with respect to the genotype (2, 3, 3, 2, 2, 5),
90 and 45% of second- and third-order effects have a magnitude greater than 0.1. This dependence on the
choice of reference genotype appropriately reflects the purpose of reference-based analysis—to
understand the behavior of mutations as they accumulate on a particular genetic background.

RFA of the same genetic architecture reports R? 0f 0.53, 0.88 and 1.00 for the first-, second-, and third-
order models, which are greater than the R? of any reference-based model of the same order.

Sensitivity to measurement noise and missing genotypes



A reference-based effect of order k is the sum or subtraction of 2 phenotypes. When individual
phenotypes are measured with noise of variance o, the variance associated with the effect is 2w. This is
always greater than o and rises exponentially with order such that discerning effect from noise in practice
is possible only for the lowest few orders. By contrast, the variance associated with reference-free effects
is smaller than ® for any order (p. 19, section 2.8).

Reference-based analysis is also sensitive to missing genotypes. The reference-based effect of a mutation
is defined solely by the wild-type genotype and the one mutant that differs from the wild-type by that
mutation. If any of the two genotypes is missing from data, neither the mutation’s effect nor any of the
epistatic interactions involving that mutation can be computed. The exact computation of reference-free
effects is also only possible with complete data, but because they are averages of many phenotypic
measurements, they can be estimated from incomplete data by regression.

Reference-based effects cannot be reliably inferred by regression

Directly computing a mutation’s effect is impossible when the mutant is missing, but the mutation also
appears in other genotypes along with other mutations, so it may seem possible to disentangle its effect
from those of others using regression. However, reference-based effects cannot be reliably inferred by
regression. We illustrate this on the genetic architecture G1. We begin with an ideal case where every
phenotype is measured precisely and therefore any effect can be computed exactly. When the first-order
model defined with respect to the genotype (1, 1, 1, 1, 1, 1) is fit to this dataset, the regression estimates
are dramatically incorrect (Supplementary Fig. 7). Furthermore, while the true model explains 30% of
phenotypic variance, the inferred model explains 53%. When the second-order model is fit, the effects are
estimated more accurately but still not exactly; the fraction of variance explained is also overestimated as
88% instead of 78%. The estimates are exact only with the third-order model—when all the mutational
effects and interactions in the genetic architecture are represented in the regression model.
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Supplementary Fig. 7 | Reference-based effects cannot be reliably estimated by regression. Reference-
based models defined with respect to the genotype (1, 1, 1, 1, 1, 1) were fit to the genetic architecture G1 in
the absence of measurement noise and missing genotypes. Each panel compares the effects of a specified
order with their estimates obtained using the model of indicated order.

Why does regression yield incorrect estimates of reference-based effects and overestimate their variance
contribution even in the absence of measurement noise and missing genotypes? Regression finds the
parameter values that minimize the sum of squared errors (SSE) across all genotypes and therefore
maximize the variance explained; however, the true terms of truncated RBA models do not minimize the
SSE across all genotypes. Rather, the structure of the RBA formalism is that low-order terms exactly fit
low-order mutants and do not attempt to predict higher-order mutants. In finding the terms of truncated
RBA model that minimize the SSE across all genotypes, regression forces low-order terms to fit
phenotypic variation produced by higher-order effects that are absent in the model. This causes the low-
order model to explain more variance than it actually does under the true RBA architecture. This
continues with each truncated model, systematically overestimating the variance explained at every order
until the complete model is reached.

Regression does not cause this issue when coupled with RFA. In the absence of measurement noise and
missing genotypes, the inferred effects and variance contribution are exact (Supplementary Fig. 8). This
correspondence arises because the true reference-free effects minimize the SSE.
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Supplementary Fig. 8 | Regression reliably estimates reference-free effects. Reference-free models were
fit to the genetic architecture G1 in the absence of measurement noise and missing genotypes. Each panel
compares the effects of a specified order with their estimates obtained using the model of indicated order.

Note that reference-based models fit by regression explain the same fraction of phenotypic variance as
reference-free models (53, 88, and 100% at the first, second, and third order). The two models in fact
predict the same phenotype for any given genotype, because that is the prediction that minimizes the SSE.



This equivalence arises because the two regression models have the same degrees of freedom and
therefore fit the data with the same degree of accuracy. As shown above, however, the accuracy of the
inferred effects contrasts strikingly between the two models. While reference-based analysis may be
coupled with regression for the sole purpose of phenotypic prediction, interpreting the inferred effects as
reference-based effects would mischaracterize the genetic architecture.

In Supplementary Fig. 7, the regression estimates of reference-based effects are exact for the third-order
model, but this is only because measurement noise and missing genotypes were not simulated. The
estimates are highly inaccurate when both are present (Supplementary Fig. 9). Reference-free effects, by
contrast, are robust.
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Supplementary Fig. 9 | Regression estimates of reference-based effects are sensitive to measurement
noise and missing genotypes. Measurement noise was simulated on the genetic architecture G1 to account
for 5% of phenotypic variance, and the third-order reference-based or reference-free model was fit to 20% of
randomly sampled genotypes. Each panel compares the effects of a specified order with their estimates.

In summary, the goal of reference-based analysis is to characterize the effects and interactions of
mutations on a particular genetic background, whereas that of regression is to minimize the SSE. Because
of this misfit, regression estimates of reference-based effects can be strikingly wrong even when obtained
from precise and complete data. Avoiding this problem requires modeling all potential mutational effects
and interactions present in the genetic architecture. However, using a complete model for regression is
equivalent to no regression at all, so the “regression” estimates are as sensitive to measurement noise as
direct computation (Supplementary Fig. 9).

1.2. Fourier analysis

The model terms (Fourier coefficients) lack straightforward genetic or biochemical meaning

Whereas RFA decomposes the phenotype into the global effects and interactions of states, Fourier
analysis decomposes the phenotype into abstract quantities called Fourier coefficients. The definition of
Fourier coefficients, their relationship to phenotype, and their possible interpretation are best illustrated

by an example. Consider a two-site DNA sequence, which has 16 possible genotypes. There are 16
Fourier coefficients: one zero-order coefficient (fy), three first-order coefficients at each site (prefixed f;
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and £>), and nine second-order coefficients (prefixed fi2). The 16 coefficients map to the 16 phenotypes
as:

fo

Yaaq7 1 1 -1 -1 1 -1 -1 1 -1 -1 -1 1 1 -1 1 17| AW
Yac 11 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 £(2)
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Yeal |1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 1 1 -1 —1||fi(L2}
Yec 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1]]|f13)
Y6 1 -1 -1 1 -1 -1 1 1 1 -1 1 1 -1 -1 -1 1 [|fi,21
Yer 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1]|£,@22)
Vra 11 1 1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1

f12(2,3)
Yre 11 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 e
Yre 11 1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 1289
lyred L1101 0101 0101 101 101 11 1 1 1 1]A:62)

| f1,2(3,3) |

where yaa is the phenotype of the sequence AA, and so on. For any sequence, its phenotype is a signed
sum of all 16 Fourier coefficients, with different sets of signs distinguishing different genotypes. This
contrasts with the simplicity of RFA, where each phenotype is a simple sum of only four terms—the
intercept, two additive effects, and one pairwise interaction.

