IL-1 β promotes adipogenesis by directly targeting adipocyte precursors

Supplementary Information

This file includes Supplementary Figures 1-11 and Supplementary Table 1

Supplementary Fig. 1. Chow-fed IL1R1^{AKO} **mice have no metabolic phenotype** (related to Fig. 1). (a-d) Food intake (a), glucose (b), insulin (c), and IL-1β (d) levels during fasting-refeeding experiment in 12week-old chow-fed female mice. Food intake, refeeding glucose, insulin, and IL-1β: n=12 IL1R1^{FF}, n=9 IL1R1^{AKO}. Fasting glucose, insulin, and IL-1β: n=10 IL1R1^{FF}, n=9 IL1R1^{AKO}. Glucose baseline: n=22 IL1R1^{FF}, n=18 IL1R1^{AKO}.

(e-h) Relative mRNA expression in scWAT (e), gWAT (f), mWAT (g), and brown adipose tissue (BAT) (h) of 19-20-week-old chow-fed male mice. n=4 IL1R1^{FF}, n=6 IL1R1^{AKO} for *II6* and *Slc2a4*; n=6 IL1R1^{FF}, n=9 IL1R1^{AKO} for remaining genes (e, g). n=4 IL1R1^{FF}, n=9 IL1R1^{AKO} for *II1r1*; n=4 IL1R1^{FF}, n=6 IL1R1^{AKO} for remaining genes (f). n=4 IL1R1^{FF}, n=5 IL1R1^{AKO} for *II6* and *Slc2a4*; n=6 IL1R1^{FF}, n=8 IL1R1^{AKO} for remaining genes (h). (i-k) Insulin tolerance test (i), glucose tolerance test (j), and insulin levels (k) in 11-12- (i) and 12-13-week-old (j-k) male mice. n=26 IL1R1^{FF}, n=30 IL1R1^{AKO} (i), n=24 IL1R1^{FF}, n=27 IL1R1^{AKO} (j), n=14 IL1R1^{FF} and n=16 IL1R1^{AKO} (k).

(I, m) Concentration of circulating glucose and insulin during a glucose tolerance test in 12-13- (I) and 34-36-week-old (m) male chow-fed mice. An injection of saline or IL-1 β (1 µg/kg bw) was administrated 20 minutes before the glucose bolus. n=12 IL1R1^{FF}, n=10 IL1R1^{AKO} (I). n=12 IL1R1^{FF}, n=9 IL1R1^{AKO}-saline, n=10 IL1R1^{AKO}-IL-1 β (m).

(**n**-**p**) Insulin tolerance test (**n**), glucose tolerance test (**o**), and insulin levels (**p**) in 34-36- (**n**) and 35-36-week-old (**o**, **p**) male mice. n=15 IL1R1^{FF}, n=17 IL1R1^{AKO} (**n**). n=15 IL1R1^{FF}, n=19 IL1R1^{AKO} (**o**, **p**).

(**q**) Concentration of circulating glucose during an insulin tolerance test in 46-48-week-old male chow-fed mice. An injection of saline or IL-1 β (1 µg/kg bw) was administrated 20 minutes before the insulin bolus (1.4 U/kg bw). n=9 IL1R1^{FF}-saline, n=8 IL1R1^{FF}- IL-1 β , n=6 IL1R1^{AKO}.

(**r**-**t**) Insulin tolerance test (**r**), glucose tolerance test (**s**), and insulin levels (**t**) in 48-50- (**r**) and 49-52-week-old (**s**, **t**) chow-fed male mice. n=26 IL1R1^{FF}, n=31 IL1R1^{AKO} (**r**). n=25 IL1R1^{FF}, n=31 IL1R1^{AKO} (**s**). n=15 IL1R1^{FF}, n=19 IL1R1^{AKO} (**t**).

