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Supplementary figures 1-6 
 
 

 
 
Supplementary Fig. 1 | RFA terms can be accurately inferred from noisy and partial data by 
regression, but RBA terms cannot be. From the simulated measurements in Fig. 1c, truncated RFA and 
RBA models of every order and the full model (fifth order) were inferred by regression, either using all 
genotypes or a random 50%. The inferred terms are plotted against the true values. 
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Supplementary Fig. 2 | The sigmoid link function does not oversimplify the genetic architecture by 
absorbing specific epistatic interactions. a, A 10-site, 2-state genetic architecture was simulated under 
realistic conditions; the distribution of RFA terms at each order was estimated from the CH65-MA90 
dataset, in which virtually all genotypes are within the dynamic range of measurement. The genetic 
architecture for the simulation was then obtained by randomly sampling terms up to order three, scaling 
each order of terms to adjust the complexity of the genetic architecture. Measurement noise was then 
simulated to account for 5% of total phenotypic variance. Nonspecific epistasis was not simulated. b, 
RFA inferences on the simulated data with or without the sigmoid link function. Each panel shows the 
true phenotype for every genotype and the phenotype predicted by the fitted RFA model. The out-of-
sample R2 determined by cross-validation is shown. c, Difference in the out-of-sample R2 of RFA with or 
without the sigmoid link function determined for 10 independent simulations. d, Distribution of inferred 
genetic scores and the sigmoid link function when nonspecific epistasis is modeled. The sigmoid range is 
inferred to be sufficiently wide that all genetic scores lie within the linear regime of the sigmoid. 
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Supplementary Fig. 3 | RFA of the 20 combinatorial mutagenesis datasets. Out-of-sample R2 was 
computed as described in Fig. 4a with or without modeling nonspecific epistasis. Datasets are ordered by 
the total number of genotypes indicated in parentheses. 
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Supplementary Fig. 4 | Regularization has minimal impact on the fraction of variance attributed to 
each model order. Each panel shows the out-of-sample R2 computed under a range of L1 regularization 
strengths (λ) for the indicated dataset and model order. Within the panel, the dots and error bars show the 
mean and standard error of out-of-sample R2 across cross-validation replicates. The greatest λ with an out-
of-sample R2 that does not differ significantly from the maximum out-of-sample R2 was chosen. The 
chosen λ and its out-of-sample R2 are shown. 
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Supplementary Fig. 5 | Inferred RFA and RBA terms in four example datasets. RFA and RBA terms 
were inferred by fitting a third-order model with the sigmoid link. RFA terms become smaller as the order 
increases, whereas the opposite holds for RBA terms. 
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Supplementary Fig. 6 | RBA of the 20 combinatorial mutagenesis datasets. Either the published 
“wild-type” genotype (red circle) or 500 randomly sampled genotypes (boxplot) were used as reference 
genotype. R2 for higher-order mutants was computed as in Fig. 4c; negative R2 values are shown as zero. 
Datasets are ordered by the total number of genotypes shown in parentheses. 
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1. Comparison with other formalisms 
 
Here we provide more numerical examples to illustrate the contrast between reference-free analysis 
(RFA) and reference-based, Fourier, and background-averaged analyses. 
 
1.1. Reference-based analysis 
 
The apparent complexity of the genetic architecture depends on the choice of reference genotype 
 
Reference-based analysis designates a single genotype as wild-type and all others as mutants of increasing 
order. The phenotype is decomposed into the effects and interactions of mutations: the phenotype of a 
point mutant differs from the wild-type by the effect of the point mutation, that of a double mutant by the 
effect of the two point mutations and their pairwise interaction, and so on. The apparent complexity of the 
genetic architecture—the fraction of phenotypic variance attributable to each order of effects—varies 
depending on the choice of wild-type genotype. By contrast, RFA offers a unique description that 
minimizes the variance attributable to higher-order effects. 
 
To illustrate this contrast, we simulated a genetic architecture consisting of 6 sites and 5 states (labeled 1 
to 5) by taking the genotype (1, 1, 1, 1, 1, 1) as reference; 50, 25, and 12.5% of first-, second-, and third-
order effects were sampled from the standard normal distribution, and all other effects were set to zero. 
We refer to the sampled genetic architecture as G1. When the phenotype is computed from the first-order 
effects, the squared correlation with the true phenotype is 0.30. This is the fraction of phenotypic variance 
explained by the first-order reference-based model defined with respect to the genotype (1, 1, 1, 1, 1, 1). 
The second-order model explains 78% of variance, and the third-order model 100%. 
 
How does the same genetic architecture appear from the point of view of another genotype? Table S1 
summarizes the variance partition under five randomly chosen reference genotypes.  
 
Table S1. Reference-based analysis of the simulated genetic architecture G1. 

Reference R2, first-order model R2, second-order model R2, third-order model 
(1, 1, 1, 1, 1, 1) 0.30 0.78 1.00 
(2, 1, 3, 3, 4, 2) 0.23 0.54 1.00 
(2, 5, 1, 2, 4, 1) 0.18 0.65 1.00 
(1, 2, 4, 1, 4, 1) 0.04 0.69 1.00 
(4, 2, 3, 1, 5, 5) 0.06 0.62 1.00 
(2, 3, 3, 2, 2, 5) 0.24 0.34 1.00 

 
All analyses agree that there are up to third-order effects, but they differ markedly on the complexity of 
the genetic architecture. The reference genotype used for simulation offers the simplest description; this is 
because epistatic interactions were simulated to be sparse with respect to that genotype but this sparsity is 
not conserved when the reference is switched. For example, with respect to the genotype (2, 3, 3, 2, 2, 5), 
90 and 45% of second- and third-order effects have a magnitude greater than 0.1. This dependence on the 
choice of reference genotype appropriately reflects the purpose of reference-based analysis—to 
understand the behavior of mutations as they accumulate on a particular genetic background. 
 
RFA of the same genetic architecture reports R2 of 0.53, 0.88 and 1.00 for the first-, second-, and third-
order models, which are greater than the R2 of any reference-based model of the same order. 
 
Sensitivity to measurement noise and missing genotypes 
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A reference-based effect of order k is the sum or subtraction of 2k phenotypes. When individual 
phenotypes are measured with noise of variance ω, the variance associated with the effect is 2kω. This is 
always greater than ω and rises exponentially with order such that discerning effect from noise in practice 
is possible only for the lowest few orders. By contrast, the variance associated with reference-free effects 
is smaller than ω for any order (p. 19, section 2.8). 
 
Reference-based analysis is also sensitive to missing genotypes. The reference-based effect of a mutation 
is defined solely by the wild-type genotype and the one mutant that differs from the wild-type by that 
mutation. If any of the two genotypes is missing from data, neither the mutation’s effect nor any of the 
epistatic interactions involving that mutation can be computed. The exact computation of reference-free 
effects is also only possible with complete data, but because they are averages of many phenotypic 
measurements, they can be estimated from incomplete data by regression. 
 
Reference-based effects cannot be reliably inferred by regression 
 
Directly computing a mutation’s effect is impossible when the mutant is missing, but the mutation also 
appears in other genotypes along with other mutations, so it may seem possible to disentangle its effect 
from those of others using regression. However, reference-based effects cannot be reliably inferred by 
regression. We illustrate this on the genetic architecture G1. We begin with an ideal case where every 
phenotype is measured precisely and therefore any effect can be computed exactly. When the first-order 
model defined with respect to the genotype (1, 1, 1, 1, 1, 1) is fit to this dataset, the regression estimates 
are dramatically incorrect (Supplementary Fig. 7). Furthermore, while the true model explains 30% of 
phenotypic variance, the inferred model explains 53%. When the second-order model is fit, the effects are 
estimated more accurately but still not exactly; the fraction of variance explained is also overestimated as 
88% instead of 78%. The estimates are exact only with the third-order model—when all the mutational 
effects and interactions in the genetic architecture are represented in the regression model. 
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Supplementary Fig. 7 | Reference-based effects cannot be reliably estimated by regression. Reference-
based models defined with respect to the genotype (1, 1, 1, 1, 1, 1) were fit to the genetic architecture G1 in 
the absence of measurement noise and missing genotypes. Each panel compares the effects of a specified 
order with their estimates obtained using the model of indicated order. 

 
Why does regression yield incorrect estimates of reference-based effects and overestimate their variance 
contribution even in the absence of measurement noise and missing genotypes? Regression finds the 
parameter values that minimize the sum of squared errors (SSE) across all genotypes and therefore 
maximize the variance explained; however, the true terms of truncated RBA models do not minimize the 
SSE across all genotypes. Rather, the structure of the RBA formalism is that low-order terms exactly fit 
low-order mutants and do not attempt to predict higher-order mutants. In finding the terms of truncated 
RBA model that minimize the SSE across all genotypes, regression forces low-order terms to fit 
phenotypic variation produced by higher-order effects that are absent in the model. This causes the low-
order model to explain more variance than it actually does under the true RBA architecture. This 
continues with each truncated model, systematically overestimating the variance explained at every order 
until the complete model is reached. 
 
Regression does not cause this issue when coupled with RFA. In the absence of measurement noise and 
missing genotypes, the inferred effects and variance contribution are exact (Supplementary Fig. 8). This 
correspondence arises because the true reference-free effects minimize the SSE.  
 

 
 

Supplementary Fig. 8 | Regression reliably estimates reference-free effects. Reference-free models were 
fit to the genetic architecture G1 in the absence of measurement noise and missing genotypes. Each panel 
compares the effects of a specified order with their estimates obtained using the model of indicated order. 

 
Note that reference-based models fit by regression explain the same fraction of phenotypic variance as 
reference-free models (53, 88, and 100% at the first, second, and third order). The two models in fact 
predict the same phenotype for any given genotype, because that is the prediction that minimizes the SSE. 
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This equivalence arises because the two regression models have the same degrees of freedom and 
therefore fit the data with the same degree of accuracy. As shown above, however, the accuracy of the 
inferred effects contrasts strikingly between the two models. While reference-based analysis may be 
coupled with regression for the sole purpose of phenotypic prediction, interpreting the inferred effects as 
reference-based effects would mischaracterize the genetic architecture. 
 