Interpreting Fourier coefficients based on this mapping is not straightforward. One way to understand
Fourier coefficients is to relate them to reference-free effects. With some algebra, the first-order Fourier
coefficients at site 1 can be written as,

)

_ ei()+ey (1)
(D) = oo
__ e (O)+e (T
fi(2) = 2&ta®

)

_ e1(G)+e,(T)
f,(3) = 2@%a®,

/f1(1) is the average reference-free effect of A and T, or of the composite base W. Similarly, £i(2) and fi(3)
are each the reference-free effect of the composite base Y and K. This relatively simple interpretation is
possible because DNA has just four states. For proteins, each of the 19 first-order Fourier coefficients is
the average reference-free effects of 10 amino acids, for which there would be no biochemically or
genetically meaning interpretation.

The relationship between Fourier coefficients and reference-free effects is much more complicated
beyond the first order, precluding any straightforward interpretation for higher-order Fourier coefficients.
For example,

1le, 4,4) - 31,2(14' o) - 91,2(14' G) + 91,2(14' T) e1,2(T'A) — €12 (T,0) - 31,2(T; G)+ 31,2(T; T)
f1,2(1; 1) = Z 4 + 4
i el,z(A:A) - 91,2(6'14) — €12 (G, A+ €1,2 (T, 4) n 31,2(14; T) - 91,2(Cx T) - 91,2(G: T) + 91,2(T, T)

4 4

Roughly, this is the average pairwise interaction between (A or T) at one site and (A or T) at the other
site, minus the average pairwise interaction between (A or T) at one site and (C or G) at the other. With
20 states, the interpretation of second-order Fourier coefficients become accordingly more elaborate.
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Fourier analysis is a compact encoding of RFA

Fourier analysis of the two-site DNA involves 16 coefficients, equal in number to the 16 possible
genotypes. RFA of the same genetic architecture requires 25 terms—the intercept, four first-order effects
for each site, and 16 pairwise interactions. In general, with # sites and ¢ states, there are ng first-order
reference-free effects, ¢ for each site. There are (7})q? second-order effects, ¢* for each pair of sites. With
(Z)qk effects of order £, the total number of reference-free effects is (¢ + 1)". By contrast, the number of
Fourier coefficients of order £ is (Z) (g — 1)¥. The total number of Fourier coefficients is therefore ¢,
which is minimally necessary to describe the ¢" possible genotypes.

Fourier analysis can be considered a compact encoding of RFA, where the g states are encoded in (g — 1)
Fourier bases. For DNA, the three Fourier bases correspond to the three familiar nucleotide groupings: w
(“weak” nucleotides A and T vs. “strong” nucleotides C and G), y (pyrimidines C and T vs. purines A and
G), and & (keto-containing nucleotides G and T vs. non-keto nucleotides A and C). A is encoded in the
wyk-space as (1, —1, —1). The phenotype of the sequence A is accordingly decomposed as fo + fi(W) —
f1(Y) — fi(K), and the reference-free effect e1(A) equals f/i(W) — fi(Y) — fi(K). Fourier coefficients and
reference-free effects can be interconverted through such mappings. Moreover, in the absence of missing
genotypes, RFA and Fourier analysis of the same order predict the same phenotype for any given
genotype.

The compact encoding of Fourier analysis has benefits and costs. The numerical economy compared with
RFA is substantial at high orders, especially when the number of states is small. With two states, there are
2'% = 1,024 tenth-order reference-free effects but just one Fourier coefficient for each set of ten sites. The
degree of compression is minor for proteins, however, where the number of Fourier coefficients is 19 for
a site as opposed to 20, and 361 for a site-pair as opposed to 400. Moreover, the numerical economy of
Fourier analysis comes at the cost of lack of straightforward interpretation, convoluted mapping from
coefficients to phenotype, and extra sensitivity to missing genotypes. In practice, Fourier analysis is
preferrable over RFA for binary state spaces where the numerical economy relative to RFA is maximal,
the coefficients have a simple relation to reference-free effects, and the extra sensitivity to missing
genotypes is small.

1.3. Background-averaged analysis
Complex mapping from model terms to phenotype, and sensitivity to noise and missing genotypes

Background-averaged analysis differs from RFA in that it decomposes the phenotype into the effects of
mutations, not states. It also differs from reference-based analysis because it examines the average effects
of mutations across all genetic backgrounds, rather than their effects on one particular background. We
illustrate background-averaged analysis and explain why it is more sensitive to measurement noise and
missing genotypes than is RFA.

We consider a genotype space of two sites and three states (0, 1, and 2). Background-averaged analysis

requires a choice of wild-type state for each site. We choose state 0 as wild-type and calculate the effects
of mutations to states 1 and 2. The intercept is defined as the mean phenotype of all genotypes:

b0=3_/.

The first-order effect of state 1 in site 1, denoted by b;., is the effect of mutating state 0 to 1 measured on
the background of each possible state in site 2:

12



bl — (¥10=Y00) +(¥11=Yo1)+(V12=Y02)
. 3 X

Likewise, the first-order effect of state 1 in site 2, denoted by b.q, is the effect of mutating state 0 to 1
measured on the background of each possible state in site 1:

b1 — (¥01=Y00)*+(V11=Y10)+(¥21=Y20)
. 3 .

Because there are only two sites in this example, there is no genetic background over which to average
pairwise interactions. Therefore, background-averaged interactions are identical to the corresponding
reference-based interactions. For example,

by1 = Y11 — Y10 — Yo1 t+ Yoo-

These definitions can be stated compactly as matrix multiplication:

- 1 1 1 1 1 1 1 1 1 5
[ Do T 5 5 3 5 3 35 3 35 3|Yoon
1 1 1 1 1 1
b,y 5 035 0 5 5 0 5 35 Oty
1 1 1 1 1 1
b., - 0 > = 0 2 = 0 < [[Yo2
by. 11 11119 g oY
b — 3 3 3 3 3 3 A
- 1 -1 0 =110 0 0 0 ;E
12 1 0 -1 -1 01 0 0 O
bz. 1 1 1 1 1 1 yZO
11 9 0o o0 L 1%
b21 3 3 3 3 3 3 V21
b 1 -1 0 0 00 -1 1 0][y,
227 11 0 -1 0 00 -1 0 1.