(**u-x**) Cell size distribution (**u**), relative mRNA expression in adipocytes from gWAT (**v**), and organ and body weight (**w-x**) in 79-81-week-old chow-fed male mice. n=9 (**u**). n=10 IL1R1^{FF}, n=9 IL1R1^{AKO} for *II6* and *Lep*, n=10 for remaining genes (**v**). n=10 IL1R1^{FF}, n=11 IL1R1^{AKO} for pancreas. n=9 IL1R1^{FF}, n=11 IL1R1^{AKO} for liver (**w**). n=11 (**x**).

n = biological replicates. Data are shown as individual measurements and mean ± SEM. Statistical analyses were performed by two-way ANOVA and Šidák's multiple comparison test (**i-u**) or unpaired nonparametric two-tailed Mann-Whitney U test (all other panels). Source data are provided as a Source Data File.

Vehicle 0.1

1 10

IL-1β (ng/ml)

Supplementary Fig. 2. Female HFD-fed IL1R1^{AKO} mice have no metabolic phenotype while HFD-fed IL1R1^{AKO} male mice show a mild insulin phenotype (related to Fig. 1).

(a-c) Body weight (a), insulin tolerance test (b), and glucose tolerance test (c) in 21-23- (a, c) and 19-21-week-old (b) HFD-fed female mice (n=10).

(d, e) Glucose tolerance test (d) and insulin levels (e) in 22-23-week-old HFD-fed male mice. n=13 IL1R1^{FF}, n=10 IL1R1^{AKO}.

(f, g) Glucose tolerance test (f) and insulin levels (g) in 33-35-week-old HFD-fed male mice. n=13 IL1R1^{FF}, n=9 IL1R1^{AKO}.

(h-k) Cell size distribution (h), relative mRNA expression in adipocytes from gWAT (i), plasma glycerol (j) and organ weight (k) of 40-45-week-old HFD-fed male mice. n=5 (h). n=4 IL1R1^{FF}, n=5 IL1R1^{AKO} for *Pparg*; n=8 IL1R1FF, n=9 IL1R1AKO for remaining genes (i). n=7 (j). n=9 IL1R1FF, n=10 IL1R1AKO for pancreas. n=7 IL1R1FF, n=8 IL1R1^{AKO} for liver (**k**).

(I, m) Insulin tolerance test in 21-22- (I) and 33-34-week-old (m) HFD-fed male mice. n=13 IL1R1^{FF}, n=10 IL1R1^{AKO} (I). n=12 IL1R1^{FF}, n=10 IL1R1^{AKO} (m).

(n) Relative mRNA levels of *ll1r1* in adipocytes from gWAT and scWAT of 12-week-old male mice (n = 5). (o-q) Insulin levels (o) and glucose uptake in gWAT (p) and gonadal adipocytes (q) of WT mice treated with saline or IL-1 β (1 µg/kg bw) 18 minutes prior to euthanasia and tissue harvesting. n=4 (o). n=21 saline, n=19 IL-1 β (p). n=9 saline, n=10 IL-1 β (q).

(r) Glucose uptake in *in vitro* differentiated human adipocytes treated with indicated concentrations of IL-1 β for 2 h (n= 4 independent experiments with 1-2 replicates (7 datapoints for vehicle and 8 for the rest)).

HFD-feeding started at 10 weeks of age. n=biological replicates (\mathbf{a} - \mathbf{q}). Data are shown as individual measurements and mean ± SEM. Statistical analyses were performed by unpaired nonparametric two-tailed Mann-Whitney U test (\mathbf{a} , \mathbf{i} - \mathbf{k} , \mathbf{n} - \mathbf{q}), one-way ANOVA and Tukey's multiple comparisons test (\mathbf{r}), or two-way ANOVA and Šidák's multiple comparisons test (all other panels). Source data are provided as a Source Data File.

Supplementary Fig. 3. IL1R1 ablation does not affect food intake nor adipocyte progenitor subpopulations but alters myeloid cell proportions in WAT (Related to Fig. 2).

(**a**, **b**) Food intake (**a**) and body weight (**b**) of 8-week-old male chow-fed IL1R1-KO and WT mice. n=9 IL1R1-WT, n=10 IL1R1-KO.

(c, d) Proportions of immune cell subpopulations in scWAT (c) and gWAT (d) of 17-week-old HFD-fed IL1R1-KO and WT mice. n=6 IL1R1-WT, n=7 IL1R1-KO.