In Supplementary Fig. 7, the regression estimates of reference-based effects are exact for the third-order 
model, but this is only because measurement noise and missing genotypes were not simulated. The 
estimates are highly inaccurate when both are present (Supplementary Fig. 9). Reference-free effects, by 
contrast, are robust. 
 

 
 

Supplementary Fig. 9 | Regression estimates of reference-based effects are sensitive to measurement 
noise and missing genotypes. Measurement noise was simulated on the genetic architecture G1 to account 
for 5% of phenotypic variance, and the third-order reference-based or reference-free model was fit to 20% of 
randomly sampled genotypes. Each panel compares the effects of a specified order with their estimates. 

 
In summary, the goal of reference-based analysis is to characterize the effects and interactions of 
mutations on a particular genetic background, whereas that of regression is to minimize the SSE. Because 
of this misfit, regression estimates of reference-based effects can be strikingly wrong even when obtained 
from precise and complete data. Avoiding this problem requires modeling all potential mutational effects 
and interactions present in the genetic architecture. However, using a complete model for regression is 
equivalent to no regression at all, so the “regression” estimates are as sensitive to measurement noise as 
direct computation (Supplementary Fig. 9). 
 
1.2. Fourier analysis 
 
The model terms (Fourier coefficients) lack straightforward genetic or biochemical meaning 
 
Whereas RFA decomposes the phenotype into the global effects and interactions of states, Fourier 
analysis decomposes the phenotype into abstract quantities called Fourier coefficients. The definition of 
Fourier coefficients, their relationship to phenotype, and their possible interpretation are best illustrated 
by an example. Consider a two-site DNA sequence, which has 16 possible genotypes. There are 16 
Fourier coefficients: one zero-order coefficient (f0), three first-order coefficients at each site (prefixed f1 
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and f2), and nine second-order coefficients (prefixed f1,2). The 16 coefficients map to the 16 phenotypes 
as: 
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where yAA is the phenotype of the sequence AA, and so on. For any sequence, its phenotype is a signed 
sum of all 16 Fourier coefficients, with different sets of signs distinguishing different genotypes. This 
contrasts with the simplicity of RFA, where each phenotype is a simple sum of only four terms—the 
intercept, two additive effects, and one pairwise interaction. 
 
Interpreting Fourier coefficients based on this mapping is not straightforward. One way to understand 
Fourier coefficients is to relate them to reference-free effects. With some algebra, the first-order Fourier 
coefficients at site 1 can be written as, 
 

𝑓!(1) =
"!($)&"!(')

( ,	

𝑓!(2) =
"!())&"!(')

( ,	

𝑓!(3) =
"!(*)&"!(')

( . 
 
f1(1) is the average reference-free effect of A and T, or of the composite base W. Similarly, f1(2) and f1(3) 
are each the reference-free effect of the composite base Y and K. This relatively simple interpretation is 
possible because DNA has just four states. For proteins, each of the 19 first-order Fourier coefficients is 
the average reference-free effects of 10 amino acids, for which there would be no biochemically or 
genetically meaning interpretation. 
 
The relationship between Fourier coefficients and reference-free effects is much more complicated 
beyond the first order, precluding any straightforward interpretation for higher-order Fourier coefficients. 
For example, 
 

𝑓",$(1, 1) =
1
4 (
𝑒",$(𝐴, 𝐴) − 𝑒",$(𝐴, 𝐶) − 𝑒",$(𝐴, 𝐺) + 𝑒",$(𝐴, 𝑇)

4 +
𝑒",$(𝑇, 𝐴) − 𝑒",$(𝑇, 𝐶) − 𝑒",$(𝑇, 𝐺) + 𝑒",$(𝑇, 𝑇)

4

+
𝑒",$(𝐴, 𝐴) − 𝑒",$(𝐶, 𝐴) − 𝑒",$(𝐺, 𝐴) + 𝑒",$(𝑇, 𝐴)

4 +
𝑒",$(𝐴, 𝑇) − 𝑒",$(𝐶, 𝑇) − 𝑒",$(𝐺, 𝑇) + 𝑒",$(𝑇, 𝑇)

4 0. 

 
Roughly, this is the average pairwise interaction between (A or T) at one site and (A or T) at the other 
site, minus the average pairwise interaction between (A or T) at one site and (C or G) at the other. With 
20 states, the interpretation of second-order Fourier coefficients become accordingly more elaborate. 
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Fourier analysis is a compact encoding of RFA 
 
Fourier analysis of the two-site DNA involves 16 coefficients, equal in number to the 16 possible 
genotypes. RFA of the same genetic architecture requires 25 terms—the intercept, four first-order effects 
for each site, and 16 pairwise interactions. In general, with n sites and q states, there are nq first-order 
reference-free effects, q for each site. There are ++(,𝑞

( second-order effects, q2 for each pair of sites. With 
++,,𝑞

, effects of order k, the total number of reference-free effects is (q + 1)n. By contrast, the number of 
Fourier coefficients of order k is ++,,(𝑞 − 1)

,. The total number of Fourier coefficients is therefore qn, 
which is minimally necessary to describe the qn possible genotypes. 
 
Fourier analysis can be considered a compact encoding of RFA, where the q states are encoded in (q – 1) 
Fourier bases. For DNA, the three Fourier bases correspond to the three familiar nucleotide groupings: w 
(“weak” nucleotides A and T vs. “strong” nucleotides C and G), y (pyrimidines C and T vs. purines A and 
G), and k (keto-containing nucleotides G and T vs. non-keto nucleotides A and C). A is encoded in the 
wyk-space as (1, –1, –1). The phenotype of the sequence A is accordingly decomposed as f0 + f1(W) – 
f1(Y) – f1(K), and the reference-free effect e1(A) equals f1(W) – f1(Y) – f1(K). Fourier coefficients and 
reference-free effects can be interconverted through such mappings. Moreover, in the absence of missing 
genotypes, RFA and Fourier analysis of the same order predict the same phenotype for any given 
genotype. 
 
The compact encoding of Fourier analysis has benefits and costs. The numerical economy compared with 
RFA is substantial at high orders, especially when the number of states is small. With two states, there are 
210 = 1,024 tenth-order reference-free effects but just one Fourier coefficient for each set of ten sites. The 
degree of compression is minor for proteins, however, where the number of Fourier coefficients is 19 for 
a site as opposed to 20, and 361 for a site-pair as opposed to 400. Moreover, the numerical economy of 
Fourier analysis comes at the cost of lack of straightforward interpretation, convoluted mapping from 
coefficients to phenotype, and extra sensitivity to missing genotypes. In practice, Fourier analysis is 
preferrable over RFA for binary state spaces where the numerical economy relative to RFA is maximal, 
the coefficients have a simple relation to reference-free effects, and the extra sensitivity to missing 
genotypes is small. 
 
1.3. Background-averaged analysis 
 
Complex mapping from model terms to phenotype, and sensitivity to noise and missing genotypes 
 
Background-averaged analysis differs from RFA in that it decomposes the phenotype into the effects of 
mutations, not states. It also differs from reference-based analysis because it examines the average effects 
of mutations across all genetic backgrounds, rather than their effects on one particular background. We 
illustrate background-averaged analysis and explain why it is more sensitive to measurement noise and 
missing genotypes than is RFA. 
 
We consider a genotype space of two sites and three states (0, 1, and 2). Background-averaged analysis 
requires a choice of wild-type state for each site. We choose state 0 as wild-type and calculate the effects 
of mutations to states 1 and 2. The intercept is defined as the mean phenotype of all genotypes: 
 

𝑏- = 𝑦1. 
 
The first-order effect of state 1 in site 1, denoted by 𝑏!∙, is the effect of mutating state 0 to 1 measured on 
the background of each possible state in site 2: 
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𝑏!∙ =

(/!%0/%%)&(/!!0/%!)&(/!&0/%&)
1 . 

 
Likewise, the first-order effect of state 1 in site 2, denoted by 𝑏∙!, is the effect of mutating state 0 to 1 
measured on the background of each possible state in site 1: 
 

𝑏∙! =
(/%!0/%%)&(/!!0/!%)&(/&!0/&%)

1 . 
 
Because there are only two sites in this example, there is no genetic background over which to average 
pairwise interactions. Therefore, background-averaged interactions are identical to the corresponding 
reference-based interactions. For example, 
 

𝑏!! = 𝑦!! − 𝑦!- − 𝑦-! + 𝑦--. 
 
These definitions can be stated compactly as matrix multiplication: 
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The structure of this matrix explains why background-averaged analysis is more sensitive to measurement 
noise and missing genotypes than is RFA. To see this, we represent RFA as matrix multiplication, 
showing only state 1 for simplicity: 
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. 

 
Many of the matrix elements for background-averaged analysis are 1 or –1, indicating that the noise in 
phenotypic measurement is directly propagated to the effects. The many zeros also mean that the effects 
are calculated by averaging over only subsets of genotypes. By contrast, all the matrix elements for RFA 
are nonzero and less than 4/9 in magnitude. 
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In background-averaged analysis, y00 contributes to all nine effects whereas y11 contributes to only four. 
Genotypes containing the wild-type states contribute disproportionately to background-averaged effects, 
causing extra sensitivity to noise and missing data for these effects. By contrast, all genotypes contribute 
with equal weights to reference-free effects. 
 
Although background-averaged effects are defined intuitively as the average effects of mutations, their 
mapping back to phenotype is complicated: 
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The phenotype of any genotype is a weighted sum of all background-averaged effects, including those 
that represent mutations not in the genotype of interest. This means that the error in the estimate of one 
effect propagates to all genotypes. By contrast, the mapping from reference-free effects to phenotype is 
sparse, so the impact of error in the estimate of an effect is limited to the small subset of genotypes 
involving that effect. 
 