The structure of this matrix explains why background-averaged analysis is more sensitive to measurement
noise and missing genotypes than is RFA. To see this, we represent RFA as matrix multiplication,
showing only state 1 for simplicity:

-1 1 1 1 1 1 1 1 1 -
9 9 9 9 9 9 9 9 9
[ €o 1 2 2 2 1 1 1 1 1 1] -
= 2 2 2 2 2 = = =|rYoo
61(0) 9 9 9 9 9 9 9 9 9
11 12 2 21 1 1 Yo1
e, (1) 5 5 9 9 8 5 5 5 oy
e (0) 2 1 1 2 1 1 2 1 1 02
2 9 9 9 9 9 9 9 9 9 Y10
() =2 2 2 22z 1 1oz af]y
- 9 9 9 9 9 9 9 9 9 11 |}
€1,2 (0, 0) 4 2 2 2 1 1 2 1 1 Y12
9 9 9 9 o9 9 9 9 9
€12 (0' 1) 2 4 2 1 2 1 1 2 1 Y20
e 1.0 9 9 9 9 9 9 9 9 9 Vo1
1'2( ’ ) 2 1 1 4 2 2 2 1 1
[ e1,(1,1) | 5 5 5 5 5 5 T3 5 5|tV
1 2 1 2 4 2 1 2 1
L9 "9 9 9 9 "9 9 9 g

Many of the matrix elements for background-averaged analysis are 1 or —1, indicating that the noise in
phenotypic measurement is directly propagated to the effects. The many zeros also mean that the effects
are calculated by averaging over only subsets of genotypes. By contrast, all the matrix elements for RFA
are nonzero and less than 4/9 in magnitude.
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In background-averaged analysis, yoo contributes to all nine effects whereas 1 contributes to only four.
Genotypes containing the wild-type states contribute disproportionately to background-averaged effects,
causing extra sensitivity to noise and missing data for these effects. By contrast, all genotypes contribute
with equal weights to reference-free effects.

Although background-averaged effects are defined intuitively as the average effects of mutations, their
mapping back to phenotype is complicated:

r{ -t + 1t 1 1 17
3 3 3 9 9 3 9 9
- Vo0 1 2 t 1 2 1 1 2 1|rbg]
3 3 3 9 9 3 9 9 b
Yo1 1 1 2z 1 1 2 1 1 2 1
3 3 3 9 9 3 9 9 b
Yoz 1 11 2 22 1 1 1 2
Y10 3 3 3 3 9 3 35 3 b;.
2 1 2 4 2 1 2 1
yul|l=|1 5 = 5 5 <5 5 5 5||btu
AR
Y20 1 101 01 1 1 2 2 2 b,.
Y21 3 3 T3 9 3 3 T9 9 b
1 2 1 1 2 1 2 4 2 21
- Y22 3 3 3 9 95 3 5 To|lby,l
1 2 1 1 2 2 2 4
1 < 5 = 5 5 3 5 5/

The phenotype of any genotype is a weighted sum of all background-averaged effects, including those
that represent mutations not in the genotype of interest. This means that the error in the estimate of one
effect propagates to all genotypes. By contrast, the mapping from reference-free effects to phenotype is
sparse, so the impact of error in the estimate of an effect is limited to the small subset of genotypes
involving that effect.

Mapping between background-averaged effects and reference-free effects is complex
Converting background-averaged effects (defined relative to an arbitrary reference state at each site) into

reference-free effects (defined relative to the global mean) requires an elaborate linear mapping. The
conversion for the additive effect of state x at site i is given by

1
() = by () ~ g ) @),
a€eA

where A is the set of all mutant states at the site and |A4] its size. For the pairwise interaction of states x
and y at site 7 and j,

1 1 1
e j(x,y) =byj(x,y) —mz b j(a,y) —mz b ;(x,p) + GATT DAB + D Z b j(a, B),
a€A BEB

a€A,BEB
where 4 is the set of all mutant states at site i and B is the set of all mutant states at site j. Mappings for

higher-order effects can be constructed by extending this logic, and would involve an exponentially
increasing number of summations.
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2. Exposition of reference-free analysis

2.1. Introduction

Here we provide a formal exposition of reference-free analysis (RFA), including proofs for its key
properties. We begin by defining and interpreting reference-free effects. We develop the notion of
generalized linear decomposition, a unified formalism for representing any linear decomposition of
genetic architecture, which we use to show that RFA explains the maximum fraction of phenotypic
variance that can be explained by any linear decomposition of the same order. Next, we show that the
phenotypic variance can be decomposed into the contribution of each reference-free effect, which enables
the variance partition framework for quantifying and comparing the phenotypic contribution of any effect
or set of effects. We end by showing that reference-free effects can be robustly computed from noisy
phenotypic measurements and that they can be estimated from an incomplete sample of genotype space
by regression.

2.2. Notations

RFA can be applied to any discrete-state genetic architecture, but for simplicity we consider a genotype
space with the same number of states (g) across sites. The definitions and proofs provided here can be
easily extended to genotype spaces with different numbers of states among sites. The n-tuple g = (g1, ...,
g») denotes a genotype with state g; in site i = 1, ..., n. The phenotype of g is written as y(g). The set of all
genotypes is denoted by G, and the set of all genotypes sharing states si, ..., Sk in sites i, ..., i is denoted
by Glsllli" Angled brackets denote averaging over a set; for example, (y|G) is the average phenotype of
all genotypes. The set N= {1, ..., n} is used to denote iteration over sites and site-combinations; Z;ey
indicates summation over all sites and ¥; <; ey over all site-pairs. Likewise, O = {1, ..., g} is used to
denote iteration over states and state-combinations.

We do not consider nonspecific epistasis here. Nonspecific epistasis can be incorporated by modeling y(g)

as a nonlinear transformation of the genetic score s(g), which would be defined according to the
formalism below.

2.3. Definitions and interpretations

We first present RFA as a stepwise approximation of genetic architecture. Two alternative interpretations
are then presented.

The intercept or zero-order term ey is defined as the mean phenotype of all genotypes:
eo = (y1G).

This is the best single-parameter approximation of the genetic architecture in the sense that it minimizes
the mean squared error of phenotypic prediction across sequence space.

The first-order term representing state s in site i, denoted by e;(s), is defined as

ei(s) = (yIG7) — eo.
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It can be considered the error associated with approximating (y|G; )—the mean phenotype of the
subspace comprising all genotypes sharing state s in site i—by the lower-order term ey (the mean
phenotype across the entire genotype space).

The above expression extends naturally to higher-order terms. The second-order term for the state-pair
G S1,52 >

i1,i2

(51, 52) in site-pair (i1, i2), denoted by e;, ;, (51, S2), is the error associated with approximating <y

using the lower-order terms:

51,5
€1y (51,52 = (V]G] = [eo + €1, (50) + €4, ()]
In general, the k-th-order term for the state-combination (sy, ..., s¢) in site-combination (i1, ..., i), denoted

by e; i, (1, -, Sk), s defined as

Ctaies1 50 = (Y] G50 - (o) M

where the subscript (kK — 1) indicates approximation using terms of order up to (k— 1):

51,45k _ . . .
Gi1 ..... ix > 1 =€ + Z eia (Sa) + Z eial,iaz (Saltsaz) + + Z elal ..... lag_q (Sali ---'Sak_l)'

a€EK a <a,€K Q< <ap_1EK

where K denotes the set {1, ..., k}.

This stepwise process builds an increasingly refined approximation of genetic architecture. The zero-
order term is the crudest approximation, predicting every phenotype by the mean. The first-order terms
describe the mean phenotypes of ng subspaces, each consisting of all genotypes that share a particular
state in a particular site. The second-order terms describe the mean phenotypes of smaller subspaces, each
consisting of all genotypes sharing a pair of states in a pair of sites. Higher-order terms offer finer
descriptions, with the highest-order terms describing the phenotypes of the smallest subspaces—
individual genotypes.