(e-h) Proportions of adipocyte progenitor subpopulations in scWAT (e, f) and gWAT (g, h) of 9-week-old IL1R1-KO and WT mice HFD-fed for 1 week. n=6 IL1R1-WT, n=8 IL1R1-KO.

Data are shown as individual measurements and mean ± SEM. Statistical analyses were performed by unpaired nonparametric two-tailed Mann-Whitney U test. Source data are provided as a Source Data File.

(**d**, **e**) Spearman (ρ coefficient) correlations between human scWAT mRNA expression of *IL1RN* and BMI (**d**) or body fat percent (**e**) (n=56).

(f) Pearson (r coefficient) correlation between human scWAT mRNA expression of *IL1B* and WAT morphology value (n=56).

Two-tailed p-values.

Supplementary Fig. 5. Cell number and lipid droplet accumulation in IL-1β-treated WAT-derived progenitors (related to Fig. 4).

(**a**, **b**) Cell number in experiments described in Fig. 4b (**a**, n = 3 donors) and 4d (**b**, n = 3 independent experiments with \ge 4 replicates (35 datapoints in vehicle and 12 in rest)).

(c, d) Lipid droplet accumulation (c) and cell number (d) in CD45⁻ stromal vascular cells from scWAT and gWAT of 8–9-week-old male mice, differentiated with or without IL-1 β (10 ng/ml) (n = 5 independent experiments, 3 pooled mice with 2-4 replicates per experiment (18 (scWAT) and 19 (gWAT) datapoints)).

(e, f) Lipid droplet accumulation (e) and cell number (f) in CD45⁻ stromal vascular cells from scWAT and gWAT of male *ob/ob* mice, differentiated with or without IL-1 β (10 ng/ml) (n = 3 independent experiments with 1-16 replicates (scWAT: 11 (vehicle) and 9 (IL-1 β) datapoints; gWAT: 26 (vehicle) and 23 (IL-1 β) datapoints)).

Statistical analyses by paired (a) or unpaired (c-f) two-tailed *t* test, or one-way ANOVA and Dunnett's multiple comparisons test compared to vehicle (b). Data are represented as individual measurements and mean \pm SEM or box-and-whisker plots (line inside box = median; box limits = first and third quartiles; whisker ends = minima and maxima). Source data are provided as a Source Data File.

Supplementary Fig. 6. Effect of long-term IL-1β treatment on adipogenesis (related to Fig. 5).

(**a**-**b**) Lipid droplet accumulation (**a**) and cell number (**b**) in hASCs differentiated for 13 days with IL-1 β (10 ng/ml) (n = 3 independent experiments with \geq 4 replicates (35 datapoints in vehicle and 12 in the rest)). (**c**) *PPARG* and *ADIPOQ* expression in hASCs differentiated for 13 days with IL-1 β (10 ng/ml) (n = 3 independent experiments with 2 replicates).

Statistical analyses by one-way ANOVA and Dunnett's multiple comparisons test compared to vehicle. Data are represented as box-and-whisker plots (line inside box = median; box limits = first and third quartiles; whisker ends = minima and maxima) or individual data points and mean ± SEM. Source data are provided as a Source Data File.

Supplementary Fig. 7. IL1R1 expression in response to pre-treatment (related to Fig. 6).

IL1R1 expression in the same experiment as described in Fig. 6c-d. Conditions are color/pattern coded as in Fig. 6b-d. Statistical analyses by two-way ANOVA and Šidák's and Tukey's multiple comparisons tests (n = 3 independent experiments with 2 replicates). Data are represented as individual data points and mean ± SEM. Source data are provided as a Source Data File.

Supplementary Fig. 8. *IL1B*, *CEBPD* and *CEBPB* are upregulated in human scWAT postprandially. (a-c) Normalized expression values of *IL1B* (a), *CEBPD* (b), and *CEBPB* (c) at baseline (0 h) and 4 h after a meal in scWAT from middle-aged males, analysed from a publicly available microarray dataset (n = 19). Paired two-tailed t test (a, c) or Wilcoxon matched-pairs signed rank test (b).

(**d**, **e**) Spearman (ρ coefficient) (**d**) or Pearson (r coefficient) (**e**) correlations between the absolute postprandial change (4 h – 0 h) in expression values of *IL1B* and *CEBPD* (**d**) or *CEBPB* (**e**) in the same dataset as described in (**a**-**c**).