Mapping between background-averaged effects and reference-free effects is complex 
 
Converting background-averaged effects (defined relative to an arbitrary reference state at each site) into 
reference-free effects (defined relative to the global mean) requires an elaborate linear mapping. The 
conversion for the additive effect of state x at site i is given by  
 

𝑒3(𝑥) = 𝑏3(𝑥) −
1

|𝐴| + 1
> 𝑏3(𝛼)
4∈$

, 

 
where 𝐴 is the set of all mutant states at the site and |𝐴| its size. For the pairwise interaction of states x 
and y at site i and j, 
 

𝑒!,#(𝑥, 𝑦) = 𝑏!,#(𝑥, 𝑦) −
1

|𝐴| + 1.𝑏!,#(𝛼, 𝑦)
$∈&

−
1

|𝐵| + 1. 𝑏!,#(𝑥, 𝛽)
'∈(

+
1

(|𝐴| + 1)(|𝐵| + 1) . 𝑏!,#(𝛼, 𝛽)
$∈&,'∈(

, 

 
where 𝐴 is the set of all mutant states at site i and 𝐵 is the set of all mutant states at site j. Mappings for 
higher-order effects can be constructed by extending this logic, and would involve an exponentially 
increasing number of summations. 
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2. Exposition of reference-free analysis 
 
2.1. Introduction 
 
Here we provide a formal exposition of reference-free analysis (RFA), including proofs for its key 
properties. We begin by defining and interpreting reference-free effects. We develop the notion of 
generalized linear decomposition, a unified formalism for representing any linear decomposition of 
genetic architecture, which we use to show that RFA explains the maximum fraction of phenotypic 
variance that can be explained by any linear decomposition of the same order. Next, we show that the 
phenotypic variance can be decomposed into the contribution of each reference-free effect, which enables 
the variance partition framework for quantifying and comparing the phenotypic contribution of any effect 
or set of effects. We end by showing that reference-free effects can be robustly computed from noisy 
phenotypic measurements and that they can be estimated from an incomplete sample of genotype space 
by regression. 
 
2.2. Notations 
 
RFA can be applied to any discrete-state genetic architecture, but for simplicity we consider a genotype 
space with the same number of states (q) across sites. The definitions and proofs provided here can be 
easily extended to genotype spaces with different numbers of states among sites. The n-tuple g = (g1, …, 
gn) denotes a genotype with state gi in site i = 1, …, n. The phenotype of g is written as y(g). The set of all 
genotypes is denoted by G, and the set of all genotypes sharing states s1, …, sk in sites i1, …, ik is denoted 
by 𝐺3!,…,3+

7!,…,7+. Angled brackets denote averaging over a set; for example, ⟨𝑦|𝐺⟩ is the average phenotype of 
all genotypes. The set N = {1, …, n} is used to denote iteration over sites and site-combinations; Σ3∈8 
indicates summation over all sites and Σ3!93&∈8 over all site-pairs. Likewise, Q = {1, …, q} is used to 
denote iteration over states and state-combinations.  
 
We do not consider nonspecific epistasis here. Nonspecific epistasis can be incorporated by modeling y(g) 
as a nonlinear transformation of the genetic score s(g), which would be defined according to the 
formalism below. 
 
2.3. Definitions and interpretations 
 
We first present RFA as a stepwise approximation of genetic architecture. Two alternative interpretations 
are then presented. 
 
The intercept or zero-order term e0 is defined as the mean phenotype of all genotypes: 
 

𝑒- = ⟨𝑦|𝐺⟩. 
 
This is the best single-parameter approximation of the genetic architecture in the sense that it minimizes 
the mean squared error of phenotypic prediction across sequence space. 
 
The first-order term representing state s in site i, denoted by 𝑒3(𝑠), is defined as 
 

𝑒3(𝑠) = ⟨𝑦|𝐺37⟩ − 𝑒-. 
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It can be considered the error associated with approximating ⟨𝑦|𝐺37⟩—the mean phenotype of the 
subspace comprising all genotypes sharing state s in site i—by the lower-order term e0 (the mean 
phenotype across the entire genotype space). 
 
The above expression extends naturally to higher-order terms. The second-order term for the state-pair 
(s1, s2) in site-pair (i1, i2), denoted by 𝑒3!,3&(𝑠!, 𝑠(), is the error associated with approximating F𝑦G𝐺3!,3&

7!,7&H 
using the lower-order terms: 
 

𝑒3!,3&(𝑠!, 𝑠() = F𝑦G𝐺3!,3&
7!,7&H − I𝑒- + 𝑒3!(𝑠!) + 𝑒3&(𝑠()J. 

 
In general, the k-th-order term for the state-combination (s1, …, sk) in site-combination (i1, …, ik), denoted 
by 𝑒3!,…,3+(𝑠!, … , 𝑠,), is defined as 
 

𝑒3!,…,3+(𝑠!, … , 𝑠,) = F𝑦G𝐺3!,…,3+
7!,…,7+H − F𝑦G𝐺3!,…,3+

7!,…,7+H
(,0!)

, (1) 

 
where the subscript (k – 1) indicates approximation using terms of order up to (k – 1): 
 
!𝑦#𝐺!),…,!*

$),…,$*%
(&'()

= 𝑒* +)𝑒!+(𝑠+)
+∈-

+ ) 𝑒!+) ,!+,(𝑠+) , 𝑠+,)
+).+,∈-

+⋯+ ) 𝑒!+) ,…,!+*-)/𝑠+) , … , 𝑠+*-)1
+).⋯.+*-)∈-

, 

 
where K denotes the set {1, …, k}. 
 
This stepwise process builds an increasingly refined approximation of genetic architecture. The zero-
order term is the crudest approximation, predicting every phenotype by the mean. The first-order terms 
describe the mean phenotypes of nq subspaces, each consisting of all genotypes that share a particular 
state in a particular site. The second-order terms describe the mean phenotypes of smaller subspaces, each 
consisting of all genotypes sharing a pair of states in a pair of sites. Higher-order terms offer finer 
descriptions, with the highest-order terms describing the phenotypes of the smallest subspaces—
individual genotypes. 
 
We have so far presented reference-free terms as errors associated with lower-order approximations. They 
can also be interpreted as phenotypic effects. For example, the first-order term 𝑒3(𝑠) quantifies how the 
mean phenotype of the genotypes sharing the state s in site i differs from that of all genotypes; it can 
therefore be interpreted as the average phenotypic effect of that state. Similarly, the second-order term 
𝑒3!,3&(𝑠!, 𝑠() quantifies how the mean phenotype of the genotypes sharing the state-pair (s1, s2) in site-pair 
(i1, i2) differs from that of all genotypes when the first-order effects are accounted for; it is the average 
epistatic effect of the state-pair. 
 
A third perspective on RFA interprets the terms of order k as measuring the context-dependence of terms 
of order (k – 1). Let us re-think the definition of the first-order term 
 

𝑒3(𝑠) = ⟨𝑦|𝐺37⟩ − 𝑒-. 
 
⟨𝑦|𝐺37⟩ can be considered the intercept of a genotype space consisting only of genotypes with state s in 
site i. We denote this relationship by ⟨𝑦|𝐺37⟩ = 𝑒-|37. Thus, 
 

𝑒3(𝑠) = 𝑒-|37 − 𝑒-. 
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In this expression, 𝑒3(𝑠) quantifies how different the intercept is when calculated for the complete space 
G versus the subspace 𝐺37. A parallel exists for second-order terms: 
 

𝑒3!,3&(𝑠!, 𝑠() = F𝑦G𝐺3!,3&
7!,7&H − I𝑒- + 𝑒3!(𝑠!) + 𝑒3&(𝑠()J	

= F𝑦G𝐺3!,3&
7!,7&H − F𝑦G𝐺3!

7!H − F𝑦G𝐺3&
7&H + ⟨𝑦|𝐺⟩	

= LF𝑦G𝐺3!,3&
7!,7&H − F𝑦G𝐺3!

7!HM − LF𝑦G𝐺3&
7&H − ⟨𝑦|𝐺⟩M	

= 𝑒3&(𝑠()|3!
7! − 𝑒3&(𝑠(), 

 
where 𝑒3&(𝑠()|3!

7! is the first-order term 𝑒3&(𝑠() for the subspace 𝐺3!
:!. In general, 

 
𝑒3!,…,3+(𝑠!, … , 𝑠,) = 𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!

7! − 𝑒3&,…,3+(𝑠(, … , 𝑠,). 
 
Here site i1 is chosen as the context but any other site could also be chosen. 
 
Finally, the phenotype of a particular genotype is the sum of the reference-free effects of all constituent 
states. Substituting n for k in Eq. (1) and noting that F𝑦G𝐺3!,…,3,

;!,…,;,H is simply the phenotype of g = (g1, …, 
gn), it follows that 
 

𝑦(𝒈) = 𝑒- +>𝑒3(𝑔3)
3∈8

+⋯+ > 𝑒3!,…,3++𝑔3! , … , 𝑔3+,
3!9⋯93+∈8

+⋯+ 𝑒!,…,+(𝑔!, … , 𝑔+). 
(2) 

 
2.4. Zero-mean property 
 
Reference-free terms satisfy an equality that we call the zero-mean property. This property forms the 
basis of all desirable properties of RFA, and can be said to define RFA in the sense described below. We 
simply state the property here and prove it in Appendix 1. 
 