We have so far presented reference-free terms as errors associated with lower-order approximations. They
can also be interpreted as phenotypic effects. For example, the first-order term e; (s) quantifies how the
mean phenotype of the genotypes sharing the state s in site i differs from that of all genotypes; it can
therefore be interpreted as the average phenotypic effect of that state. Similarly, the second-order term

ei, i, (51,52) quantifies how the mean phenotype of the genotypes sharing the state-pair (s, 52) in site-pair
(@1, i») differs from that of all genotypes when the first-order effects are accounted for; it is the average
epistatic effect of the state-pair.

A third perspective on RFA interprets the terms of order £ as measuring the context-dependence of terms
of order (k— 1). Let us re-think the definition of the first-order term

ei(s) = (yIG7) — eo.

(y|G{) can be considered the intercept of a genotype space consisting only of genotypes with state s in
site i. We denote this relationship by (y|G;’) = ey|;. Thus,

ei(s) = el — eo.
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In this expression, e;(s) quantifies how different the intercept is when calculated for the complete space
G versus the subspace G;. A parallel exists for second-order terms:

€1y (5152) = ([6557) = [eo + e (s0) + 1, (52)]

= <y ij;?) - <y fo) - <y ij) +(yIG)
= [(V Gisﬁ%ﬂ - <3’ fo)] - [(y Giszz> - 0/16)]
=€, (Sz)llsl1 — €, (s2),

where e;, (sz)lfl1 is the first-order term e;, (s, ) for the subspace Gisll. In general,

— S1
ei1 ..... ix (Sll RN Sk) - eiz,...,ik (SZI ey Sk)lil - eiz,...,ik(SZl ey Sk)-
Here site #; is chosen as the context but any other site could also be chosen.

Finally, the phenotype of a particular genotype is the sum of the reference-free effects of all constituent
states. Substituting # for £ in Eq. (1) and noting that <y| Gl:? ij:_';f“) is simply the phenotype of g = (g, ...,
gn), it follows that

2
y(g) =€+ Z ei(gy) + -+ Z eiy, i (Giy 0 Gi) + -+ €10 (g1, 0 ). 2)

iEN i1<<ig€EN
2.4. Zero-mean property

Reference-free terms satisfy an equality that we call the zero-mean property. This property forms the
basis of all desirable properties of RFA, and can be said to define RFA in the sense described below. We
simply state the property here and prove it in Appendix 1.

For first-order terms, the zero-mean property states that the mean of all ¢ terms at a site is zero:

1
(@l@) =) els) =0,

s€Q

where Q denotes the set of all g states. This holds for any genetic architecture by virtue of the definition
of reference-free terms. For conciseness, let * denote averaging across states. For example, e;(+) is the
average of the ¢ first-order effects in site 7, and e; ;. (-, s;) is the average of the g second-order effects in
site-pair (71, i2) that share state s, in site i>. The zero-mean property for first-order terms can be restated as
e;(-) = 0. In general, for any site-combination (i1, ..., i), the mean of any ¢ terms that vary across a
single site is zero:

€iip (282, Sk) = €5, i, (1,583, 0, Sk) e = €1, iy (51, 0, Sk—1,7) = 0,

where (s1, ..., k) can be any state-combination. When the q2 second-order terms for a site-pair are
arranged in a ¢ X ¢ matrix, every row and column of the matrix sums to zero. Similarly, when the ¢° third-
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order terms for a site-triplet are arranged in a g X g X g array, every one-dimensional section (and thus
every two-dimensional section and the entire array) sums to zero.

2.5. Generalized linear decomposition

RFA linearly decomposes the phenotype into the effect of each state and state-combination. There are
alternative ways of linearly decomposing the phenotype, including reference-based, Fourier, and
background-averaged analyses. We now show that RFA explains the maximum fraction of phenotypic
variance that can be explained by any linear decomposition of the same order. Proving this requires a
common formalism to express any linear decomposition of a genetic architecture and showing that RFA
is the most powerful. We call this unified formalism the generalized linear decomposition.

Consider Eq. (2) without the reference-free definition of the terms. It states a general formula for linearly
decomposing the phenotype. Let us count the number of terms in this decomposition. There are ng first-
order terms, ¢ for each site. There are (7})q? second-order terms—g” pairs of states for every pair of sites.
With (Z)qk terms of order £, the total number of terms equals (¢ + 1)", which is greater than the total
number of genotypes—¢". This means that there are many ways of linearly decomposing the same genetic
architecture, distinguished by how the terms in Eq. (2) are defined. Constraining the terms to satisfy the
zero-mean property yields the reference-free decomposition: the g first-order terms for a site must sum to
zero, reducing their degrees of freedom to (g — 1); every row and column of the ¢ x ¢ matrix of ¢* second-
order terms for a site-pair must sum to zero, reducing their degrees of freedom to (¢ — 1)*. This is the
sense in which the zero-mean property defines RFA.

Alternative constraints yield alternative decompositions. For example, given a genotype r = (r1, ..., 72),
setting every term involving the state #; in site 7 to zero yields the familiar reference-based decomposition
with r as the reference genotype.

We call Eq. (2) the generalized linear decomposition of genetic architecture. In Appendix 2, we show that
any linear decomposition of genetic architecture is a special case of Eq. (2) obtained by subjecting the
terms to a set of constraints that reduces their degrees of freedom to ¢". The notion of generalized linear
decomposition allows us to ask the following question.

2.6. Optimal linear decomposition

Among the infinitely many ways of linearly decomposing a genetic architecture, which is the most
optimal? Answering this question requires defining optimality. Given a particular linear decomposition,
let y«(g) denote the phenotype of g approximated by the terms of order up to ~—the truncation of Eq. (2)
removing all higher-order terms. The accuracy of this approximation can be measured by the mean
squared error:

1
eolyel = = ) (@) — ve(@)T-
q geaG

We define an optimal linear decomposition of order & as that which minimizes ¢c. Appendix 3 shows that
RFA minimizes &g for any k for any genetic architecture: it offers the most accurate linear approximation
possible at every order. Our proof does not rule out alternative decompositions that are as accurate as
RFA. When computed from complete data, Fourier coefficients and reference-free effects predict the
same phenotype for any genotype.
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2.7. Variance partition

A key task in understanding the causal architecture of any system is to identify the relative contribution of
each causal factor to the variation in dependent variable. Intuitively, causal terms with larger coefficients
imply greater importance. However, magnitude cannot be the sole criterion because terms of different
order affect different numbers of genotypes. A reference-free effect of order & contributes to the
phenotype of one in ¢* genotypes; given the same magnitude, a lower-order effect is more consequential
than a higher-order effect because it influences more genotypes. The magnitude and order must be jointly
considered.

RFA enables a variance partition framework. This makes possible such statements as “this term explains
5% of phenotypic variance” or “the first-order terms together explain 80% of phenotypic variance.” The
applicability of variance partition is a unique feature of RFA enabled by its zero-mean property.

The total phenotypic variance

1
Var(16) = . ) [V(9) ~ (IO

gea

quantifies the amount of phenotypic variation caused by genetic variation. Appendix 4 shows that it can
be decomposed into the contribution of each reference-free effect:

2

e
Var(y|G) = 2 20"

e+eq

where e denotes any nonzero-order effect and O(e) its order. Note that 1/¢°“ is the fraction of genotypes
whose phenotype involves the effect e. The variance contribution of each effect is thus the square of its
magnitude normalized by the fraction of genotypes it affects. This confirms our intuition that a lower-
order effect makes a greater phenotypic contribution than a higher-order effect of the same magnitude.

