
ARTICLE

Genetic effects on the skin methylome in healthy older twins
Authors

Christopher J. Shore, Sergio Villicaña,

Julia S. El-Sayed Moustafa, ..., Tim D. Spector,

Kerrin S. Small, Jordana T. Bell

Correspondence
christopher.shore@kcl.ac.uk (C.J.S.),
jordana.bell@kcl.ac.uk (J.T.B.)
We estimate the heritability of the human

skin DNA methylome, followed by

identification of specific genetic effects

underlying skin DNA methylation levels. We

also explored shared genetic effects

influencing both DNA methylation and gene

expression levels in skin, including in genetic

loci linked to skin diseases and phenotypes.
Shore et al., 2024, The American Journal of Human Genetics 111, 1932–1952
September 5, 2024 � 2024 The Authors.
https://doi.org/10.1016/j.ajhg.2024.07.010 ll

mailto:christopher.shore@kcl.ac.�uk
mailto:jordana.bell@kcl.ac.�uk
https://doi.org/10.1016/j.ajhg.2024.07.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2024.07.010&domain=pdf


ARTICLE

Genetic effects on the skin
methylome in healthy older twins

Christopher J. Shore,1,* Sergio Villicaña,1 Julia S. El-Sayed Moustafa,1 Amy L. Roberts,1 David A. Gunn,2

Veronique Bataille,1 Panos Deloukas,3 Tim D. Spector,1 Kerrin S. Small,1 and Jordana T. Bell1,*
Summary
Whole-skin DNA methylation variation has been implicated in several diseases, including melanoma, but its genetic basis has not yet

been fully characterized. Using bulk skin tissue samples from 414 healthy female UK twins, we performed twin-based heritability and

methylation quantitative trait loci (meQTL) analyses for >400,000 DNA methylation sites. We find that the human skin DNA methyl-

ome is on average less heritable than previously estimated in blood and other tissues (mean heritability: 10.02%). meQTL analysis iden-

tified local genetic effects influencing DNAmethylation at 18.8% (76,442) of tested CpG sites, as well as 1,775 CpG sites associated with

at least one distal genetic variant. As a functional follow-up, we performed skin expressionQTL (eQTL) analyses in a partially overlapping

sample of 604 female twins. Colocalization analysis identified over 3,500 shared genetic effects affecting thousands of CpG sites (10,067)

and genes (4,475). Mediation analysis of putative colocalized gene-CpG pairs identified 114 genes with evidence for eQTL effects being

mediated by DNAmethylation in skin, including in genes implicating skin disease such as ALOX12 and CSPG4. We further explored the

relevance of skinmeQTLs to skin disease and found that skinmeQTLs andCpGs under genetic influencewere enriched formultiple skin-

related genome-wide and epigenome-wide association signals, including for melanoma and psoriasis. Our findings give insights into the

regulatory landscape of epigenomic variation in skin.
Introduction

DNA methylation of cystosine residues at CpG dinucleo-

tides is one of the most well-studied epigenetic DNA mod-

ifications. The number of diseases and phenotypes associ-

ated with changes in DNA methylation highlights the

importance of understanding both the sources of DNA

methylation variation and the biological impact of DNA

methylation changes.

Although changes in DNAmethylation have been attrib-

uted to a plethora of environmental factors, heritability

and quantitative trait locus (QTL) analyses show a substan-

tial genetic contribution to variation in the DNA methyl-

ome. Indeed, twin-based heritability studies of DNA

methylation in whole blood show that the majority of

DNA methylation variation in >10% of measured CpG

sites is attributable to narrow-sense heritability.1 More

recently, a study by the Genetics of DNAMethylation Con-

sortium (GoDMC) performed DNA methylation QTL

(meQTL) analyses in blood samples from more than

32,000 participants and found that over 45% of all tested

CpG sites were associated with at least one meQTL,2

emphasizing the impact of genetic effects on the DNA

methylome. These results are in line with other genetic

studies of the blood methylome, both based on the Illu-

mina Infinium HumanMethylation 450 BeadChip Array

(Illumina 450k) platform, assaying 2% of the DNAmethyl-

ome,2–11 and more recently on the Illumina Infinium

MethylationEPIC BeadChip platform, assaying 3.7% of

the DNA methylome.12,13 meQTLs have also been found
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to overlap with other molecular QTLs, including expres-