For first-order terms, the zero-mean property states that the mean of all q terms at a site is zero: 
 

⟨𝑒3|𝑄⟩ =
1
𝑞
>𝑒3(𝑠)
7∈=

= 0, 

 
where Q denotes the set of all q states. This holds for any genetic architecture by virtue of the definition 
of reference-free terms. For conciseness, let • denote averaging across states. For example, 𝑒3(⋅) is the 
average of the q first-order effects in site i, and 𝑒3!,3&(⋅, 𝑠() is the average of the q second-order effects in 
site-pair (i1, i2) that share state s2 in site i2. The zero-mean property for first-order terms can be restated as 
𝑒3(⋅) = 0. In general, for any site-combination (i1, …, ik), the mean of any q terms that vary across a 
single site is zero: 
 

𝑒3!,…,3+(∙, 𝑠(, … , 𝑠,) = 𝑒3!,…,3+(𝑠!,⋅, 𝑠1, … , 𝑠,)… = 𝑒3!,…,3+(𝑠!, … , 𝑠,0!,∙) = 0, 
 
where (s1, …, sk) can be any state-combination. When the q2 second-order terms for a site-pair are 
arranged in a q × q matrix, every row and column of the matrix sums to zero. Similarly, when the q3 third-
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order terms for a site-triplet are arranged in a q × q × q array, every one-dimensional section (and thus 
every two-dimensional section and the entire array) sums to zero. 
 
2.5. Generalized linear decomposition 
 
RFA linearly decomposes the phenotype into the effect of each state and state-combination. There are 
alternative ways of linearly decomposing the phenotype, including reference-based, Fourier, and 
background-averaged analyses. We now show that RFA explains the maximum fraction of phenotypic 
variance that can be explained by any linear decomposition of the same order. Proving this requires a 
common formalism to express any linear decomposition of a genetic architecture and showing that RFA 
is the most powerful. We call this unified formalism the generalized linear decomposition. 
 
Consider Eq. (2) without the reference-free definition of the terms. It states a general formula for linearly 
decomposing the phenotype. Let us count the number of terms in this decomposition. There are nq first-
order terms, q for each site. There are ++(,𝑞

( second-order terms—q2 pairs of states for every pair of sites. 
With ++,,𝑞

, terms of order k, the total number of terms equals (q + 1)n, which is greater than the total 
number of genotypes—qn. This means that there are many ways of linearly decomposing the same genetic 
architecture, distinguished by how the terms in Eq. (2) are defined. Constraining the terms to satisfy the 
zero-mean property yields the reference-free decomposition: the q first-order terms for a site must sum to 
zero, reducing their degrees of freedom to (q – 1); every row and column of the q × q matrix of q2 second-
order terms for a site-pair must sum to zero, reducing their degrees of freedom to (q – 1)2. This is the 
sense in which the zero-mean property defines RFA. 
 
Alternative constraints yield alternative decompositions. For example, given a genotype r = (r1, …, rn), 
setting every term involving the state ri in site i to zero yields the familiar reference-based decomposition 
with r as the reference genotype. 
 
We call Eq. (2) the generalized linear decomposition of genetic architecture. In Appendix 2, we show that 
any linear decomposition of genetic architecture is a special case of Eq. (2) obtained by subjecting the 
terms to a set of constraints that reduces their degrees of freedom to qn. The notion of generalized linear 
decomposition allows us to ask the following question. 
 
2.6. Optimal linear decomposition 
 
Among the infinitely many ways of linearly decomposing a genetic architecture, which is the most 
optimal? Answering this question requires defining optimality. Given a particular linear decomposition, 
let yk(g) denote the phenotype of g approximated by the terms of order up to k—the truncation of Eq. (2) 
removing all higher-order terms. The accuracy of this approximation can be measured by the mean 
squared error: 
 

𝜖*[𝑦,] =
1
𝑞+
>[𝑦(𝒈) − 𝑦,(𝒈)](
𝒈∈*

. 

 
We define an optimal linear decomposition of order k as that which minimizes εG. Appendix 3 shows that 
RFA minimizes εG for any k for any genetic architecture: it offers the most accurate linear approximation 
possible at every order. Our proof does not rule out alternative decompositions that are as accurate as 
RFA. When computed from complete data, Fourier coefficients and reference-free effects predict the 
same phenotype for any genotype. 
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2.7. Variance partition 
 
A key task in understanding the causal architecture of any system is to identify the relative contribution of 
each causal factor to the variation in dependent variable. Intuitively, causal terms with larger coefficients 
imply greater importance. However, magnitude cannot be the sole criterion because terms of different 
order affect different numbers of genotypes. A reference-free effect of order k contributes to the 
phenotype of one in qk genotypes; given the same magnitude, a lower-order effect is more consequential 
than a higher-order effect because it influences more genotypes. The magnitude and order must be jointly 
considered. 
 
RFA enables a variance partition framework. This makes possible such statements as “this term explains 
5% of phenotypic variance” or “the first-order terms together explain 80% of phenotypic variance.” The 
applicability of variance partition is a unique feature of RFA enabled by its zero-mean property. 
 
The total phenotypic variance 
 

𝑉𝑎𝑟(𝑦|𝐺) =
1
𝑞+
>[𝑦(𝒈) − ⟨𝑦|𝐺⟩](
𝒈∈*

 

 
quantifies the amount of phenotypic variation caused by genetic variation. Appendix 4 shows that it can 
be decomposed into the contribution of each reference-free effect: 
 

𝑉𝑎𝑟(𝑦|𝐺) = >
𝑒(

𝑞?(")
"@"%

, 

 
where e denotes any nonzero-order effect and O(e) its order. Note that 1/qO(e) is the fraction of genotypes 
whose phenotype involves the effect e. The variance contribution of each effect is thus the square of its 
magnitude normalized by the fraction of genotypes it affects. This confirms our intuition that a lower-
order effect makes a greater phenotypic contribution than a higher-order effect of the same magnitude. 
 
2.8. Robustness to measurement noise 
 
We consider how noise in phenotypic measurement impacts the computation of reference-free effects. An 
experimentally characterized genetic architecture is a superposition of the true architecture and an 
unstructured architecture where each phenotype is an independent draw from a noise distribution. The 
reference-free effects of this unstructured architecture are the errors for the true architecture. 
 
Consider an unstructured architecture generated by sampling each phenotype independently from a noise 
distribution with variance ω. The zero-order effect is the average of qn independent draws, so its variance 
is ω/qn. This is the error associated with the measurement of the true zero-order effect. Appendix 5 
continues this calculation to higher orders, showing that the variance for an effect of order k is 
 

(𝑞 − 1),

𝑞+
𝜔. 

 
This is always smaller than ω—the noise involved in individual phenotypic measurements—and typically 
negligible when k is small. RFA is therefore highly robust to measurement noise. 
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2.9. Orthogonality of orders 
 
We now show that each order of reference-free effects is orthogonal to all other orders. That is, altering 
the genetic architecture by changing one order of effects does not change the value of other orders of 
effects. Here we demonstrate the orthogonality of the first-order effects from all others. Let y–1(g) denote 
the phenotypic contribution of second- and higher-order terms on the genotype g = (g1, …, gn): 
 

𝑦0!(𝒈) = > 𝑒3!,3&+𝑔3! , 𝑔3&,
3!93&∈8

+ > 𝑒3!,3&,3)+𝑔3! , 𝑔3& , 𝑔3),
3!93&93)∈8

+⋯+ 𝑒!,…,+(𝑔!, … , 𝑔+) 

 
Consider averaging y–1 across the subset of genotypes sharing state s in site j: 
 

[𝑦0!\𝐺A7] =
1

𝑞+0!
> 𝑦0!(𝒈)
𝒈∈*-

.

	

=
1

𝑞+0!
> ^ > 𝑒3!,3&+𝑔3! , 𝑔3&,

3!93&∈8

+ > 𝑒3!,3&,3)+𝑔3! , 𝑔3& , 𝑔3),
3!93&93)∈8

+⋯_
𝒈∈*-

.

	

= 0, 
 
where the last equality follows from the zero-mean property. It then follows that the values of first-order 
effects are independent of the values of higher-order effects: 
 

𝑒A(𝑠) = [𝑦\𝐺A7] − 𝑒-	
= [𝑦! + 𝑦0!\𝐺A7] − 𝑒-	
= [𝑦!\𝐺A7] + [𝑦0!\𝐺A7] − 𝑒-	
= [𝑦!\𝐺A7] − 𝑒-, 

  
where y1 denotes the phenotypic contribution of zero- and first-order effects. The subtraction by e0 also 
makes the first-order effect independent of the intercept. Overall, the pattern of phenotypic variation 
produced by epistatic interactions appears as noise to the first-order model. 
 
2.10. Unbiased estimation by regression 
 
The exact computation of a complete reference-free model requires having a measured phenotype for 
every genotype, which is generally not feasible. However, it is possible to estimate them from a random 
sample of genotype space. Recall that among all linear decompositions of the same order, RFA minimizes 
the mean squared error of phenotypic prediction across the genotype space. Regression estimates, which 
minimize the mean squared error across sampled genotypes, therefore converge to the true values as 
sample size increases. 
 
To formalize this idea, let yk denote the generalized linear decomposition truncated after order k: 
 

𝑦,(𝒈) = 𝑒- +>𝑒3(𝑔3)
3∈8

+ > 𝑒3!,3&(𝑔3! , 𝑔3&)
3!93&∈8

+⋯+ > 𝑒3!,…,3++𝑔3! , … , 𝑔3+,
3!9⋯93+∈8

. 

 
The best-fit model 𝑦̀, is found by minimizing the mean squared error across the set of sampled genotypes 
(G*): 
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𝑦̀, = argmin > [𝑦(𝒈) − 𝑦,(𝒈)](

𝒈∈*∗
. 