2.8. Robustness to measurement noise

We consider how noise in phenotypic measurement impacts the computation of reference-free effects. An
experimentally characterized genetic architecture is a superposition of the true architecture and an
unstructured architecture where each phenotype is an independent draw from a noise distribution. The
reference-free effects of this unstructured architecture are the errors for the true architecture.

Consider an unstructured architecture generated by sampling each phenotype independently from a noise
distribution with variance ®. The zero-order effect is the average of ¢" independent draws, so its variance
is o/g". This is the error associated with the measurement of the true zero-order effect. Appendix 5
continues this calculation to higher orders, showing that the variance for an effect of order £ is

(q — Dk
q" @

This is always smaller than m—the noise involved in individual phenotypic measurements—and typically
negligible when £ is small. RFA is therefore highly robust to measurement noise.
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2.9. Orthogonality of orders
We now show that each order of reference-free effects is orthogonal to all other orders. That is, altering
the genetic architecture by changing one order of effects does not change the value of other orders of

effects. Here we demonstrate the orthogonality of the first-order effects from all others. Let y_i(g) denote
the phenotypic contribution of second- and higher-order terms on the genotype g = (g1, ..., €):

y-1(g) = Z eil,i2(9i1»9i2)+ Z eil,iz,i3(gi1:gi2:gi3)+"'+el,....n(gl' )

i1<IzEN i1<iz<izEN

Consider averaging y_; across the subset of genotypes sharing state s in site ;:

1
(}’—1|st) = F 2 v-1(9)

S
gEGj
1
= 1 €i.i, (gilvgiz) + €i,,izis (gilrgizvgi?,) + o
€G3 | i1<iEN i1<i;<i3EN
geG; i1
=0,

where the last equality follows from the zero-mean property. It then follows that the values of first-order
effects are independent of the values of higher-order effects:

ej(s) = (y|G7) — eo
= ()’1 + )’—1|st) — €
= (y1|st) + (y—1|GjS) ~ €0
= (3’1|st) ~ €o

where y1 denotes the phenotypic contribution of zero- and first-order effects. The subtraction by ey also
makes the first-order effect independent of the intercept. Overall, the pattern of phenotypic variation
produced by epistatic interactions appears as noise to the first-order model.

2.10. Unbiased estimation by regression

The exact computation of a complete reference-free model requires having a measured phenotype for
every genotype, which is generally not feasible. However, it is possible to estimate them from a random
sample of genotype space. Recall that among all linear decompositions of the same order, RFA minimizes
the mean squared error of phenotypic prediction across the genotype space. Regression estimates, which
minimize the mean squared error across sampled genotypes, therefore converge to the true values as
sample size increases.

To formalize this idea, let yx denote the generalized linear decomposition truncated after order £:

yi(g) = ey + 2 e;(gi) + Z e, i,(gi,, 9i,) + -+ 2 ei,.in (G 0 iy )-

iEN i1<i,EN i1<-<igEN

The best-fit model ¥}, is found by minimizing the mean squared error across the set of sampled genotypes
(G):
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91 = argmin > [y(g) ~ yi(@)I.
geEG*

One problem with this formulation is that, because of the degeneracy of generalized linear decomposition,
there are many possible ¥;. This can be circumvented by performing a constrained regression where the
parameters are subject to the zero-mean constraint. Alternatively, Appendix 6 shows that a simpler two-
step procedure gives the same answer: an unconstrained regression is performed to find any y; and the
zero-mean constraint is enforced post hoc on the inferred model. $;, so obtained is consistent (it
converges to the true reference-free model as sample size increases), and it is unbiased (the expected
value of each term equals the true value). The unbiasedness follows from the orthogonality of orders: the
unmodeled higher-order effects appear as noise to any lower-order model and therefore do not bias the
regression.
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Appendix 1. Zero-mean property

The zero-mean property of reference-free effects is that for any site-combination (iy, ..., it), the mean of
all effects that vary across a single site is zero:

€iip (082, Sk) = €5, i, (1,583, 0, Sk) e = €1 iy (51, 00, Sk—1,7) = 0,

where (s1, ..., k) can be any state-combination. The zero-mean property is a defining feature of reference-
free analysis, from which all of its useful properties proved in the next Appendices follow. We prove it by
mathematical induction.

Recall that G; is the set of all genotypes with state s in site i. G, GZ, ..., qu are nonoverlapping sets

whose union is G. Therefore, the summation X4¢¢ is equivalent to Egeo X geas- Then,

1
@)= e

SEQ
1 s\
= 5;[@@ ¥16)]
1
== 016D - (16)
g
=2 2 ) V@) - 016
SEQ gEGi
1
==, D ¥@)-0l6)
q SEQgGGiS
1
== @) - (I6)
q geaGa
=0.

We now show that if the zero-mean property holds for effects of order (k— 1), it also holds for effects of
order k. Recall the definition

N
ei1 ..... ik(sll '"'Sk) = eiz,...,ik(SZI '"lsk)lill - eiz,...,ik(SZl "'lsk)'

By the inductive hypothesis, the mean of the two (k — 1)-th-order terms on the right-hand side is zero
across any site i, ..., i. The mean of the k-th-order term on the left is therefore zero across any site i, ...,
ir. Conditioning on a site other than i; shows that the mean across i is also zero. This completes the
mathematical induction.
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Appendix 2. Generalized linear decomposition

Lete; i, bea function mapping k-tuples of states into real numbers. We refer to the following
expression as the k-th-order generalized linear decomposition of genetic architecture:

vi(g) = ey + 2 e;(gy) + Z €, i,(9i, gi,) + -+ 2 €i..in(Giy 0 Giy)- (A1)

iEN i1<i,EN i< <igEN

We showed that both reference-free and reference-based analyses can be represented as above with
suitable choices of e. We now argue that any linear decomposition of genetic architecture can be
represented as above with suitable choices of e. The validity of this statement depends on what a linear
decomposition of genetic architecture is. Below we define it in the broadest possible sense and show that
it has a form of Eq. (A1).

In the broadest sense, a linear decomposition of order zero is any function that approximates the
phenotype of every genotype by a constant. It can thus be expressed as

Yo(g) = e.

What is the broadest sense in which a function y(g) is a first-order linear decomposition of genetic
architecture? yi(g) should be able to use the information that g has the state g; in site i and combine that
information linearly across sites to determine its phenotype. It is not allowed, however, to use any
information about what combination of states is found in what combination of sites. Any such function y,
can be written as

y1(g) = 2 2;(9),
J

where A, is a function that can distinguish whether g has a particular state in a particular site:

a]-, g € Gls

/‘L](g) = {ﬂj: g ¢ GLS

for some state s, some site i, and some real numbers o; and ;. The number of such functions that make up
y1(g) is unlimited. It can be shown that for any such function y|, we can find a constant ey and functions e;
such that

y1(g) = e+ Z ei(9:)-
iEN
To prove this, we first sum all functions A that distinguish whether g € G for a given s and i and write
the sum as
a;, QGgeEG’

(g = :
@=lg gea

y1 can be written as
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yi1(g) = Z ;(g)

=izﬂf(9)

iEN seQ

DN HOR ST
iEN seQ
SN HOR ARSI
iEN seQ iEN seQ
Note that
s _ s_ais_ﬁisl gEGis
and thus

> @) - 571 = aft —

sEQ

The following choice therefore completes the proof:

0=y Y
iEN seqQ
ei(s) =aj — ;.