sion QTLs (eQTLs). Some meQTL studies have explored

this further, showing evidence that eQTL effects can be

mediated by meQTLs and vice versa.14–16 In some cases,

there is evidence to suggest such mediated effects are

involved in disease mechanisms and may explain genetic

variant-disease associations identified in genome-wide as-

sociation studies (GWASs).4,14–17

Although the largest meQTL studies to date have been

carried out in blood, meQTL studies in disease-relevant tis-

sues identify substantial tissue-specific meQTL effects, for

example, in heart, adipose, lung, ovary, kidney, prostate,

cerebellar, cortical, and pons tissues.6,8–11,18–21 As an

example, Schulz et al.7 found that 66% of hippocampal

cis-meQTL effects were replicated in whole blood. Simi-

larly, Min et al.2 found that blood cis-meQTL effects were

only partially shared with adipose and brain cis-meQTL ef-

fects (rb ¼ 0.73 and 0.59, respectively) while Lin et al.22

found that CpGs associated with meQTLs in pre-frontal

cortex, saliva, and blood samples showed overlaps of

only 31%–68%.

Skin plays a vital role in human health, acting as a pro-

tective barrier against infection, physical and chemical

injury, preventing loss of moisture, and providing sensory

inputs of touch and heat. Thus, when these functions are

impaired by disease, injury, or aging, there can be systemic

effects on the body. DNA methylation in skin has been

associated with numerous traits such as melanoma

risk,4,23 nevus count,24 and skin aging markers,25–28 all of

which have also been associated with genetic variants in
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multiple GWAS.29–34 Greater understanding of the genetic

basis of the skin methylome may improve our knowledge

of the mechanisms underlying skin traits and may poten-

tially reveal new therapeutic targets for the treatment of

skin diseases and attenuation of skin aging. However,

although meQTL effects have been detected in primary

melanocyte and melanoma samples,4 to date, no compre-

hensive genome-wide analyses of DNAmethylation herita-

bility or meQTL analyses have been performed in whole

skin. Changes in skin DNA methylation associated with

nevus count have been linked to targeted genetic variants,

and meQTL effects involving genetic variants linked

to melanoma biology have been identified in melano-

cytes, warranting further exploration of such genetic im-

pacts on the human skin methylome at genome-wide

resolution.4,24

To better understand the processes underlying DNA

methylation variation in skin, we explored the genetic ba-

sis of the skinmethylome using a 2-fold approach. First, we

performed genome-wide heritability analyses of skin DNA

methylation on the Illumina 450K array using a twin-

based study design. Secondly, we carried out genome-

wide meQTL detection in skin tissue, identifying tens of

thousands of meQTL-CpG associations. Follow-up ana-

lyses explored the genomic distribution of these meQTL ef-

fects and their colocalization with eQTLs to assess evidence

for shared genetic basis of the skin methylome and tran-

scriptome. We also considered the impact of skin meQTLs

on human skin phenotypes by integrating our results with

previous epigenome-wide association studies (EWASs) and

GWAS findings for skin-related phenotypes. Our findings

provide genome-wide identification of a robust effect of ge-

netic variation on the whole-skin methylome with in-

sights for human health and disease.
Material and methods

Sample and phenotype collection

Skin DNA methylation and gene expression profiles were

explored in 414 and 706 female twins, respectively

(overlap ¼ 361), from the TwinsUK Adult Twin Registry.35

The sample consisted of predominantly older (mean age of

59, age range of 38–84) female individuals of self-reported

European ancestry, which informed choice of imputation

reference panel and validation datasets. DNA methylation

was profiled in 70 paired monozygotic (MZ) twins, 140

paired dizygotic (DZ) twins, and 204 singletons. Gene

expression was profiled in 220 paired MZ twins, 336 paired

DZ twins, and 150 singletons. These individuals were not

selected for disease, and the TwinsUK cohort has represen-

tative means and ranges of quantitative phenotypes to an

age-matched population in the UK.36

Sample collection, DNAmethylation profiling, and gene

expression profiling have previously been described for

subsets of these data.24,37 In brief, punch biopsies (8 mm)

were taken from a relatively photo-protected region adja-
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cent and inferior to the umbilicus, and fat tissue was me-

chanically separated from the skin biopsy. DNA and RNA

were extracted from the whole-skin tissue section, and

DNA methylation and gene expression profiling were

then performed. Written informed consent was obtained,

and the procedures were in accordance with the ethical

standards of the St. Thomas’ Research Ethics Committee

(REC reference 07/H0802/84).