 
One problem with this formulation is that, because of the degeneracy of generalized linear decomposition, 
there are many possible 𝑦̀,. This can be circumvented by performing a constrained regression where the 
parameters are subject to the zero-mean constraint. Alternatively, Appendix 6 shows that a simpler two-
step procedure gives the same answer: an unconstrained regression is performed to find any 𝑦̀, and the 
zero-mean constraint is enforced post hoc on the inferred model. 𝑦̀, so obtained is consistent (it 
converges to the true reference-free model as sample size increases), and it is unbiased (the expected 
value of each term equals the true value). The unbiasedness follows from the orthogonality of orders: the 
unmodeled higher-order effects appear as noise to any lower-order model and therefore do not bias the 
regression. 
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Appendix 1. Zero-mean property 
 
The zero-mean property of reference-free effects is that for any site-combination (i1, …, ik), the mean of 
all effects that vary across a single site is zero: 
 

𝑒3!,…,3+(∙, 𝑠(, … , 𝑠,) = 𝑒3!,…,3+(𝑠!,⋅, 𝑠1, … , 𝑠,)… = 𝑒3!,…,3+(𝑠!, … , 𝑠,0!,∙) = 0, 
 
where (s1, …, sk) can be any state-combination. The zero-mean property is a defining feature of reference-
free analysis, from which all of its useful properties proved in the next Appendices follow. We prove it by 
mathematical induction. 
 
Recall that 𝐺37 is the set of all genotypes with state s in site i. 𝐺3!, 𝐺3(, … , 𝐺3

B are nonoverlapping sets 
whose union is G. Therefore, the summation Σ𝒈∈*  is equivalent to Σ7∈=Σ𝒈∈*0.. Then, 
 

𝑒3(⋅) =
1
𝑞
>𝑒3(𝑠)
7∈=

	

=
1
𝑞
>[⟨𝑦|𝐺37⟩ − ⟨𝑦|𝐺⟩]
7∈=

	

=
1
𝑞
>⟨𝑦|𝐺37⟩
7∈=

− ⟨𝑦|𝐺⟩	

=
1
𝑞
>

1
𝑞+0!

> 𝑦(𝒈)
𝒈∈*0

.7∈=

− ⟨𝑦|𝐺⟩	

=
1
𝑞+
> > 𝑦(𝒈)

𝒈∈*0
.7∈=

− ⟨𝑦|𝐺⟩	

=
1
𝑞+

>𝑦(𝒈)
𝒈∈*

− ⟨𝑦|𝐺⟩	

= 0. 
 
We now show that if the zero-mean property holds for effects of order (k – 1), it also holds for effects of 
order k. Recall the definition 
 

𝑒3!,…,3+(𝑠!, … , 𝑠,) = 𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!
7! − 𝑒3&,…,3+(𝑠(, … , 𝑠,). 

 
By the inductive hypothesis, the mean of the two (k – 1)-th-order terms on the right-hand side is zero 
across any site i2, …, ik. The mean of the k-th-order term on the left is therefore zero across any site i2, …, 
ik. Conditioning on a site other than i1 shows that the mean across i1 is also zero. This completes the 
mathematical induction. 
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Appendix 2. Generalized linear decomposition 
 
Let 𝑒3!,…,3+ be a function mapping k-tuples of states into real numbers. We refer to the following 
expression as the k-th-order generalized linear decomposition of genetic architecture: 
 

𝑦,(𝒈) = 𝑒- +>𝑒3(𝑔3)
3∈8

+ > 𝑒3!,3&(𝑔3! , 𝑔3&)
3!93&∈8

+⋯+ > 𝑒3!,…,3++𝑔3! , … , 𝑔3+,
3!9⋯93+∈8

. (A1) 

 
We showed that both reference-free and reference-based analyses can be represented as above with 
suitable choices of e. We now argue that any linear decomposition of genetic architecture can be 
represented as above with suitable choices of e. The validity of this statement depends on what a linear 
decomposition of genetic architecture is. Below we define it in the broadest possible sense and show that 
it has a form of Eq. (A1). 
 
In the broadest sense, a linear decomposition of order zero is any function that approximates the 
phenotype of every genotype by a constant. It can thus be expressed as 
 

𝑦-(𝒈) = 𝑒-. 
 
What is the broadest sense in which a function y1(g) is a first-order linear decomposition of genetic 
architecture? y1(g) should be able to use the information that g has the state gi in site i and combine that 
information linearly across sites to determine its phenotype. It is not allowed, however, to use any 
information about what combination of states is found in what combination of sites. Any such function y1 
can be written as 
 

𝑦!(𝒈) =>𝜆A(𝒈)
A

, 

 
where λj is a function that can distinguish whether 𝒈 has a particular state in a particular site: 
 

𝜆A(𝒈) = h
𝛼A , 𝒈 ∈ 𝐺37

𝛽A , 𝒈 ∉ 𝐺37
 

 
for some state s, some site i, and some real numbers αj and βj. The number of such functions that make up 
y1(g) is unlimited. It can be shown that for any such function y1, we can find a constant e0 and functions 𝑒3 
such that 
 

𝑦!(𝒈) = 𝑒- +>𝑒3(𝑔3)
3∈8

. 

 
To prove this, we first sum all functions λ that distinguish whether 𝒈 ∈ 𝐺37 for a given s and i and write 
the sum as 
 

𝜆37(𝒈) = l
𝛼37, 𝒈 ∈ 𝐺37

𝛽37, 𝒈 ∉ 𝐺37
. 

 
y1 can be written as 
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𝑦!(𝑔) =>𝜆A(𝒈)
A

	

= >>𝜆37(𝒈)
7∈=3∈8

	

= >>[𝜆37(𝒈) − 𝛽37 + 𝛽37]
7∈=3∈8

	

= >>[𝜆37(𝒈) − 𝛽37]
7∈=3∈8

+>>𝛽37

7∈=3∈8

. 

 
Note that 
 

𝜆37(𝒈) − 𝛽37 = l
𝛼37 − 𝛽37, 𝒈 ∈ 𝐺37

0, 𝒈 ∉ 𝐺37
 

 
and thus 
 

>[𝜆37(𝒈) − 𝛽37]
7∈=

= 𝛼3
;0 − 𝛽3

;0 . 

 
The following choice therefore completes the proof: 
 

𝑒- =>>𝛽37

7∈=3∈8

, 

𝑒3(𝑠) = 𝛼37 − 𝛽37. 
 
Higher-order linear decompositions can be defined similarly. In the broadest sense, a second-order linear 
decomposition can use the information that g has the state gi in site i and state-pair (𝑔3! , 𝑔3&) in site-pair 
(i1, i2), but cannot use any information about higher-order combinations. Any such function y2 can be 
written as 
 

𝑦((𝒈) =>𝜆A(𝒈)
A

+>𝜇,(𝒈)
,

, 

 
where λj is defined as above and μk is a function that can distinguish whether 𝒈 has a particular pair of 
states in a particular pair of sites: 
 

𝜇,(𝒈) = n
𝛾, , 𝒈 ∈ 𝐺3!,3&

7!,7&

𝛿, , 𝒈 ∉ 𝐺3!,3&
7!,7& 

 
for some sites i1 and i2, some states s1 and s2, and some real numbers γk and δk. For any such function y2, 
we can find a constant e0 and functions 𝑒3 and 𝑒3!,3& such that 
 

𝑦((𝒈) = 𝑒- +>𝑒3(𝑔3)
3∈8

+ > 𝑒3!,3&(𝑔3! , 𝑔3&)
3!93&∈8

. 
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To prove this, we again sum all functions λ that distinguish whether 𝒈 ∈ 𝐺37 for a given s and i and write 
the sum as 
 

𝜆37(𝒈) = l
𝛼37, 𝒈 ∈ 𝐺37

𝛽37, 𝒈 ∉ 𝐺37
, 

 
and similarly sum all functions μ that distinguish whether or not 𝒈 ∈ 𝐺3!,3&

7!,7& and write the sum as 
 

𝜇3!,3&
7!,7&(𝒈) = n

𝛾3!,3&
7!,7& , 𝒈 ∈ 𝐺3!,3&

7!,7&

𝛿3!,3&
7!,7& , 𝒈 ∉ 𝐺3!,3&

7!,7& . 

 
Following a logic similar to above, we can choose 
 

𝑒- =>>𝛽37

7∈=3∈8

+ > > 𝛽3!,3&
7!,7&

7!,7&∈=3!93&∈8

, 

𝑒3(𝑠) = 𝛼37 − 𝛽37, 
𝑒3!,3&(𝑠!, 𝑠() = 𝛾3!,3&

7!,7& − 𝛿3!,3&
7!,7& . 

 
In general, a linear decomposition of order k in the broadest sense is any function that can use information 
about the combination of states in any set of up to k sites and combine that information linearly across 
site-combinations to determine the phenotype. A logic similar to above can show that any such function 
can be written as Eq. (A1). 
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Appendix 3. Optimal linear decomposition 
 
Recall that any k-th-order linear decomposition of genetic architecture can be written as 
 

𝑦,(𝒈) = 𝑒- +>𝑒3(𝑔3)
3∈8

+ > 𝑒3!,3&(𝑔3! , 𝑔3&)
3!93&∈8

+⋯+ > 𝑒3!,…,3++𝑔3! , … , 𝑔3+,
3!9⋯93+∈8

. 

 
Here we show that the reference-free definition of effects minimizes the sum of squared error 
 

𝜖* = >[𝑦(𝒈) − 𝑦,(𝒈)](
𝒈∈*

, 

 
for any genetic architecture at any value of k. We prove this by showing that the partial derivative of εG 
with respect to a term is zero when that term is defined by the reference-free definition. Using e to denote 
a term, 
 

𝜕𝜖*
𝜕𝑒

=
𝜕
𝜕𝑒
>[𝑦(𝒈) − 𝑦,(𝒈)](
𝒈∈*

	

= >
𝜕
𝜕𝑒

𝒈∈*

[𝑦(𝒈) − 𝑦,(𝒈)](	

= >−2[𝑦(𝒈) − 𝑦,(𝒈)]
𝜕
𝜕𝑒
𝑦,(𝒈)

𝒈∈*

. 