Higher-order linear decompositions can be defined similarly. In the broadest sense, a second-order linear
decomposition can use the information that g has the state g; in site i and state-pair (g;,, g;,) in site-pair

(i1, i2), but cannot use any information about higher-order combinations. Any such function y» can be
written as

v2(g) = 2 4;(9) + 2 (),
j k

where A, is defined as above and p is a function that can distinguish whether g has a particular pair of
states in a particular pair of sites:

wlg) = 7 9 € G
’ S gEG

for some sites 7 and 7>, some states s; and s», and some real numbers y; and ;. For any such function y»,
we can find a constant ey and functions e; and e;, ;, such that

v2(g) =eo + 2 e;(gy) + Z €i,i,(9i,» 9i,)-

iEN i1<I;EN
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To prove this, we again sum all functions A that distinguish whether g € G; for a given s and i and write
the sum as

a;s, g €G;

S —
HORS W s

and similarly sum all functions p that distinguish whether or not g € Gis1 122 and write the sum as

l1,lp

51,52 S1,52°
» , %G ”

RO

2

51,52 51,52
{Yi%u ’ VRS Gy i

ig,i2 lulz

Following a logic similar to above, we can choose

=) B+ DD B

iEN seQ i1<i,EN 51,5,€Q
— S s
ei(s) =a; — B;,

— 45152 51,52
€i,,i, (s1,82) = Yili, ininp "

In general, a linear decomposition of order 4 in the broadest sense is any function that can use information
about the combination of states in any set of up to £ sites and combine that information linearly across
site-combinations to determine the phenotype. A logic similar to above can show that any such function
can be written as Eq. (A1).
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Appendix 3. Optimal linear decomposition

Recall that any &-th-order linear decomposition of genetic architecture can be written as

yi(g) = ey + 2 e;(gi) + Z e, i,(gi,, 9i,) + -+ 2 ei,.in (G 0 iy )-

iEN i1<i,EN i1<-<igEN

Here we show that the reference-free definition of effects minimizes the sum of squared error

e = ) (@) - nl@P

gea

for any genetic architecture at any value of &. We prove this by showing that the partial derivative of &
with respect to a term is zero when that term is defined by the reference-free definition. Using e to denote
a term,

d d
2= @) - ve@P
€eaq
—Zgi[ @) - 9@
= e yg) —Yilg
geG
d
= > 2@ - (@] 5 ().
geG

The derivative of yi(g) with respect to e is 1 if yx(g) involves e and 0 otherwise. For example, for e =
e;(s), the derivative of yi(g) is 1 for all g € G; and O forall g € G;’. Fore = e; _; (S1, ..., Sk), let G.
denote the set Gislljfl':’:k". Then,

d (1, g €EG,
%yk(g) - {0’ g ¢ Ge.

The partial derivative of &g is then

9 9]
=6 92 ~2[y(9) ~ y(9)] 5.3 ()
= -2 > [¥(@) - ()]
9gEG,

= —2¢" @ [ylGe) — (il Go)],
where O(e) is the order of e. The partial derivative is zero when
r1Ge) = (yilGe).
In other words, an optimal linear decomposition of order £ is that which accurately predicts the average

phenotype of any subset of genotypes defined by fixing up to £ sites. We defined reference-free effects to
achieve just that! To formally show this, we prove the following property of reference-free analysis:
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Lemma 1. Recall that e; | _;, ( Giyr gik) denotes the k-th-order effect of state-combination ( Giyr gik)
in site-combination (ii, ..., ix). Due to the zero-mean property, the mean of e; ;. (gil, . gik) across all
genotypes is zero. We now calculate the mean across subsets of genotypes defined by fixing the states at

some sites. Consider the set G, ’*""’!, which comprises all genotypes with states Sj,» -, Sj, Insites i, ...,
J1redi 1 l

ji. Lemma 1 claims that

S
G =0
J1rnJl

<ei1,...,ik
unless (i1, ..., ix) is a subset of (ji, ..., ji), in which case

SjqreSj
JoenIry . . . .
Gj1,....j1 > Ciy,nik (511’ ""slk)'

<ei1,...,ik

This follows from the zero-mean property: if any site among i1, ..., ix lies outside the set (ji, ..., ji), the
above summation involves summing across all ¢ states in that site.

Before proving Lemma 1, let us see how it helps proving the optimality of reference-free analysis. For
any effecte = ¢; i (Sj,,-,Sj,), where [ <k,

1
Gde) == ), w@)

Si ,uSq
1Sy
geGJ'L----J'z
1
= eo+ ) e(g)+ €i,i,(9i,, 9i,) +
Si Sy 7 i i
J1 I LEN i1<izEN
geGJ'L----J'z
+ Z eil,...,ik(gilv ---'gik) :
iy <-—<igEN

Due to Lemma 1, the sum for any site-combination that is not a subset of (ji, ..., ji) is zero. Therefore,
using L to denote the set {1, 2, ..., [},

(ylee) =ey+ Z €, (Sja) + Z ejalrjaz (Sjal’ sjaz) + .t Z ejall""jal_l (S]'al’ ey Sjal—1)

a€EL a1 <az€EL a<-<aj_1EL

+ €yt (Sj10 0 51)-
This, by the definition of reference-free decomposition, equals <y| stlj 1}:’ l> = (y|G,):

5]'1""'51'1 _
ple) =

Sj1reSj

Jl . . . .
Gj1,---,]'l >(l—1) + e]lr---v]l(sh’ v s]l)’

where
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v

Gsh""'sfz>
J1,-0J1 (l—l)

=ep+ Z eja(sja) + Z ejal'jaz (Sjal’sjaz) + .-

Q€L a,<a,€EL

+ Z ejalu---vjal_l (Sjal’ T Sjal_l)'

a <-<aj_1€EL

Proof of Lemma 1.

. . . . . SjqrenS . .
Consider first the case when (iy, ..., i) € (jq, ..., j;). Across the set Gjlj 1 i /1, which consists only of

genotypes with states s; , ..., sj, in sites jy, ..., j;, the terme; ;. (gi,, -, 93, ) 1 a constant,
€i,,..ix (Siy» -+, Si, ). This proves the second case of the lemma.