Supplementary Fig. 9. FACS gating strategy for analysis of EdU⁺ adipocyte nuclei. Representative FACS gating scheme to identify EdU⁺ adipocyte nuclei in WAT of mice shown in Fig. 2r, s, u, v.

Supplementary Fig. 10. FACS gating strategy for analysis of immune cell populations.

Representative FACS gating scheme to identify immune cell populations in the stromal vascular fraction of WT and IL1R1-KO mice shown in Supplementary Fig. 3c, d.

Supplementary Fig. 11. FACS gating strategy for analysis of progenitor subpopulations. Representative FACS gating scheme to identify progenitor subpopulations in the stromal vascular fraction of WT and IL1R1-KO mice shown in Supplementary Fig. 3e-h.

Supplementary Table 1. List of reagents

Antibodies for FACS	SOURCE	IDENTIFIER
Anti-mouse antibodies for immune cell panel		
Anti-CD206-AF488 (Clone C068C2) (1:100)	Biolegend	Cat# <u>141710</u>
Anti-XCR1-PerCP-Cy5.5 (Clone ZET)	Biolegend	Cat# <u>148208</u>
(1:100)		
Anti-CD317-BUV395 (Clone 927) (1:100)	BD Biosciences	Cat# <u>747602</u>
Anti-CD8-BUV496 (Clone 53-6.7) (1:100)	BD Biosciences	Cat# <u>569181</u>
Anti-NK1.1-BUV563 (Clone PK136) (1:50)	BD Biosciences	Cat# <u>741233</u>
Anti-CD172a-BUV615 (Clone P84) (1:100)	BD Biosciences	Cat# <u>751214</u>
Anti-CD49b-BUV661 (Clone HMa2) (1:200)	BD Biosciences	Cat# <u>741523</u>
Anti-CD45-BUV805 (Clone 30-F11) (1:100)	BD Biosciences	Cat# <u>568336</u>
Anti-F4/80-AF647 (Clone Cl:A3-1) (1:10)	Bio-Rad	Cat# <u>MCA497A64</u>
	Laboratories	<u>7</u>
Anti-MHCII-APC/Fire750 (Clone M5/114.15.2) (1:400)	Biolegend	Cat# <u>107651</u>
Anti-CD64-BV421 (Clone X54-5/7.1) (1:50)	Biolegend	Cat# <u>139309</u>
Anti-Ly6C-BV570 (Clone HK1.4) (1:100)	Biolegend	Cat# <u>128030</u>
Anti-CD4-BV605 (Clone RM4-5) (1:50)	Biolegend	Cat# <u>100547</u>
Anti-CD19-BV650 (Clone 6D5) (1:100)	Biolegend	Cat# <u>115541</u>
Anti-CD11c-BV711 (Clone HL3) (1:25)	BD Biosciences	Cat# <u>563048</u>
Anti-Ly6G-BV750 (Clone 1A8) (1:200)	BD Biosciences	Cat# <u>747072</u>
Anti-CD49a-BV786 (Clone Ha31/8) (1:100)	BD Biosciences	Cat# <u>740919</u>
Anti-Siglec-F-PE (Clone E50-2440) (1:100)	BD Biosciences	Cat# <u>562068</u>
Anti-CD11b-PE/Dazzle594 (Clone M1/70)	Biolegend	Cat# <u>101256</u>
(1:200)		
Anti-CD3e-PE-Cy5 (Clone 145-2C11) (1:50)	BD Biosciences	Cat# <u>553065</u>
Anti-TIM4-PE-Cy7 (Clone RMT4-54) (1:50)	Biolegend	Cat# <u>130009</u>
Anti-CD16/CD32 (Clone 2.4G2) (Mouse BD	BD Biosciences	Cat# <u>553142</u>
Fc Block TM)		
	-	-