 
The derivative of yk(g) with respect to e is 1 if yk(g) involves e and 0 otherwise. For example, for 𝑒 =
𝑒3(𝑠), the derivative of yk(g) is 1 for all 𝒈 ∈ 𝐺37 and 0 for all 𝒈 ∉ 𝐺37. For 𝑒 = 𝑒3!,…,3+(𝑠!, … , 𝑠,), let Ge 
denote the set 𝐺3!,…,7+

7!,…,7+. Then, 
 

𝜕
𝜕𝑒
𝑦,(𝒈) = l1, 𝒈 ∈ 𝐺"

0, 𝒈 ∉ 𝐺"
. 

 
The partial derivative of εG is then 
 

𝜕𝜖*
𝜕𝑒

= >−2[𝑦(𝒈) − 𝑦,(𝒈)]
𝜕
𝜕𝑒
𝑦,(𝒈)

𝒈∈*

	

= −2 >[𝑦(𝒈) − 𝑦,(𝒈)]
𝒈∈*1

	

= −2𝑞+0?(")[⟨𝑦|𝐺"⟩ − ⟨𝑦,|𝐺"⟩], 
 
where O(e) is the order of e. The partial derivative is zero when 
 

⟨𝑦|𝐺"⟩ = ⟨𝑦,|𝐺"⟩. 
 
In other words, an optimal linear decomposition of order k is that which accurately predicts the average 
phenotype of any subset of genotypes defined by fixing up to k sites. We defined reference-free effects to 
achieve just that! To formally show this, we prove the following property of reference-free analysis: 
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Lemma 1. Recall that 𝑒3!,…,3++𝑔3! , … , 𝑔3+, denotes the k-th-order effect of state-combination +𝑔3! , … , 𝑔3+, 
in site-combination (i1, …, ik). Due to the zero-mean property, the mean of 𝑒3!,…,3++𝑔3! , … , 𝑔3+, across all 
genotypes is zero. We now calculate the mean across subsets of genotypes defined by fixing the states at 
some sites. Consider the set 𝐺A!,…,A2

7-! ,…,7-2 , which comprises all genotypes with states 𝑠A! , … , 𝑠A2 in sites j1, …, 
jl. Lemma 1 claims that 
 

F𝑒3!,…,3+G𝐺A!,…,A2
7-! ,…,7-2H = 0 

 
unless (i1, …, ik) is a subset of (j1, …, jl), in which case 
 

F𝑒3!,…,3+G𝐺A!,…,A2
7-! ,…,7-2H = 𝑒3!,…,3++𝑠3! , … , 𝑠3+,. 

 
This follows from the zero-mean property: if any site among i1, …, ik lies outside the set (j1, …, jl), the 
above summation involves summing across all q states in that site. 
 
Before proving Lemma 1, let us see how it helps proving the optimality of reference-free analysis. For 
any effect 𝑒 = 𝑒A!,…,A2(𝑠A! , … , 𝑠A2), where l ≤ k, 
 

⟨𝑦,|𝐺"⟩ =
1

𝑞+0C
> 𝑦,(𝒈)

;∈*-!,…,-2
.-!,…,.-2

	

=
1

𝑞+0C
> ^𝑒- +>𝑒3(𝑔3)

3∈8

+ > 𝑒3!,3&(𝑔3! , 𝑔3&)
3!93&∈8

+⋯

;∈*-!,…,-2
.-!,…,.-2

+ > 𝑒3!,…,3++𝑔3! , … , 𝑔3+,
3!9⋯93+∈8

_. 

 
Due to Lemma 1, the sum for any site-combination that is not a subset of (j1, …, jl) is zero. Therefore, 
using L to denote the set {1, 2, …, l}, 
 
⟨𝑦,|𝐺"⟩ = 𝑒- +>𝑒A4(𝑠A4)

4∈D

+ > 𝑒A4! ,A4&(𝑠A4! , 𝑠A4&)
4!94&∈D

+⋯+ > 𝑒A4! ,…,A42(! r𝑠A4! , … , 𝑠A42(!s
4!9⋯942(!∈D

+ 𝑒A!,…,A2+𝑠A! , … , 𝑠A2,. 
 
This, by the definition of reference-free decomposition, equals F𝑦G𝐺A!,…,A2

7-! ,…,7-2H = ⟨𝑦|𝐺"⟩: 
 

F𝑦G𝐺A!,…,A2
7-! ,…,7-2H = F𝑦G𝐺A!,…,A2

7-! ,…,7-2H
(C0!)

+ 𝑒A!,…,A2+𝑠A! , … , 𝑠A2,, 

where 
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F𝑦G𝐺A!,…,A2
7-! ,…,7-2H

(C0!)

= 𝑒- +>𝑒A4(𝑠A4)
4∈D

+ > 𝑒A4! ,A4&(𝑠A4! , 𝑠A4&)
4!94&∈D

+⋯

+ > 𝑒A4! ,…,A42(! r𝑠A4! , … , 𝑠A42(!s
4!9⋯942(!∈D

. 

 
Proof of Lemma 1. 
 
Consider first the case when (𝑖!, … , 𝑖,) ⊆ (𝑗!, … , 𝑗C). Across the set 𝐺A!,…,A2

7-! ,…,7-2 , which consists only of 
genotypes with states 𝑠A! , … , 𝑠A2 in sites 𝑗!, … , 𝑗C, the term 𝑒3!,…,3+(𝑔3! , … , 𝑔3+) is a constant, 
𝑒3!,…,3+(𝑠3! , … , 𝑠3+). This proves the second case of the lemma. 
 
Let us now assume that m sites in (𝑖!, … , 𝑖,) are outside (𝑗!, … , 𝑗C). We make our notation flexible so that 
the order of sites can be permuted: for example, 𝑒3!,3&(𝑠!, 𝑠() = 𝑒3&,3!(𝑠(, 𝑠!). We can then write 
 

(𝑖!, … , 𝑖,) = (𝑥!, … , 𝑥,0E, 𝑦!, … , 𝑦E), 
 
where 𝑥!, … , 𝑥,0E are inside (𝑗!, … , 𝑗C) and 𝑦!, … , 𝑦E are outside. 𝐺A!,…,A2

7-! ,…,7-2  can be partitioned as 
 

𝐺A!,…,A2
7-! ,…,7-2 = w 𝐺A!,…,A2,/!,…,/5

7-! ,…,7-2 ,F!,…,F5

F!,…,F5∈=

. 

 
Therefore, the summation Σ

𝒈∈*-!,…,-2
.-!,…,.-2  equals ΣF!,…,F5∈=Σ𝒈∈*-!,…,-2,6!,…,65

.-!,…,.-2,7!,…,75 . It follows then 

 

F𝑒3!,…,3+G𝐺A!,…,A2
7-! ,…,7-2H =

1
𝑞+0C

> 𝑒3!,…,3++𝑔3! , … , 𝑔3+,

𝒈∈*-!,…,-2
.-!,…,.-2

	

=
1

𝑞+0C
> > 𝑒G!,…,G+(5,/!,…,/5+𝑠G! , … , 𝑠G+(5 , 𝑡!, … , 𝑡E,

𝒈∈*-!,…,-2,6!,…,65
.-!,…,.-2,7!,…,75F!,…,F5∈=

	

=
𝑞C

𝑞+0C
> 𝑒G!,…,G+(5,/!,…,/5+𝑠G! , … , 𝑠G+(5 , 𝑡!, … , 𝑡E,

F!,…,F5∈=

	

= 0. 
 
The last equality follows from the zero-mean property. 
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Appendix 4. Variance partition 
 
To help derive the variance partition formula, we use	𝑉𝑎𝑟+𝑒3!,…,3+|𝑄

,, to denote the variance of all k-th-
order effects at the site-combination (i1, …, ik). 
 

𝑉𝑎𝑟+𝑒3!,…,3+|𝑄
,, =

1
𝑞,

> I𝑒3!,…,3+(𝑠!, … , 𝑠,) − [𝑒3!,…,3+\𝑄
,]J(

7!,…,7+∈=

	

=
1
𝑞,

> 𝑒3!,…,3+(𝑠!, … , 𝑠,)
(

7!,…,7+∈=

, 

 
where the last equality follows from the zero-mean property. We show that the total phenotypic variance 
 

𝑉 = 𝑉𝑎𝑟(𝑦|𝐺) =
1
𝑞+
>[𝑦(𝒈) − ⟨𝑦|𝐺⟩](
𝒈∈*

 

 
can be decomposed into the variance of reference-free effects at each site-combination: 
 
𝑉 =>𝑉𝑎𝑟(𝑒3|𝑄)

3∈8

+ > 𝑉𝑎𝑟+𝑒3!,3&\𝑄
(,

3!93&∈8

+⋯+ > 𝑉𝑎𝑟+𝑒3!,…,3+\𝑄
,,

3!9⋯93+∈8

+⋯+ 𝑉𝑎𝑟+𝑒!,…,+\𝑄+,. 

 
This is equivalent to the variance partition formula 
 

𝑉 = >
𝑒(

𝑞?(")
"@"%

. 

 
Recall that for any genotype 𝒈 = (𝑔!, … , 𝑔+), 
 

𝑦(𝒈) = 𝑒- +>𝑒3(𝑔3)
3∈8

+⋯+ > 𝑒3!,…,3++𝑔3! , … , 𝑔3+,
3!9⋯93+∈8

+⋯+ 𝑒3!,…,3,(𝑔!, … , 𝑔+). 

 
Substituting this expression into the definition of 𝑉, we obtain 
 

𝑉 =
1
𝑞+

>^>𝑒3(𝑔3)
3∈8

+⋯+ > 𝑒3!,…,3++𝑔3! , … , 𝑔3+,
3!9⋯93+∈8

+⋯+ 𝑒3!,3&,…,3,(𝑔!, 𝑔(, … , 𝑔+)_
𝒈∈*

(

. (A2) 

 
To simplify this equation, we prove the following lemma. 
 