Genome-wide skin DNA methylation profiles

DNA samples were extracted from the skin biopsies as pre-

viously described,24 and bisulfite converted in preparation

for DNA methylation profiling. Genome-wide DNA

methylation profiling of the bisulfite converted skin tissue

DNA samples was carried out using the Illumina Infinium

HumanMethylation450 BeadChip (Illumina, San Diego,

CA). At each CpG-site, the resulting DNA methylation

levels were quantified as beta-values, which at an individ-

ual CpG site represents the ratio of intensity signal from

the methylated probes over the sum of intensity signals

from both unmethylated and methylated probes plus

100. Multiple measurements of analytical quality were

then applied. Probes were removed from downstream anal-

ysis if they failed detection in at least one sample or had a

bead count less than 3 in more than 1% of the samples.

Multi-mapping probes were removed, as well as those rec-

ommended for exclusion by Zhou, Laird, and Shen,38

including probes overlapping common SNPs in dbSNP

(minor allele frequency [MAF] > 1%).

A total of 407,348 CpG probes were retained for down-

stream analyses.

Sample identity was verified by comparing genotype

data to genotypes estimated from the 57 autosomal SNP

probes included as control probes on the Illumina 450K

chip. Overall intensity signal and bisulfite conversion effi-

ciency were assessed, and the data were inspected visually

for outliers using beta density plots generated in ENmix.39

Overall, 414 samples passed quality control assessment

and were then normalized using the Regional Regression

on Correlated Probes with quantile normalization algo-

rithm to correct for probe-type bias and reduce technical

variation.40

Skin-cell-type composition estimates were generated us-

ing the EpiSCORE R package.41,42 We used the EpiSCORE

skin-cell-type DNAm reference matrix included in the

package to obtain skin-cell composition estimates for fibro-

blasts, endothelial cells, macrophages, T cells, melano-

cytes, and differentiated and undifferentiated keratino-

cytes. Melanocyte cell-type proportion estimates were

null in every sample and thus excluded from future

analyses.

Principal component analysis (PCA) was performed on

the normalized methylation betas after removal of the X

and Y chromosome probes and rank-based inverse normal

transformation (to N[0,1]) at each probe using the PCAtools

R package (https://github.com/kevinblighe/PCAtools). The

first 10 principal components (PCs), together explaining
nal of Human Genetics 111, 1932–1952, September 5, 2024 1933
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34% of the total methylation variance, were retained and

tested for associations with potential covariates. Covariates

included age, BMI, smoking status, skin-cell-type composi-

tion estimates, chip, position on chip, median intensity

signal, batch, and bisulfite conversion efficiency. Robust as-

sociations (p < 0.001) with PCs were identified for fibro-

blast, endothelial cell,macrophage, Tcell, and differentiated

and undifferentiated keratinocyte cell proportions, as well

as BMI, chip, batch, and bisulfite conversion efficiency.

Skin gene expression profiles

Skin gene expression profiling has been described previ-

ously.37,43 TwinsUK skin RNA-seq data are deposited in

the European Genome-phenome Archive under EGA:

EGAS00001000805. In brief, the Illumina TruSeq sample

preparation protocol was used to generate the cDNA li-

braries for sequencing, and the Illumina HiSeq 2000 ma-

chine was used to generate 49 bp paired-end reads. Samples

were removed if they failed library preparation, had < 10

million reads, or had sequence data that did not match

directly genotyped data (where available). RNA-seq reads

were then aligned to an hg19 reference genome using

STAR44 version 2.4.0.1, and gene-level quantification was

performed using the QTLtools quan function45 and Gen-

code version 19.46

The gene expression data were filtered to only include

genes with 5 or more counts per million (CPM) in at least

25% of samples, and gene counts were transformed to

trimmed mean of M-values (TMM). TMM-transformed

gene CPMs were then inverse-normalized prior to down-

stream analyses. In total, quantifications of 23,838 genes

in 706 individual whole-skin samples were available for

downstream analysis.