Anti-mouse antibodies for progenitor subtype panel

Anti-CD45-APC/Cy7 (Clone 30-F11)	BioLegend	Cat# <u>103116</u>
(1:1000)		
Anti-CD31-APC/Fire 750 (Clone MEC13.3)	BioLegend	Cat# <u>102528</u>
(1:1000)		
Anti-CD142 (Polyclonal) (1:20)	Novus Biologicals	Cat# <u>NBP2-15139</u>
Anti-CD54 (ICAM-1)-PE/Cy7 (Clone	BioLegend	Cat# <u>116122</u>
YN1/1.7.4) (1:100)		
Anti-CD26 (DPP-4)-FITC (Clone H194-112)	BioLegend	Cat# <u>137806</u>
(1:200)		
FcR Blocking reagent, mouse (1:10)	Miltenyi Biotec	Cat# <u>130-092-575</u>
Anti-human antibodies for progenitor sorting		
Anti-CD31-PE-Cy7 (Clone WM59) (1:12.5)	BD Biosciences	Cat# <u>563651</u>
Anti-CD34-PE-CF594 (Clone 563) (1:250)	BD Biosciences	Cat# <u>562449</u>
Anti-CD45-AF700 (Clone HI30) (1:100)	BD Biosciences	Cat# <u>560566</u>

Antibodies for other applications		
CD45 MicroBeads, mouse (Clone 30F11.1)	Miltenyi Biotec	Cat# <u>130-052-301</u>
Anti-C/EBPδ (Clone C-6) (Western Blot:	Santa Cruz	Cat# <u>sc-365546</u>
1:500; ChIP: 3 µg)	Biotechnology	
Anti-C/EBPβ (LAP) (Polyclonal) (Western	Cell Signaling	Cat# <u>3087</u>
Blot 1:1000)		
Anti-Lamin A/C (Clone 4C11) (Western Blot	Cell Signaling	Cat# <u>4777</u>
1:1000)		
Anti-P-CREB (S133) (Clone 87G3) (Western	Cell Signaling	Cat# <u>9198</u>
Blot 1:1000)		
Anti-CREB (Clone 48H2) (Western Blot	Cell Signaling	Cat# <u>9197</u>
1:1000)		
Anti-rabbit IgG, HRP-linked (Western Blot	Cell Signaling	Cat# <u>7074</u>
1:10000)		
Anti-mouse IgG, HRP-linked (Polyclonal)	Invitrogen	Cat# <u>G21040</u>
(Western Blot 1:10000)		

Anti-C/EBPβ (Polyclonal) (ChIP: 3 μg)	Santa Cruz	Cat# <u>sc-150</u>
	Biotechnology	
Normal Mouse IgG (Polyclonal) (ChIP: 3 µg)	EMD Millipore	Cat# <u>12-371</u>
Normal Rabbit IgG (Polyclonal) (ChIP: 3 µg)	EMD Millipore	Cat# <u>12-370</u>

Oligonucleotides		
PPARG (Taqman probe)	Applied Biosystems	Hs01115513_m1
ADIPOQ (Taqman probe)	Applied Biosystems	Hs00605917_m1
PLIN1 (Taqman) probe	Applied Biosystems	Hs00193510_m1
PPIA (Taqman probe)	Applied Biosystems	Hs041994521_s1
FABP4 (Taqman probe)	Applied Biosystems	Hs01086177_m1
FASN (Taqman probe)	Applied Biosystems	Hs01005622_m1
ACACB (Taqman probe)	Applied Biosystems	Hs00153715_m1
CCL2 (Taqman probe)	Applied Biosystems	Hs00234140_m1
IL6 (Taqman probe)	Applied Biosystems	Hs00985639_m1
CSF3 (Taqman probe)	Applied Biosystems	Hs00738432_g1
CCL5 (Taqman probe)	Applied Biosystems	Hs00174575_m1
CXCL12 (Taqman probe)	Applied Biosystems	Hs03676656_mH
NFKB1 (Taqman probe)	Applied Biosystems	Hs00765730_m1
IL1R1 (Taqman probe)	Applied Biosystems	Hs00168392_m1
PPARG (SYBR Green primer)	Sigma-Aldrich	F:CCCAGAAAG
		CGATTCCTTCA
		С;
		R:AGCTGATCC
		CAAAGTTGGTG
		G
ADIPOQ (SYBR Green primer)	Sigma-Aldrich	F:GGTCTTATTG
		GTCCTAAGGG;
		R:GTAGAAGAT
		CTTGGTAAAGC
		G