Let us now assume that m sites in (i, ..., i) are outside (jy, ..., j;). We make our notation flexible so that
the order of sites can be permuted: for example, e; ;, (s1,52) = e;, ;, (S2,51). We can then write

(i) eer i) = Oty ooy Xe—mo Vs o0 Vi
. , , . SjrrSiy ig:
where x4, ..., Xk _, are inside (jy, ..., j;) and y, ..., Y are outside. Gj1 j,  can be partitioned as

SjprSjp SjprenSjptieatm
G, .t = G . .
J1,-J1 J1reJUY1re0Ym

t1,tm€Q

Therefore, the summation X s;,...s;, equals B, ¢ coX  sj,.sj trtm. [t follows then

€G . . . .
901,y J1red LY 1Y
Sis,enSi 1
S, Jrmreiy 7 E . ( )
<ellj---;lk Gjl,...,jl > - qn—l el1,---,lk gll; -..,glk
EGSjl,...,Sjl
b0
= Tl €x 1 X kY1 Ym (le, s Sy by, s tm)
tl’._.’tmEQ Sjl,...,Sjl,Cl,...,fm
J1rd Y1 Ym
l
- ( by, )
- qn—l €x 1o X kY1 Y \Sx 10 =0 Sxp oy Lo+ bm
t1,mtm€Q
= 0.

The last equality follows from the zero-mean property.
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Appendix 4. Variance partition

To help derive the variance partition formula, we use Var(ei Lok |Qk) to denote the variance of all &-th-
order effects at the site-combination (i, ..., i).

1 2
Var(e;,,. i, 1Q%) = — Z ler, i (51, o si) — (e, i | QF)]
q S1,--.SKEQ
1 2
=% Z €iy,.ik (51' L Sk) ,
q S1,---SKEQ

where the last equality follows from the zero-mean property. We show that the total phenotypic variance
1 2
v =VarGI6) = ) [v(9) ~ (16)]
geaG

can be decomposed into the variance of reference-free effects at each site-combination:

V= 2 Var(e;|Q) + 2 Var(el-l'l-2|Q2) + ot 2 Var(eil,.__,ik|Qk) + -+ Var(ey, Q™).

iEN i1<izEN i1 <-<iKEN
This is equivalent to the variance partition formula

eZ
-y

e+egy

Recall that for any genotype g = (g1, ---» gn)>

y(g) =e + Z ei(gy) +-+ Z eil,...,ik(gilr ---'gik) +te i (G In)-

iEN i1<-<igEN

Substituting this expression into the definition of V, we obtain

2

1
|4 =q_"z Zei(gi) + Z eil,...,ik(gilv ---:gik) +oeteg i i (G g2 gn)| - (A2)

geG |ien iy<-<igEN
To simplify this equation, we prove the following lemma.

Lemma 2. For any two distinct site-combinations (i, ..., i) # (1, .-, Jj1),

1
q_nz eil,...,ik(gil» ---'gik) ejl,...,jl(gjl' ""gjz) = 0.
gea

Before proving Lemma 2, let us check how it helps simplify Eq. (A2). Recall that (¥; x;)? = ¥; x* +
Y. x;xj. Under Lemma 2, Eq. (A2) simplifies to
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2
=—Z Zel(gl) + ot Z eil,...,ik(gilx---rgik) +o e, i (9192 0 Gn)?

gEeG | IEN i1<-<IgEN

S1seen

The set G can be expressed as the union G = Uy, 5,0 G S" for any state-combination (s1, ..., Sk) in

site-combination (i1, ..., ix). Therefore,

2
n €i,,. ,Lk(gllr- 'glk -

gEG

Z Z €i,ik (gil, Ty gik)z

Sl, L,SKEQ gEG lSk
k

sl- 2

eil,...,ik (Sll ey Sk)z

,S
51,08 EQgeG lkk

1 n— 2
=" Z q ell, ,lk(sll "'!Sk)
1 51,-4SK€Q
1
= _k Z ell, ,lk(sll vy S )
q oy

=Va r(eilmik|Qk).
This then proves the variance partition formula.
Proof of Lemma 2.

We make our notation flexible so that the order of sites can be permuted: for example, e;, ;, (s1,5;) =
€i,,i, (S2,51). Assume m sites are shared between (iy, ..., i) and (jy, ..., j;). We can write

(i1, s i) = (Aq, wr) Ay X1, e Xpo—m ),
(jlﬁ "')jl) = (al' o Ay Y1, '"yl—m)'

where (X1, ... Xg—m) N V1, .. Vi—m) = @. We partition G as follows:

G = Gsl,...,sm,ul,...,uk_m,vl,...,vl_m
A1, @mX 15X k—mY 1Y 1-m”

S1rSEQ U oo Uk-mEQ V1, V- EQ

Then,

_Z 11, 'lk(gll" 'glk)eh. Jz(gh" ’g]l)
gea
qn (k+l-m)

= 2 €, .ij (S1s vy S Uty wor s U—m )€j, jy (S15 wov, Siry V1 ves Vi)
q S1,0SMEQ Up,yersUg—mEQ V1,V —mEQ
1
== 2 2 €iy i, (S1s s Spmp Ug,y wovy U—m) 2 €, ..j,(S1) ey Sy V1 vovs Vimm)
q S1,0SMEQ Uq,wUk—mEQ V1,e0V—mEQ

=0.

where the last equality follows from the zero-mean property. A similar proof can be constructed for when
no site is shared between (i, ..., i) and (jy, ..., ).
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Appendix 5. Robustness to measurement noise

Our goal is to calculate reference-free effects for an unstructured genetic architecture in which each
phenotype is an independent sample from a noise distribution of zero mean and variance . The exact
value of each effect depends on the particular instantiation of the sampling process. We are interested in
the variance of each effect across the possible instantiations. Let {2 denote the set of all possible
instantiations. We aim to compute

Var(e|Q),
which, by the definition of variance, equals
(e?]Q) — (el)? = (e?|),

where the last equality follows because the expected value of any phenotype and therefore any effect is
zero. We prove the following formula by mathematical induction:

(g —1)°®
—_— W

- (A3)
q

Var(e|Q) =
Consider the intercept:

Var(eol®) = Var [ 3e0 v(9)[0]

1
= =2 ) Varly(@)|9]
a gea
1
= 2n
a gea
w

qr

This is Eq. (A3) for the case when O(e) equals zero. Let us now assume that Eq. (A3) holds for effects of
order (k— 1). Recall the definition

N
ei1 ..... ik(sll "'!Sk) = eiz,...,ik(SZl ---:Sk)lill - eiz,...,ik(SZ' ---:Sk);

in which an effect of order £ is a function of effects of order (k— 1). We prove that for any j # i, ..., i,

1
eil,...,ik (sll ey Sk) = _Z eil,...,ik (sll ey Sk) |§ (A4)
1 teQ
That is, an effect of order & for the complete space G is the average of the same effect calculated for the

subspaces defined by conditioning on any site outside the k focal sites. Before proving Eq. (A4), let us see
how it helps us:

S
eil,...,ik (51' ey Sk) = eiz,...,ik (SZ' ey Sk)lill - eiz,...,ik (SZI ey Sk)
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1 teQ 1

q— s

= q eiz,...,ik(SZI '"lsk)lill - Z eiz,...,ik(SZJ ---:Sk)lfl'
teQ\sy

Note that the ¢ terms e;, __;, (2, ..., sk)lfl, t=1, ..., q, are probabilistically independent of each other
because they involve genotypes from disjoint sub-spaces. Furthermore,

1
Var[eiz,...,ik (SZI ey Sk)|Q] =Var [5 ZtEQ eiz,...,ik(szy (LI} Sk)lgl Q]
1 !
= EVar[el-ZMik(sz, . sk)lf1 2],
where t' in the last term can be any one of the ¢ states. This implies that
, q(q — D*!
Var[eiz,m,ik(sz, e Skc) fl|Q] =qX Var[eiz,wik(sz, —os|Q] = q—na)

From the aforementioned probabilistic independence, it follows that

q—1\* q-1] ql@—D*"
Var[eilw_,ik(sl, ...,sk)|Q] = [( 7 ) + pe ] X o W

_(@—-1DF
= q—n w
We now turn to proving Eq. (A4). We can rewrite e,(s) purely in terms of average phenotypes:

ei(s) = (yIG?) — (yIG).