Genotypes

TwinsUK genotype data were available for 394 of the 414

individuals with skin DNA methylation profiles and

for 664 of the 706 of the individuals with skin gene expres-

sion profiles. Genotyping was performed as previously

described.47 Briefly, samples were genotyped using a com-

bination of Illumina HumanHap300, HumanHap610Q,

1M-Duo, or 1.2M-Duo custom arrays, and the normalized

intensity data for each array were pooled separately. The Il-

luminus calling algorithm was then used to assign geno-

types in the pooled data.48 The HRC/1KG Imputation

Preparation and Checking Tool (version 4.2.5) was used

to check input data for accuracy relative to expected Haplo-

type Reference Consortium (HRC) or 1000 Genomes

Project (1000G) inputs prior to imputation, and identified

errors (including incorrect ref/alt allele designations, incor-

rect strand designations, extreme deviations from expected

allele frequencies, and palindromic SNPs with allele fre-

quencies near 0.5) were removed or corrected. Imputation

was performed on the Michigan Imputation Server with

reference panel HRC r1.1 2016, Eagle v2.3 phased output,

EUR population, and quality control and imputa-

tion mode.
1934 The American Journal of Human Genetics 111, 1932–1952, Sep
Where one twin in an MZ pair was not genotyped, dupli-

cate genotype data from their co-twin was used. Variants

were filtered forMAF (>0.05), imputation quality (info score

> 0.8), Hardy-Weinberg equilibrium (p > 1 3 10�6), and

minimumgenotyping rate (>95%). Additionally, only auto-

somal single-nucleotide polymorphism (SNP) variants were

retained. Altogether, 5,253,496 SNPs were included in the

downstream meQTL analyses, and 5,275,301 SNPs were

included in the downstream eQTL analyses. We report all

analysis results using the GRCh37/hg19 reference genome.

Individual-level genotype data can be applied for through

the TwinsUK data access committee (https://twinsuk.ac.

uk/resources-for-researchers/access-our-data/).

Estimating the heritability of the skin methylome

We assessed the narrow-sense heritability of skin DNA

methylation at each measured CpG site by use of the

twin-based heritability model. The model estimated the

proportion of variance attributable to additive (or narrow

sense) heritability (a2 or A), common (shared between

twins in a pair) environmental effects (c2 or C), and un-

shared (between twins in a pair) environmental effects

(e2 or E). Because this ACEmodel generates estimates using

pairs of MZ twins and DZ twins, we excluded singletons

from this analysis, leaving 70 paired MZ and 140 paired

DZ twins for the ACE model. We used the R package

OpenMX49 to construct an ACE model for each CpG site,

and report the maximum likelihood estimates of the best

fitting values for A, C, and E for the methylation. We

assumed equal means and variances between zygosity

groups.

Identification of skin meQTLs

In estimating meQTLs in skin tissue, we followed the

meQTL discovery pipeline outlined by GoDMC2 (https://

github.com/MRCIEU/godmc) where possible. To this

end, we first generated a pedigree genetic relatedness ma-

trix (GRM) using the 394 imputed genotypes. Using a sub-

set of common HapMap3 SNPs (MAF > 0.2) that excluded

long-range linkage disequilibrium (LD) regions, we

calculated the first 20 genetic PCs using the R package

GENESIS.50 The PCA results confirm that none of the

394 individuals were ancestry outliers (>7 SDs from the

mean for any of the first 20 genetic PCs).

We then carried out a number of control checks and ad-

justments on the DNAmethylation data. First, we explored

DNA methylation outliers. For each probe, we removed

DNA methylation values that were outliers (>10 SDs

from themean, performed in three iterations). The remain-

ing methylation values were rank-based inverse normal

transformed at each probe in downstream analysis. Sec-

ond, to reduce non-genetic variation in the DNA methyl-

ation data as much as possible, the normalized methyl-

ation values at each probe were then fit against age, BMI,

chip, position on chip, and family relatedness (estimated

from the pedigree GRM) in a linear mixed model (LMM)

using the R package GenABEL version 1.851.51 Rank-based
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inverse normal transformed residuals from this linear

model were retained. All methylation values removed as

outliers in the previous step were then set to the probe

mean. Third, a PCA was performed on the most variable

20,000 probes from the adjusted methylation data.

GWASs were then performed for the first 20 methylation

PCs. None of the first 20 methylation PCs were under

strong genetic effects (p < 1 3 10�7). Therefore, all 20

were retained as further potential covariates. Fourth, the

methylation residuals from the second step were then re-

gressed on to the 20 methylation PCs. The resulting resid-

uals were retained and rank-based inverse transformed to

N(0,1). These adjusted methylation data were then directly

used in the downstream meQTL analysis.