PLIN1 (SYBR Green primer)	Sigma-Aldrich	F:TGGAGACTG
		AGGAGAACAA
		G;
		R:ATGTCACAG
		CCGAGATGG
PPIA (SYBR Green primer)	Sigma-Aldrich	F:CCCACCGTGT
		TCTTCGACATT;
		R:GGACCCGTA
		TGCTTTAGGAT
		GA
FABP4 (SYBR Green primer)	Sigma-Aldrich	F:CAAGAGCAC
		CATAACCTTAG
		;
		R:CTCGTTTTCT
		CTTTATGGTGG
CCL2 (SYBR Green primer)	Sigma-Aldrich	F:AGGTGACTG
		GGGCATTGAT;
		R:GCCTCCAGC
		ATGAAAGTCTC
<i>IL6</i> (SYBR Green primer)	Sigma-Aldrich	F:ACTCACCTCT
		TCAGAACGAAT
		TG;
		R:CCATCTTTGG
		AAGGTTCAGGT
		TG
CEBPD (SYBR Green primer)	Sigma-Aldrich	F:CAGACTTTTC
		AGACAAACCC;
		R:TTTCGATTTC
		AAATGCTGC
CEBPB (SYBR Green primer)	Sigma-Aldrich	F:ATAAACTCTC
		TGCTTCTCCC;
		R:CCGTAGGAA
		CATCTTTAAGC
	1	1

CEBPA (SYBR Green primer)	Sigma-Aldrich	F:AGCCTTGTTT
		GTACTGTATG;
		R:AAAATGGTG
		GTTTAGCAGAG
DDIT3 (SYBR Green primer)	Sigma-Aldrich	F:CTTTTCCAGA
		CTGATCCAAC;
		R:GATTCTTCCT
		CTTCATTTCCA
		G
<i>ll1r1</i> (SYBR Green primer)	Microsynth	F:GCACGCCCA
		GGAGAATATG
		А;
		R:AGAGGACAC
		TTGCGAATATC
		AA
Adipoq (SYBR Green primer)	Microsynth	F:TGACGACAC
		CAAAAGGGCTC
		;
		R:CACAAGTTC
		CCTTGGGTGGA
Fasn (SYBR Green primer)	Microsynth	F:GCTGCGGAA
		ACTTCAGGAAA
		Τ;
		R:AGAGACGTG
		TCACTCCTGGA
		CTT
Lep (SYBR Green primer)	Microsynth	F:GAGACCCCT
		GTGTCGGTTC;
		R:GAGACCCCT
		GTGTCGGTTC
Plin1 (SYBR Green primer)	Microsynth	F:CTGTGTGCAA
		TGCCTATGAGA
		;

		R:CTGGAGGGT
		ATTGAAGAGCC
		G
Hprt (SYBR Green primer)	Microsynth	F:TCAGTCAACG
		GGGGACATAA
		А;
		R:GGGGCTGTA
		CTGCTTAACCA
		G
Gapdh (SYBR Green primer)	Microsynth	F:AGGTCGGTGT
		GAACGGATTTG
		;
		R:TGTAGACCA
		TGTAGTTGAGG
		TCA
Pparg (SYBR Green primer)	Microsynth	F:GCCTATGAGC
		ACTTCACAAGA
		AAT;
		R:GGAATGCGA
		GTGGTCTTCCA
<i>ll6</i> (SYBR Green primer)	Microsynth	F:GCCTTCTTGG
		GACTGATGCT;
		R:TGCCATTGCA
		CAACTCTTTTC
<i>Cd45</i> (SYBR Green primer)	Microsynth	F:ATGGTCCTCT
		GAATAAAGCCC
		А;
		R:TAGCACTATT
		GGTAGGCICC
ADIPOQ (SYBR Green primer for ChIP-	Sigma-Aldrich	F:GGCTTTCACA
qPCR)		ATGTCACTGAC
		TG;

		R:GCTGTAGCT
		ATTGCACAAGG
		TG
PPARG (SYBR Green primer for ChIP-	Sigma-Aldrich	F:GATGTTTTGG
qPCR)		GGCTTAATGGC
		А;
		R:TGGCTGGGT
		CTGAACATCAC