Similarly,

e, (50,52 = (v]6757) - (v]6) - (v]6:2) + 016,

In general,

Sa

G k=)
layolay_y ’

SaqrSa,_
i 3 b

S1,Sk\ _
Gi ik > § <y i
e aprolag g

a <<ap_ €K a1 <-<ayp_EK

eil,...,ik(le ...,Sk) = <y

where K is the set 1, ..., k. More compactly,

€15 = DRy

0<i<k a,<---<aEK

Sal,---:5a1>

L

.....

possible subset of G defined by fixing the states at one or more of the £ sites i, ..., ix. Any such average
phenotype can be decomposed by fixing the state at another site j # iy, ..., i. For example,
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Therefore,

.....

teQ

.....

,
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Appendix 6. Unbiased estimation by regression

We show that unbiased estimates of reference-free effects can be obtained through a two-step procedure.
We first solve the optimization

Px = argmin Z [y(9) — ye(@]*. (A5)

geEG™

Because of the degeneracy of generalized linear decomposition, there are many solutions to this
optimization. We choose any solution and enforce the zero-mean property by changing its terms without
altering the predicted phenotype. We show that this normalization is always possible. We then show that
P thus obtained is an unbiased estimate of reference-free decomposition.

We reformulate Eq. (A5) as a standard regression. Let y be a vector of sampled phenotypes and S a vector
of effects to infer. We write

y=XB +e, (A6)

where X is the design matrix specifying how the effects map to phenotypes. The error ¢ is the sum of all
unmodeled higher-order effects and measurement noise. The solution to this regression is not unique: X is
a singular matrix because of the degeneracy of generalized linear decomposition. We can make X non-
singular by building in the zero-mean property. For example, we can eliminate the column of X

corresponding to e;(q) by coding it as
e@=- ) el

teQ\q

Similarly, we can eliminate the column of X corresponding to e; ;,(s1,q) by coding it as

e, i,(51,q) = — Z e, i, (s1,t).

teQ\q

In general, every term involving state ¢ in any site can be eliminated by coding it as a linear combination
of terms involving states 1 to (¢ — 1) in accordance with the zero-mean property. The design matrix thus
obtained is non-singular and can be used to infer for all terms only involving states 1 to (¢ — 1). Estimates
for terms involving state g can be calculated post-hoc using the zero-mean property. This proves the
existence of a solution ¥, whose terms satisfy the zero-mean property.

We now show that the expected value of the error ¢ in Eq. (A6) is zero across randomly sampled
genotypes. Since the design matrix is non-singular and the errors are unbiased, by the Gauss-Markov
theorem the regression estimates for terms containing states 1 to (¢ — 1) are unbiased. The post-hoc
estimates for terms containing state ¢ are also unbiased because they are linear combinations of terms
containing states 1 to (g — 1).

In a linear decomposition of order £, the error for a genotype g is given by

e(g) = Z eil,...,ik+1(gi1v ---'gikﬂ) + - tey n(gr - gn)-

i1<<ig41EN
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(Measurement noise is not shown because it does not affect the expected value of ¢.) Since genotypes are
randomly sampled, it suffices to show that the expected value of € is zero across all genotypes. We prove
a stronger result:

1
(eiy,..ir|G) = q_"z €iy,in (G1r 1 Gic)

gea

It follows that {€|G) = 0.

We now show how the zero-mean property can be enforced post hoc. Consider enforcing the zero-mean
property on a first-order linear decomposition without altering the predicted phenotypes (hereafter called
“normalizing”). To normalize the terms for site 7, we first subtract from each term the mean of all terms at
site i:

0i(s) = ei(s) —e;(-) = 6;(:) = 0.

Using §;(s) in place of e;(s) alters the predicted phenotype of every genotype by —e; (-). This can be
corrected by adding e; (-) to the intercept. Overall, the following modifications normalize any first-order
linear decomposition:

8i(s) = e;i(s) — e; ("),
6o =€+ 2 e (")
iEN

Similarly, the following modifications normalize any second-order linear decomposition:

i, i, (51,52) = e;,1,(51,52) — e i, (,52) — e, 1, (51,) + ey, i, (),

8:() = lex(s) = exO + ) [en () = 1],

JEN\I
So=eot ) eVt D ey ()
iEN i1<i,EN

For any third-order linear decomposition:

5i1,i2,i3 (51,52,53)
= €j,,iyi; (51,52,53) — [eil,iz,ig('v52:53) + e iy, (51, 53) T e iy (51152")]
+ [eiy iy, G s3) + e iy i, Ch52,) + ey in (51| — e iy, Cooe),
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8i,i,(51,52) = e; i, (s1,52) — [ei, 1, s2) + e i, (s1,)] + ei i, C00)
+ Z [eil,iz,i3 (S1,52,) = €iiyi5 (5 52,) — € iy i (S1,07) + eil,iz,ig(':’»')];

i3ENNi, iz

5:(9) = [ex(s) = e+ ) [en5) = eyCl+ D [eujulsn) = epjuCo]

jemi j<keEN\i
8o =€+ E e;(r) + E eii, () + E €iyipis (10
ieN i, <L EN i1<(r<lzEN

Directly applying these normalization formulae is cumbersome for high orders. We provide a simple
algorithm. First, we normalize the highest-order terms (order k) without correcting for the altered
phenotypes. This can be done by Eq. (A7) shown below. Then, let y, denote the phenotype predicted by
the original linear decomposition and z; the phenotypic contribution of the normalized k-th-order terms.
We must modify the lower-order terms so that their total phenotypic contribution is yx — zx. This can be
done by using regression to find a linear model of order (kK — 1) whose predicted phenotype is yx — zx. Such
a linear model exists because post hoc enforcement of zero-mean property is always possible. Terms of
order (k — 1) can then be normalized and the same regression procedure can be used to correct for the
altered phenotypes by changing the terms of order up to (k — 2).

.....

the mean of e;,, _;, (S1, ..., Sk) across sites ji, ..., ji. For example,

eil,...,ik(sll '--lsk)i1 = eil,...,ik(.r 52, ...,Sk),
eil,...,ik(slr '--lsk)il,iz = eil,...,ik(.»" S3, ---:Sk)'

Normalization of a second-order term can be restated as

8i,i,(51,52) = e i,(51,52) — Z €ii,(51,52)i, t €ii, (51,52)i i,
a€ef{1,2}

Denoting the set {1, ..., k} by K, terms of order k can be normalized by

61'1’".‘1'1{(51, ey Sk) = eilluqik(sl, ey Sk) + Z(—l)l Z eil ’’’’’ ix (Sl, ey Sk)ial:---rial' (A7)

leEK a,<--<aEK
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