We used the R package MatrixEQTL version 2.352 to

perform association analyses between all retained adjusted

methylation residuals and genetic variants using a

linear model. We retained all associations in cis (variant

<1 Mbp from CpG site) that surpassed a nominal p value

threshold of p < 1 3 10�3 and all associations in trans

(>1 Mbp from CpG site or different chromosome) that

surpassed a nominal p value threshold of p< 13 10�5. As-

sociation regression coefficients are given with respect to

the minor allele. To correct for multiple testing, we esti-

mated genome-wide false discovery rate (FDR) thresholds

using a permutation approach. We performed 20 genome-

wide permutations of the genotype data where twin pairs

were shuffled together within zygosity groups. We then

estimated the cis and trans FDR thresholds using the best

cis or trans association for each CpG probe in the observed

association analysis and across all permutations. The re-

sulting permutation-based genome-wide FDR 5% thresh-

olds were estimated for both cis (nominal p < 1.67e-5)

and trans (nominal p < 8.17 3 10�11) results.

LD across genetic variants can generate redundant asso-

ciations with variants in LD with true meQTLs. To identify

true causal genetic variants, we also performed conditional

analyses for each CpG probe. This was carried out using

the –cojo-slct function in GCTA.53,54 GCTA –cojo-slct

uses a stepwise model selection procedure to select inde-

pendently associated variants based on strength of associ-

ation. Conditional analysis indicated that 414 detected

trans associations were in fact confounded by LD with cis

associations.

Genomic and functional enrichment of meQTL-CpG

pairs

We explored whether meQTLs and associated CpG sites

were more or less likely to fall in specific genomic regions.

To this end, we used BEDTools version 2.27.155 and CpG

island and UCSC refGene annotations from UCSC56 to

generate annotations for CpG shores (2 kbp regions flank-

ing CpG islands), CpG shelves (2 kbp regions flanking CpG

shores), and open seas (any part of the genome > 4 kbp

from a CpG island). RefGene annotations were used for

exons only, whole gene bodies, 30 untranslated regions

(UTRs), 50 UTRs, and regions 200 and 200–1,500 bp up-
The American Jour
stream of transcription start sites (TSS200 and TSS1500 re-

gions, respectively). We also created annotation only for

the first exon of each gene, as DNA methylation in first

exons has been linked to regulation of gene expression.57

We tested for enrichment and depletion of meQTLs and

CpGs associated withmeQTLs in each annotation category

using an adaptation of the R software package LOLA.58 Our

approach uses LOLA output to perform a Fisher’s exact test

for significant enrichment or depletion of features of inter-

est (i.e., meQTLs or CpGs associated with meQTLs) in

different genomic regions when compared to a set of back-

ground features (i.e., all tested genetic variants and all

tested CpG sites).

We also explored the distribution of meQTL-CpG pairs

in different chromatin state regions in skin. To this end

we used annotation tracks for chromatin states predicted

using an 18-state ChromHMM model (from the Roadmap

Epigenomics Consortium59) in leg skin from the EpiMap

repository.60 We used LOLA to test for enrichment or

depletion of meQTLs and CpGs associated with meQTLs

in these regions compared to a background of all tested ge-

netic variants and CpGs, respectively.

Transcription factor binding at transcription factor bind-

ing sites (TFBSs) could represent both a mechanism of

meQTL effects and mechanisms by which meQTL effects

might alter gene expression phenotypes. We used annota-

tions for CTCF and POL2RA binding from chromatin

immunoprecipitation followed by sequencing (ChIP-seq)

experiments in two female suprapubic skin samples

(ENCODE: ENCBS825XXY and ENCBS296VML) from the

EpiMap repository.60 We merged bed files from each sam-

ple for each transcription factor using BEDTools version

2.27.1,55 and enrichment analyses for regions with CTCF

and POL2RA binding were performed using LOLA as

described previously for enrichment in ChromHMM state

annotated regions.

Enrichment of meQTL effects in skin disease and trait

loci

We explored the enrichment of CpGs associated with

meQTLs in EWASs. Association statistics for EWAS signals

were downloaded from the EWAS Catalog61 and the

EWAS Atlas.62,63 We filtered for studies of skin-related dis-

eases and traits (Tables S2 and S3) with at least five signals

present in our whole-skin DNA methylation data. The as-

sociations from the EWAS Catalog and EWAS Atlas were

thenmerged into a single list for each trait, and trait names

were harmonized (e.g., ‘‘age,’’ ‘‘Age,’’ and ‘‘aging’’ were set

to ‘‘Aging’’). Fisher’s exact tests were used to assess the

enrichment of cis- and trans-CpGs in each trait compared

to a background of all tested CpGs. Significant enrichment

was defined as an odds ratio> 1, Benjamini-Hochberg FDR

< 0.05, and at least five EWAS signals in the tested set

of CpGs.

