
Should AI models be explainable to clinicians? 

By 

Gwénolé ABGRALL(1)(2) 

Andre L. HOLDER(3) 

Zaineb CHELLY DAGDIA (4) 

Karine ZEITOUNI(4) 

Xavier MONNET(1) 

 

(1) AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, 

Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, 

Le Kremlin-Bicêtre, France. 

(2) Service de Médecine Intensive Réanimation, Centre Hospitalier Universitaire Grenoble Alpes, 

Av. des Maquis du Grésivaudan, 38700, La Tronche, France. 

(3) Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, 

Emory University School of Medicine, Atlanta, Georgia, United States. 

(4) Laboratoire DAVID, Université Versailles Saint-Quentin-en-Yvelines, 78035 Versailles, France 

 

SUPPLEMENTARY MATERIALS 

  



A) EXPLAINABILITY VS INTERPRETABILITY DEFINITIONS: 

Various definitions of explainability can be found within the AI literature, sometimes used 

interchangeably with the concept of interpretability. However, nuanced distinctions exist 

between these two notions, which are elaborated upon below. 

 

Explainability 

Explainability refers to the model's capacity to offer explanations for its decisions in a manner 

understandable to humans. Consequently, Explainable AI (XAI) focuses on elucidating the 

"why" aspect of AI-assisted decision-making, with the aim of enhancing transparency and 

comprehensibility for humans (1). 

Considering the example of a hypothetical machine learning model predicting the risk of sepsis 

in critically ill patients in an ICU, explainability would involve providing a clear and 

understandable explanation for why the machine learning model predicted a high risk of 

sepsis for a specific patient. The explanation would highlight the specific clinical parameters 

that contributed to the high-risk prediction (e.g., elevated heart rate, abnormal white blood 

cell count, and low blood pressure, known factors associated with sepsis development) and 

provide a logical connection between these parameters and the prediction of sepsis risk. This 

would enable the medical team to comprehend the model's decision-making process and offer 

valuable insights for further evaluation and intervention. 

 

Interpretability 

On the other hand, interpretability emphasises the "how " aspect of decision-making. It refers 

to the ability of a learning model to reveal the process it used to reach a decision, showing the 

rationale behind its choices.  



Continuing with the previous scenario, interpretability would involve detailing the step-by-

step process by which the machine learning model derived its prediction of high sepsis risk for 

a specific patient. This entails delving into the specific computations, feature importance, and 

contributions of individual clinical indicators that influenced the model's prediction.  

Some models inherently exhibit interpretability (transparent models or "white-box"), while 

others are not immediately understandable ("black-box"), necessitating supplementation with 

an interpretable and faithful explanation (post-hoc explanation). These explanations can be 

either global or local, applicable specifically to a particular model or universally to other 

models (agnostic methods).  

Interpretable systems are considered explainable for a targeted audience when their 

processes are readily comprehensible to that audience. Conversely, one does not necessarily 

need to understand the mechanistic "how " to discern clear patterns in certain variables that 

might elucidate a model’s predictions for clinicians. 

 

B) LOCAL VERSUS GLOBAL EXPLANATION: 

Explanations within the domain of XAI are categorised into two main types: global and local 

(2). 

Global Explanation: "Why does the model make its decisions in the way that it does, in 

general?" 

Global explanations delve into the model's decision-making process at a macro level, offering 

insights into its foundational mechanisms and overarching strategies, such as identifying the 

most influential features for a given predictive task. 



Local Explanation: "Why did the model make this particular decision for this specific 

instance?"  

Local explanations narrow the focus to the justification of individual decisions, shedding light 

on the specific reasoning behind distinct predictions for particular instances. 

 

C) EXPLAINABILITY METHODS TAXONOMY: 

Here we present a classification of explainability methods, accompanied by examples for each 

category. Extended descriptions and implementation examples can be found elsewhere (3). 

 

I. DATA EXPLAINABILITY TECHNIQUES: 

 

a) Exploratory Analysis and Visualisation: 

Initial techniques to understand the data's patterns, distributions, and relationships. 

 

• Histograms and Bar Charts, Scatter Plots, Heat Maps… 

 

b) Dimensionality Reduction techniques: 

Essential for making high-dimensional data interpretable. Here are examples of most used 

techniques: 

 

● PCA (Principal Component Analysis): 



Transforms correlated features into uncorrelated ones, capturing the most variance with 

fewer dimensions. It uses orthogonal transformations and is best suited for linear 

relationships. 

● t-SNE (t-Distributed Stochastic Neighbour Embedding): 

Visualises high-dimensional data by preserving neighbouring point structures. It's effective for 

visualising clusters, especially with non-linear relationships, but results may vary on repeated 

runs. 

 

II. INTRINSICALLY INTERPRETABLE / WHITE-BOX MODELS: 

Models where the decision-making process is inherently transparent. 