Lemma 2. For any two distinct site-combinations (𝑖!, … , 𝑖,) ≠ (𝑗!, … , 𝑗C), 
 

1
𝑞+
>𝑒3!,…,3++𝑔3! , … , 𝑔3+,
𝒈∈*

𝑒A!,…,A2+𝑔A! , … , 𝑔A2, = 0. 

 
Before proving Lemma 2, let us check how it helps simplify Eq. (A2). Recall that (∑ 𝑥33 )( = ∑ 𝑥3(3 +
∑ 𝑥3𝑥A3,A . Under Lemma 2, Eq. (A2) simplifies to 
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𝑉 =
1
𝑞+

>^>𝑒3(𝑔3)(
3∈8

+⋯+ > 𝑒3!,…,3++𝑔3! , … , 𝑔3+,
(

3!9⋯93+∈8

+⋯+ 𝑒3!,3&,…,3,(𝑔!, 𝑔(, … , 𝑔+)
(_

𝒈∈*

. 

 
The set G can be expressed as the union 𝐺 = ⋃ 𝐺3!,…,3+

7!,…,7+
7!,…,7+∈=  for any state-combination (s1, …, sk) in 

site-combination (i1, …, ik). Therefore, 
 

1
𝑞+

>𝑒3!,…,3++𝑔3! , … , 𝑔3+,
(

𝒈∈*

=
1
𝑞+

> > 𝑒3!,…,3++𝑔3! , … , 𝑔3+,
(

𝒈∈*0!,…,0+
.!,…,.+7!,…,7+∈=

	

=
1
𝑞+

> > 𝑒3!,…,3+(𝑠!, … , 𝑠,)
(

𝒈∈*0!,…,0+
.!,…,.+7!,…,7+∈=

	

=
1
𝑞+

> 𝑞+0,𝑒3!,…,3+(𝑠!, … , 𝑠,)
(

7!,…,7+∈=

	

=
1
𝑞,

> 𝑒3!,…,3+(𝑠!, … , 𝑠,)
(

7!,…,7+∈=

	

= 𝑉𝑎𝑟+𝑒3!,…,3+|𝑄
,,. 

 
This then proves the variance partition formula. 
 
Proof of Lemma 2. 
 
We make our notation flexible so that the order of sites can be permuted: for example, 𝑒3!,3&(𝑠!, 𝑠() =
𝑒3&,3!(𝑠(, 𝑠!). Assume m sites are shared between (𝑖!, … , 𝑖,) and (𝑗!, … , 𝑗C). We can write 
 

(𝑖!, … , 𝑖,) = (𝑎!, … , 𝑎E, 𝑥!, … 𝑥,0E), 
(𝑗!, … , 𝑗C) = (𝑎!, … , 𝑎E, 𝑦!, … 𝑦C0E), 

 
where (𝑥!, … 𝑥,0E) ∩ (𝑦!, … 𝑦C0E) = ∅. We partition G as follows: 
 

𝐺 = w w w 𝐺H!,…,H5,G!,…,G+(5,/!,…,/2(5
7!,…,75,I!,…,I+(5,J!,…,J2(5

J!,…,J2(5∈=I!,…,I+(5∈=7!,…,75∈=

. 

 
Then, 
 
1
𝑞+

>𝑒3!,…,3++𝑔3! , … , 𝑔3+,
𝒈∈*

𝑒A!,…,A2+𝑔A! , … , 𝑔A2,	

=
𝑞+0(,&C0E)

𝑞+
> > > 𝑒3!…3+(𝑠!, … , 𝑠E, 𝑢!, … , 𝑢,0E)𝑒A!…A2(𝑠!, … , 𝑠E, 𝑣!, … , 𝑣C0E)

J!,…,J2(5∈=I!,…,I+(5∈=7!,…,75∈=

	

=
1

𝑞,&C0E
> > 𝑒3!…3+(𝑠!, … , 𝑠E, 𝑢!, … , 𝑢,0E) > 𝑒A!…A2(𝑠!, … , 𝑠E, 𝑣!, … , 𝑣C0E)

J!,…,J2(5∈=I!,…,I+(5∈=7!,…,75∈=

	

= 0. 
 
where the last equality follows from the zero-mean property. A similar proof can be constructed for when 
no site is shared between (𝑖!, … , 𝑖,) and (𝑗!, … , 𝑗C).   
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Appendix 5. Robustness to measurement noise 
 
Our goal is to calculate reference-free effects for an unstructured genetic architecture in which each 
phenotype is an independent sample from a noise distribution of zero mean and variance ω. The exact 
value of each effect depends on the particular instantiation of the sampling process. We are interested in 
the variance of each effect across the possible instantiations. Let Ω denote the set of all possible 
instantiations. We aim to compute 
 

𝑉𝑎𝑟(𝑒|Ω), 
 
which, by the definition of variance, equals 
 

⟨𝑒(|Ω⟩ − ⟨𝑒|Ω⟩( = ⟨𝑒(|Ω⟩, 
 
where the last equality follows because the expected value of any phenotype and therefore any effect is 
zero. We prove the following formula by mathematical induction: 
 

𝑉𝑎𝑟(𝑒|Ω) =
(𝑞 − 1)?(")

𝑞+
𝜔. (A3) 

 
Consider the intercept: 
 

𝑉𝑎𝑟(𝑒-|Ω) = 𝑉𝑎𝑟 L 1𝑞+ ∑ 𝑦(𝒈)𝒈∈* GΩM		

=
1
𝑞(+

>𝑉𝑎𝑟[𝑦(𝒈)|Ω]
𝒈∈*

	

=
1
𝑞(+

>𝜔
𝒈∈*

	

=
𝜔
𝑞+
. 

 
This is Eq. (A3) for the case when O(e) equals zero. Let us now assume that Eq. (A3) holds for effects of 
order (k – 1). Recall the definition 
 

𝑒3!,…,3+(𝑠!, … , 𝑠,) = 𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!
7! − 𝑒3&,…,3+(𝑠(, … , 𝑠,), 

 
in which an effect of order k is a function of effects of order (k – 1). We prove that for any 𝑗 ≠ 𝑖!, … , 𝑖,, 
 

𝑒3!,…,3+(𝑠!, … , 𝑠,) =
1
𝑞
>𝑒3!,…,3+(𝑠!, … , 𝑠,)|A

F

F∈=

. (A4) 

 
That is, an effect of order k for the complete space G is the average of the same effect calculated for the 
subspaces defined by conditioning on any site outside the k focal sites. Before proving Eq. (A4), let us see 
how it helps us: 
 

𝑒3!,…,3+(𝑠!, … , 𝑠,) = 𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!
7! − 𝑒3&,…,3+(𝑠(, … , 𝑠,)	
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= 𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!
7! −

1
𝑞
>𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!

F

F∈=

	

=
𝑞 − 1
𝑞

𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!
7! −

1
𝑞
> 𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!

F

F∈=\7!

. 

 
Note that the q terms 𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!

F , t = 1, …, q, are probabilistically independent of each other 
because they involve genotypes from disjoint sub-spaces. Furthermore, 
 

𝑉𝑎𝑟I𝑒3&,…,3+(𝑠(, … , 𝑠,)\ΩJ = 𝑉𝑎𝑟 L1𝑞 ∑ 𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!
F

F∈= GΩM	

=
1
𝑞
𝑉𝑎𝑟I𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!

FL \ΩJ, 

 
where 𝑡′ in the last term can be any one of the q states. This implies that 
 

𝑉𝑎𝑟I𝑒3&,…,3+(𝑠(, … , 𝑠,)|3!
FL \ΩJ = 𝑞 × 𝑉𝑎𝑟I𝑒3&,…,3+(𝑠(, … , 𝑠,)\ΩJ =

𝑞(𝑞 − 1),0!

𝑞+
𝜔. 

 
From the aforementioned probabilistic independence, it follows that 
 

𝑉𝑎𝑟I𝑒3!,…,3+(𝑠!, … , 𝑠,)\ΩJ = ��
𝑞 − 1
𝑞 �

(
+
𝑞 − 1
𝑞(

� ×
𝑞(𝑞 − 1),0!

𝑞+
𝜔	

=
(𝑞 − 1),

𝑞+
𝜔. 

 
We now turn to proving Eq. (A4). We can rewrite ei(s) purely in terms of average phenotypes: 
 

𝑒3(𝑠) = ⟨𝑦|𝐺37⟩ − ⟨𝑦|𝐺⟩. 
 
Similarly, 
 

𝑒3!,3&(𝑠!, 𝑠() = F𝑦G𝐺3!,3&
7!,7&H − F𝑦G𝐺3!

7!H − F𝑦G𝐺3&
7&H + ⟨𝑦|𝐺⟩. 

 
In general, 
 
𝑒3!,…,3+(𝑠!, … , 𝑠,) = F𝑦G𝐺3!,…,3+

7!,…,7+H − > F𝑦�𝐺34! ,…,34+(2
74! ,…,74+(2H

4!9⋯94+(!∈M

+ > F𝑦�𝐺34! ,…,34+(&
74! ,…,74+(&H

4!9⋯94+(&∈M

−⋯, 

 
where K is the set 1, …, k. More compactly, 
 

𝑒3!,…,3+(𝑠!, … , 𝑠,) = > (−1),0C > F𝑦�𝐺34! ,…,342
74! ,…,742H

4!9⋯942∈M-NCN,

. 