The enrichment of meQTLs in GWAS results was also

tested. We obtained association statistics from the GWAS

Catalog64 and filtered for studies of skin-related diseases
nal of Human Genetics 111, 1932–1952, September 5, 2024 1935



(Table S4) and traits with at least five significant signals pre-

sent in our imputed genotype data. Fisher’s exact tests were

used to assess the enrichment of all variants associated

with a CpG in cis or trans in each trait compared to a back-

ground of all variants that were not associated with DNA

methylation in cis or trans, respectively. Again, significant

enrichment was defined as an odds ratio > 1, Benjamini-

Hochberg FDR < 0.05, and at least five GWAS signals in

the tested set of genetic variants.

Tissue specificity of skin meQTL effects

We investigated the specificity of the whole-skin meQTL ef-

fects by comparing our results to blood meQTL effects from

Min et al.2 and to melanocyte meQTL effects from Zhang

et al.4 For cis-meQTL effects, we used the p1 statistic
65 to es-

timate the validation rate of blood cis-meQTLs in whole

skin, as well as to estimate the validation rate of whole-

skin cis-meQTLs in melanocytes. Because calculating the

p1 statistic would not be feasible for trans-meQTL effects,

we used the number of overlapping significant effects in

both datasets to estimate the validation rate of whole-skin

trans-meQTL effects in blood and melanocytes. In addition,

we estimated the correlation of skin cis- and trans-meQTL ef-

fects with available overlapping cis- and trans-meQTL effects

in blood using the rb statistic.The rb correlation statistic ac-

counts for error in the estimation of meQTL effects,

reducing under-estimation of the true correlation ofmeQTL

effects.66 Effect alleles from each effect in each dataset were

harmonized prior to analyses.

Identification of local skin eQTLs

We explored local eQTL effects in whole-skin gene expres-

sion in 664 twin samples. We first aimed to minimize the

effect of non-genetic variation in our skin gene expression

data. To this end, we fit the TMM-transformed expression

estimates (CPM) of each gene to an LMM with BMI as a

fixed effect and family and zygosity as random effects.

The rank-normal transformed residuals from this regres-

sion were then used to generate 50 probabilistic estimation

of expression residuals (PEER) factors.67 These PEER factors

represent hidden factors underlying variability in the

expression data not related to BMI or family structure. In

downstream analyses, we used these PEER factors with

no BMI or family-structure effects.

We next sought to determine the number of PEER factors

to include as covariates in the eQTL analysis such that

eQTL discovery would be maximized while avoiding over

fitting the model using an approach similar to that used

by Aguet et al.68 We first generated a separate set of rank-

normal transformed residuals by fitting TMM-transformed

expression estimates (CPM) to an LMM with family and

zygosity as random effects. BMI was not included as a co-

variate in this second model. Using these residuals for

664 samples with matching genotype data, we performed

seven nominal-pass cis-eQTL analyses using QTLTools45

version 1.2, increasing the number of PEER factors

included as covariates in each analysis. Genotyping chip
1936 The American Journal of Human Genetics 111, 1932–1952, Sep
and BMI were included as covariates in all seven analyses.

We then observed the number of discovered genes with

eQTLs (eGenes) at a Benjamini-Hochberg FDR of 5% in

each of the analyses. We determined that including the

first 30 PEER factors as covariates in our primary eQTL

analysis would be optimal (Figure S4).

The 30 PEER factors to be included as covariates in our pri-

mary eQTL analysis were explored for associations with

technical factors, age, and cell-type proportions (estimated

from DNA methylation data). Mean guanine-cytosine

(GC) content was found to correlate strongly with the first

five PEER factors and with five more of the first 30 factors

(Figure S7) and batch effects correlated with 16 PEER factors

(Figure S8). Age was found to correlate significantly, albeit

weakly with 11 PEER factors (Figure S9). In a subset of the

data (n ¼ 361), DNAm-estimated cell-type proportions

showed significant but weak correlations with up to seven

of the first 30 PEER factors (Figures S10–S15). We concluded

that these 30 PEER factors captured a substantial proportion

of non-genetic variability in the gene expression data.