Chemicals, peptides and recombinant proteins		
Bovine Serum Albumin (fatty acid free)	Sigma-Aldrich	Cat#A6003
Bovine Serum Albumin	Sigma-Aldrich	Cat#A4503
Collagenase Type I (for WAT samples from	Worthington	Cat#ILS004197
in vivo experiments)	Biochemical	
	Corporation	
Collagenase from Clostridium histolyticum	Sigma-Aldrich	Cat#C0130
Insulin (in vivo treatments)	NovoNordisk	Actrapid HM
Recombinant Mouse IL-1β	R&D Systems	Cat#401-mL-010
³ H-2-deoxy-glucose	PerkinElmer	Cat#NET328A001
		MC
Phosphatase inhibitor cocktail 2	Sigma-Aldrich	Cat#P5726
Poly-Prep® Columns, AG® 1-X8	Bio-Rad	Cat# 7316212
Ultima Gold	PerkinElmer	Cat#6013326
IL1Ra (in vivo treatments)	Sobi	Kineret®
Human recombinant IL-1β (in vitro	Sigma-Aldrich	Cat#I9401 or
treatments)		Cat#H6291
Human recombinant IFN-γ	Sigma-Aldrich	Cat#I17001
Human recombinant IL-6	Sigma-Aldrich	Cat#SCU0001
Human recombinant MCP-1	Sigma-Aldrich	Cat#SRP3109
Human recombinant TNF-α	Sigma-Aldrich	Cat#T6674
LPS	Sigma-Aldrich	Cat#L4524

Human recombinant IL-1Ra (in vitro	Sigma-Aldrich	Cat#SRP3084
treatments)		
U0126	Cell Signaling	Cat#9903
SB203580	Sigma-Aldrich	Cat#S8307
JNK Inhibitor VIII	EMD Millipore	Cat#420135
Hoechst 33342	Invitrogen	Cat#H3570
Bodipy TM 493/503	Invitrogen	Cat#D3922
HCS LipidTOX TM Red neutral lipid stain	Invitrogen	Cat#H34476
Pierce TM RIPA buffer	Thermo Scientific	Cat#89901
7-aminoactinomycin D	BD Biosciences	Cat#559925
Zombie Aqua TM Fixable Viability Kit	Biolegend	Cat#423102
DAPI Staining Solution	Miltenyi Biotec	Cat#130-111-579
D-[3- ³ H]-glucose	PerkinElmer	Cat#NET331A001
		MC
OptiPhase HiSafe 3	PerkinElmer	Cat#1200.437
Chow Diet	Kliba Nafag	Cat#3436
High-Fat Diet	ssniff Spezialdiäten	Cat#E15742-34
	GmbH	

Critical Commercial Assays		
RNeasy Lipid Tissue Mini Kit	Qiagen	Cat#74804
RNeasy Micro Kit	Qiagen	Cat#74004
RNeasy Plus Universal Mini Kit	Qiagen	Cat#73404
NucleoSpin RNA, Mini kit for RNA	Macherey-Nagel	Cat#740955
purification		
GoScript [™] Reverse Transcriptase	Promega	Cat#A2801
iScript cDNA synthesis kit	Bio-Rad	Cat#1708891
	Laboratories	
GoTaq® qPCR	Promega	Cat#A6001
iQ SYBR Green Supermix	Bio-Rad	Cat#1708884
	Laboratories	
TaqMan Universal PCR Master Mix	Applied Biosystems	Cat#43-181-57

Click-iT [™] Plus EdU Cell Proliferation Kit	Invitrogen	Cat#C10637
Pierce TM BCA Protein Assay Kit	Thermo Scientific	Cat#23227
MAGNA ChIP HiSens Chromatin	Merck	Cat#17-10460
Immunoprecipitation Kit		
eBioscience TM Foxp3/Transcription Factor	Invitrogen	Cat#00-5523-00
Staining Buffer Set		
Mix-n-Stain TM CF TM 647 Antibody Labeling	Sigma-Aldrich	Cat#MX647S100
Kit		