 

● Linear Regression/Logistic Regression:  

Feature coefficients indicate importance and influence direction. Direct inspection of 

coefficients reveals feature contributions. 

 

● Decision Trees:  

Tree structures where nodes represent decisions based on feature values. The tree can be 

visualised, and feature depth indicates importance. 

 

● Generalised Additive Models (GAMs):  

Extensions of linear models that capture non-linear relationships using smooth functions. Each 

feature has its own function, visualised to understand its relationship with the output. 

 

III.  POST-HOC APPROACHES: 



Methods that explain decisions after model training, categorised into model-specific or 

model-agnostic. 

 

1. Model-agnostic strategies: 

Model-agnostic strategies are universally applicable, analysing feature-output relationships 

and data distributions without regard to the specific model's internal workings. 

 

a)  Surrogate Models: 

Surrogate models leverage simpler, more transparent algorithms like linear regression or 

decision trees to approximate the outputs of complex AI models. These models facilitate a 

deeper understanding of the intricate model's logic and decision-making process. 

 

• Global Surrogate Models:  

Utilising data that mirrors the distribution and characteristics of the original model's training 

set, these models employ intuitive methods such as Generalised Additive Models (GAM), 

Logistic Regression, or Decision Trees. Their effectiveness lies in their ability to broadly 

replicate the complex model's outputs, offering a window into its overall operation and logic. 

 

• LIME (Local Interpretable Model-agnostic Explanations):  

Works by perturbing the input data and observing how the predictions change. For example, 

if the input is an image, LIME modifies small regions of the image, such as turning superpixels 

(connected groups of pixels with similar colours) on or off. It then fits a local surrogate model 

to approximate the complex model's behaviour, providing insights into how the model 



behaves near specific instances (e.g., a particular image). As a Local Surrogate Model, it is 

designed for explaining 'individual' predictions. 

 

b) Visualisation Techniques: 

• Partial Dependence Plots (PDP):  

PDPs visualise the effect of a single feature on the predicted outcome, averaged over all other 

features. They help in understanding whether the relationship between the target and a 

feature is linear, monotonic, or more complex. 

 

c) Feature-based Explanations: 

These techniques focus on the contribution and importance of individual input features to the 

model's output. 

● Permutation Importance:  

By randomly shuffling each predictor one at a time and observing the degradation in the 

model's performance, this method gauges the importance of each feature. It's a robust 

method but can be computationally intensive. 

 

● SHAP (SHapley Additive exPlanations):  

SHAP (SHapley Additive exPlanations) is a method from game theory used to explain machine 

learning model predictions. Each feature (e.g. age, blood pressure, cholesterol level..) is 

treated as a "player" in a game, with the prediction being the "payout." SHAP values measure 

the average contribution of each feature by evaluating how the prediction changes when the 

feature is included in all possible combinations of features. SHAP provides a unified measure 



of feature importance and offers both local (individual predictions) and global (overall 

behaviour) explainability. 

 

d) Counterfactual Explanations: 

Counterfactual explanations describe hypothetical scenarios that illustrate how altering 

specific inputs can change a model's prediction. For example, if a model predicts a high risk of 

sepsis based on certain vital signs, a counterfactual explanation might state: "If the white 

blood cell count were lower, the predicted risk of sepsis would decrease." This approach 

highlights the causal impact of particular features on the model's outcome. Counterfactual 

explanations are especially human-friendly because they are contrastive, focusing on 

differences from the current scenario, and selective, typically involving minimal changes to 

the inputs. However, one situation can generate multiple counterfactuals, leading to the 

"Rashomon effect," where different, yet plausible, explanations exist for the same outcome. 

This multiplicity requires careful consideration in selecting the most relevant or useful 

counterfactual explanation. 

 

2. Model-specific approaches: 

Model-specific approaches delve deeply into a model's architecture and processes, focusing 

on the Algorithm’s structure and intermediate stages, but their application is limited to certain 

types of algorithms. 

 

● Visual Explanations (Saliency Mapping):  

Saliency mapping is primarily used in neural networks, particularly for tasks like image 

classification. It visually highlights regions of an input image that are crucial for a model's 



decision by computing saliency scores. These scores measure the contribution of individual 

pixels to the network's output. By creating a saliency map, this technique identifies which 

parts of the image the model focuses on during its decision-making process. 

  



Supplementary Fig 1. A Taxonomy of XAI Methods  

As noted by Speith et al. (4), there is no universally agreed-upon taxonomy, reflecting the 

extensive scope and dynamic evolution of the field, as well as the diverse goals of various 

stakeholders in AI explainability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Fig. 2 Classical evoked balance between the need for justify individual 

decision (e.g. in life-threatening medical situations), and model performance. 

The prevailing notion of a trade-off between accuracy and explainability is now being 

questioned, especially in medical models with detailed, structured data, rooted in 

physiopathology. In these cases, the disparity in performance between interpretable and more 

complex models is often negligible (5).  
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