We then performed eQTL association testing of all ge-

netic variant-gene pairs in cis (variant < 1 Mbp from

gene start site) by linear regression using QTLtools45

version 1.2, including BMI, genotyping chip, and 30

PEER factors as covariates. Genome-wide FDR 5% signifi-

cance was estimated using QTLtools, where for each

gene the empirical significance of the most associated

variant was calculated using a beta distribution fitted to

1,000 permutations, as described in Delaneau et al.45

These empirical p values were then corrected for multiple

testing using the Storey-Tibshirani procedure65 and used

to identify gene-level FDR 5% thresholds. All variant-

gene associations with p values below this gene-level

threshold were considered significant cis-eQTL effects. As-

sociation beta values are given with respect to the minor

allele.

As with meQTL effects, LD structures can cause redun-

dant associations between genetic variants in LD with

true eQTLs. We again used the –cojo-slct function in

GCTA53,54 to perform conditional analysis, identifying in-

dependent eQTL effects in skin.

Sharing of skin meQTLs and skin eQTLs

We performed colocalization analyses to determine if skin

cis-meQTLs and proximal skin cis-eQTLs shared causal vari-

ants. We paired each cis-eGene with any cis-CpG that was

significantly associated with any lead eQTL variants for

that gene in cis, resulting in a list of 83,529 gene-CpG pairs,

including 8,200 cis-eGenes and 25,037 cis-CpGs. We then

flipped all eQTL effect betas and alleles when the effect allele

was different between the eQTL and meQTL analyses. Each

of the 83,529 gene-CpG pairs was then tested for colocaliza-

tion of the meQTL and eQTL effects using the coloc R pack-

age.69 Because a substantial proportion of cis-eGenes and

cis-CpGs were associated with multiple distinct QTLs, we

used the Sum of Single Effects (SuSiE) coloc method70 to

relax the assumption of a single causal variant.
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Prior probabilities for a variant being associated with just

the eGene (p1), just the cis-CpG (p2), or with both (p12)

were chosen using the method outlined by Pierce et al.14

and Guo et al.71 Briefly, the prior probability of a variant

being associated with the eGene (p1 þ p12) was set to

0.0026 (i.e., the ratio of independent cis-eQTL variants

[13,550] to the total number of variants tested in the

eQTL analysis [5,275,301]), and the prior probability of a

variant being associated with the cis-CpG (p2 þ p12) was

set to 0.0122 (i.e., the ratio of independent cis-meQTL var-

iants [63,976] to the total number of variants tested in the

meQTL analysis [5,253,496]). We then tested four different

values for p12, corresponding to probabilities of 10%, 25%,

50%, and 75% that an eGene variant was also a lead

meQTL variant. Guo et al.71 propose that best value for

p12 is the value for which the posterior expectation of co-

localization is similar to the prior expectation of colocaliza-

tion. In our analysis, we found that a value of 0.0019 for

p12 (corresponding to a 75% probability that an eQTL

was also a meQTL) gave posterior expectations of colocali-

zation that matched prior expectations better than the

other three tested values (Figure S6). All downstream ana-

lyses were performed with results from the colocalization

analyses with p12 ¼ 0.0019.

To validate the twin-based whole-skin meQTL eQTL co-

localization analysis, we also carried out colocalization ana-

lyses using published eQTL summary statistics obtained

from 517 suprapubic skin samples from version 8 of the

Genotype-Tissue Expression (GTEx) project72 (accessed on

the GTEx portal on January 25, 2024). We followed the co-

localization analysis pipeline as outlined above but only

performed the analyses with a p12 value that corresponded

to a 75% probability that an eQTL was also a meQTL.

Using 346 samples with gene expression, DNA methyl-

ation, and genotype data available, we investigated if poten-

tially colocalized eGene-CpG pairs were undermediation ef-

fects using mediation analyses as outlined by Pierce et al.14

For each potentially colocalized eGene-CpG pair (posterior

probability of a common causal variant > 0.8), we tested

two hypotheses, first, that DNAmethylation was mediating

the SNP effect on gene expression (SME mediation), or sec-

ond, that gene expression was mediating the SNP effect on

DNA methylation (SEMmediation). For each hypothesis in

each pair, we calculated the ‘‘proportion of effect mediated’’

as ðbunadjusted � badjustedÞ=bunadjusted where, for example, in

the SME case, bunadjusted is the SNP effect on gene expression,

and badjusted is the SNP effect after adjusting for DNAmethyl-

ation. A Sobel p value for mediation was then calculated as

previously described by Pierce et al.14
Results

We explored the genetic basis of the human skin methyl-

ome in up to 414 samples from the TwinsUK population

cohort. Our 2-fold approach initially estimated the herita-

bility of the skin methylome using a twin-based heritabil-
The American Jour
ity model and subsequently estimated skin meQTLs char-

acterizing common genetic effects on DNA methylation

in human skin. We explored the distribution of heritable

effects and meQTLs across different regulatory and func-

tional genomic regions. To investigate the mechanisms

by which meQTLs may affect skin phenotypes, we also

estimated skin eQTLs and performed colocalization and

mediation analyses to identify shared genetic impacts on

the skin methylome and transcriptome. Finally, we inves-

tigated the relevance of the skin tissuemeQTLs to skin phe-

notypes and disease by integrating our results with pub-

lished GWAS and EWAS findings and highlight examples

of meQTL effects in genes relevant to skin disease.