 
What is important here is that 𝑒3!,…,3+(𝑠!, … , 𝑠,) is a linear combination of the average phenotype of every 
possible subset of G defined by fixing the states at one or more of the k sites i1, …, ik. Any such average 
phenotype can be decomposed by fixing the state at another site 𝑗 ≠ 𝑖!, … , 𝑖,. For example, 
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F𝑦G𝐺3!
7!H =

1
𝑞
>F𝑦G𝐺3!,A

7!,FH .
F∈=

 

 
Therefore, 
 

𝑒3!,…,3+(𝑠!, … , 𝑠,) =
1
𝑞
> > (−1),0C > F𝑦�𝐺34! ,…,342 ,A

74! ,…,742 ,FH
4!9⋯942∈M-NCN,F∈=

	

=
1
𝑞
>𝑒3!,…,3+(𝑠!, … , 𝑠,)|*-7
F∈=

. 
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Appendix 6. Unbiased estimation by regression 
 
We show that unbiased estimates of reference-free effects can be obtained through a two-step procedure. 
We first solve the optimization 
 

𝑦̀, = argmin > [𝑦(𝒈) − 𝑦,(𝒈)](
𝒈∈*∗

. (A5) 

 
Because of the degeneracy of generalized linear decomposition, there are many solutions to this 
optimization. We choose any solution and enforce the zero-mean property by changing its terms without 
altering the predicted phenotype. We show that this normalization is always possible. We then show that 
𝑦̀, thus obtained is an unbiased estimate of reference-free decomposition. 
 
We reformulate Eq. (A5) as a standard regression. Let y be a vector of sampled phenotypes and β a vector 
of effects to infer. We write 
 

𝑦 = 𝑋𝛽 + 𝜖, (A6) 
 
where X is the design matrix specifying how the effects map to phenotypes. The error ε is the sum of all 
unmodeled higher-order effects and measurement noise. The solution to this regression is not unique: X is 
a singular matrix because of the degeneracy of generalized linear decomposition. We can make X non-
singular by building in the zero-mean property. For example, we can eliminate the column of X 
corresponding to 𝑒3(𝑞) by coding it as 
 

𝑒3(𝑞) = − > 𝑒3(𝑡)
F∈=\B

. 

 
Similarly, we can eliminate the column of X corresponding to 𝑒3!,3&(𝑠!, 𝑞) by coding it as 
 

𝑒3!,3&(𝑠!, 𝑞) = − > 𝑒3!,3&(𝑠!, 𝑡)
F∈=\B

. 

 
In general, every term involving state q in any site can be eliminated by coding it as a linear combination 
of terms involving states 1 to (q – 1) in accordance with the zero-mean property. The design matrix thus 
obtained is non-singular and can be used to infer for all terms only involving states 1 to (q – 1). Estimates 
for terms involving state q can be calculated post-hoc using the zero-mean property. This proves the 
existence of a solution 𝑦̀, whose terms satisfy the zero-mean property. 
 
We now show that the expected value of the error ε in Eq. (A6) is zero across randomly sampled 
genotypes. Since the design matrix is non-singular and the errors are unbiased, by the Gauss-Markov 
theorem the regression estimates for terms containing states 1 to (q – 1) are unbiased. The post-hoc 
estimates for terms containing state q are also unbiased because they are linear combinations of terms 
containing states 1 to (q – 1). 
 
In a linear decomposition of order k, the error for a genotype g is given by 
 

𝜖(𝒈) = > 𝑒3!,…,3+8!+𝑔3! , … , 𝑔3+8!,
3!9⋯93+8!∈8

+⋯+ 𝑒!,…,+(𝑔!, … , 𝑔+). 
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(Measurement noise is not shown because it does not affect the expected value of ε.) Since genotypes are 
randomly sampled, it suffices to show that the expected value of 𝜖 is zero across all genotypes. We prove 
a stronger result:  
 

[𝑒3!,…,3+\𝐺] =
1
𝑞+
>𝑒3!,…,3+(𝑔!, … , 𝑔,)
𝒈∈*

	

=
1
𝑞+

> > 𝑒3!,…,3+(𝑔!, … , 𝑔,)
𝒈∈*0!,…,0+

.!,…,.+7!,…,7+∈=

	

=
1
𝑞+

> > 𝑒3!,…,3+(𝑠!, … , 𝑠,)
𝒈∈*0!,…,0+

.!,…,.+7!,…,7+∈=

	

=
1
𝑞,

> 𝑒3!,…,3+(𝑠!, … , 𝑠,)
7!,…,7+∈=

	

= 0. 
 
It follows that ⟨𝜖|𝐺⟩ = 0. 
 
We now show how the zero-mean property can be enforced post hoc. Consider enforcing the zero-mean 
property on a first-order linear decomposition without altering the predicted phenotypes (hereafter called 
“normalizing”). To normalize the terms for site i, we first subtract from each term the mean of all terms at 
site i: 
 

𝛿3(𝑠) = 𝑒3(𝑠) − 𝑒3(⋅) ⟹ 𝛿3(⋅) = 0. 
 
Using 𝛿3(𝑠) in place of 𝑒3(𝑠) alters the predicted phenotype of every genotype by −𝑒3(⋅). This can be 
corrected by adding 𝑒3(⋅) to the intercept. Overall, the following modifications normalize any first-order 
linear decomposition: 
 

𝛿3(𝑠) = 𝑒3(𝑠) − 𝑒3(⋅),	
𝛿- = 𝑒- +>𝑒3(⋅)

3∈8

. 

 
Similarly, the following modifications normalize any second-order linear decomposition: 
 

𝛿3!,3&(𝑠!, 𝑠() = 𝑒3!,3&(𝑠!, 𝑠() − 𝑒3!,3&(⋅, 𝑠() − 𝑒3!,3&(𝑠!,⋅) + 𝑒3!,3&(⋅,⋅),	

𝛿3(𝑠) = [𝑒3(𝑠) − 𝑒3(⋅)] + > I𝑒3,A(𝑠,⋅) − 𝑒3,A(⋅,⋅)J
A∈8\3

,	

𝛿- = 𝑒- +>𝑒3(⋅)
3∈8

+ > 𝑒3!,3&(⋅,⋅)
3!93&∈8

. 

 
For any third-order linear decomposition: 
 

𝛿3!,3&,3)(𝑠!, 𝑠(, 𝑠1)
= 𝑒3!,3&,3)(𝑠!, 𝑠(, 𝑠1) − I𝑒3!,3&,3)(⋅, 𝑠(, 𝑠1) + 𝑒3!,3&,3)(𝑠!,⋅, 𝑠1) + 𝑒3!,3&,3)(𝑠!, 𝑠(,⋅)J
+ I𝑒3!,3&,3)(⋅,⋅, 𝑠1) + 𝑒3!,3&,3)(⋅, 𝑠(,⋅) + 𝑒3!,3&,3)(𝑠!,⋅,⋅)J − 𝑒3!,3&,3)(⋅,⋅,⋅), 
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𝛿3!.3&(𝑠!, 𝑠() = 𝑒3!,3&(𝑠!, 𝑠() − I𝑒3!,3&(⋅, 𝑠() + 𝑒3!,3&(𝑠!,⋅)J + 𝑒3!,3&(⋅,⋅)

+ > I𝑒3!,3&,3)(𝑠!, 𝑠(,⋅) − 𝑒3!,3&,3)(⋅, 𝑠(,⋅) − 𝑒3!,3&,3)(𝑠!,⋅,⋅) + 𝑒3!,3&,3)(⋅,⋅,⋅)J
3)∈8\3!,3&

, 

 
𝛿3(𝑠) = [𝑒3(𝑠) − 𝑒3(⋅)] + > I𝑒3,A(𝑠,⋅) − 𝜖3A(⋅,⋅)J

A∈8\3

+ > I𝑒3,A,,(𝑠,⋅,⋅) − 𝜖3,A,,(⋅,⋅,⋅)J
A9,∈8\3

, 

 
𝛿- = 𝜖- +>𝑒3(⋅)

3∈8

+ > 𝑒3!,3&(⋅,⋅)
3!93&∈8

+ > 𝑒3!,3&,3)(⋅,⋅,⋅)
3!93&93)∈8

. 

 
Directly applying these normalization formulae is cumbersome for high orders. We provide a simple 
algorithm. First, we normalize the highest-order terms (order k) without correcting for the altered 
phenotypes. This can be done by Eq. (A7) shown below. Then, let yk denote the phenotype predicted by 
the original linear decomposition and zk the phenotypic contribution of the normalized k-th-order terms. 
We must modify the lower-order terms so that their total phenotypic contribution is yk – zk. This can be 
done by using regression to find a linear model of order (k – 1) whose predicted phenotype is yk – zk. Such 
a linear model exists because post hoc enforcement of zero-mean property is always possible. Terms of 
order (k – 1) can then be normalized and the same regression procedure can be used to correct for the 
altered phenotypes by changing the terms of order up to (k – 2). 
 
To show how terms of order k can be normalized, we introduce a notation:	𝑒3!,…,3+(𝑠!, … , 𝑠,)A!,…A2 denotes 
the mean of 𝑒3!,…,3+(𝑠!, … , 𝑠,) across sites j1, …, jl. For example, 
 

𝑒3!,…,3+(𝑠!, … , 𝑠,)3! = 𝑒3!,…,3+(⋅, 𝑠(, … , 𝑠,),	
𝑒3!,…,3+(𝑠!, … , 𝑠,)3!,3& = 𝑒3!,…,3+(⋅,⋅, 𝑠1, … , 𝑠,). 

 
Normalization of a second-order term can be restated as 
 

𝛿3!,3&(𝑠!, 𝑠() = 𝑒3!,3&(𝑠!, 𝑠() − > 𝑒3!,3&(𝑠!, 𝑠()34
4∈{!,(}

+ 𝑒3!,3&(𝑠!, 𝑠()3!,3& . 

 
Denoting the set {1, …, k} by K, terms of order k can be normalized by 
 

𝛿3!,…,3+(𝑠!, … , 𝑠,) = 𝑒3!,…,3+(𝑠!, … , 𝑠,) +>(−1)C
C∈M

> 𝑒3!,…,3+(𝑠!, … , 𝑠,)34! ,…,342
4!9⋯942∈M

. (A7) 

 