Heritability of the skin DNA methylome

We initially assessed the relative impact of genetic and

environmental effects on skin DNA methylation profiles

at over 400,000 CpG sites using whole-skin samples taken

from a relatively photo-protected region in 210 older fe-

male twins in complete twin pairs (35 MZ twin pairs, 70

DZ twin pairs, mean age: 58 [SD: 8.95]). Fitting twin-based

ACEmodels to methylation levels at each CpG site allowed

us to assess the narrow-sense heritability of methylation at

each CpG site. As expected, the majority of variability in

DNA methylation profiles was attributable to environ-

mental effects not shared between twins (e2, Figure 1A).

However, at more than 15,000 CpG sites (3.7%), over

50% of the observed variation in skin methylation was

attributable to narrow-sense heritability (a2). Our estimate

of mean narrow-sense heritability across all measured

autosomal CpG sites was 10.02% (SD ¼ 16.36%) in skin.

Themean narrow-sense heritability of skin DNAmethyl-

ation (10.02%) is substantially lower than previous esti-

mates in blood (20%)1 also calculated using a twin-based

study design, but in a larger sample. Additionally, the pro-

portion of measured CpG sites that were highly heritable

(a2 > 50%) in skin (3.7%), is smaller than that reported

in blood (8.9%) for the same DNA methylation array (Illu-

mina 450K). These comparisons suggest that the DNA

methylome in skin is overall less heritable than the blood

methylome, and consequently, environmental factors

have a larger overall effect on the skin methylome.

We observed different patterns of skin DNAmethylation

heritability for CpGs across regulatory genomic regions

(Figure 1B). CpGs located within 200 bp upstream of tran-

scription start sites (TSSs) or within gene exons, which

have been found to regulate gene expression,57 were on

average less heritable (mean heritability of 8.5% and

8.6%, respectively) than CpGs located in intergenic re-

gions (mean heritability ¼ 11.7%, Mann-Whitney U Test

p < 2.2 3 10�16). Additionally, variable CpG sites (methyl-

ation SD> 0.05) tended to be more heritable (Figure 1C) as

previously observed in blood.1

Local genetic effects on the skin DNA methylome

We next sought to identify common genetic variants that

exhibit local effects on the skin methylome in 394 female
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Figure 1. Heritability of the skin DNA methylome
(A) Proportion of DNA methylation variance explained for each tested CpG site by narrow-sense heritability (a2), common environ-
mental effects between co-twins (c2), and environmental effects not shared between co-twins (e2). Y axis is cut-off at 25,000-count.
(B) Cumulative distribution of narrow-sense heritability for CpG sites in different genetic contexts. UTR, untranslated region; TSS1500,
200—1,500 bp upstream of gene transcription start site (TSS); TSS200, <200 bp upstream of gene TSS.
(C) Cumulative distribution of narrow-sense heritability in variable CpG sites (SD > 0.05) vs. non-variable CpG sites.
(D) Combined r2 of all independent skin meQTL effects per CpG vs. estimated narrow-sense heritability in skin (purple). The number of
CpG sites in each binned group is shown in gray.
twins. Using genotypes imputed to the HRC reference

panel, we tested the association between� 5,200,000 auto-

somal genetic variants with 407,348 skin CpG methyl-

ation levels measured using the Illumina 450K array

in whole-skin samples. meQTL identification included

adjustment of DNAmethylation levels for multiple covari-

ates, in line with the GoDMC pipeline,2 followed by fitting

additive genetic linear models in MatrixEQTL,52 with a

permutation-based approach to calculate FDR adjustment

for multiple testing.

At a genome-wide FDR of 5% (p < 1.56 3 10�5), we find

>7,500,000 genetic variant-CpG associations in cis where

the genetic variant was within 1Mbp to the CpG site. Con-

ditional analysis of these results identified 81,994 indepen-

dent variant-CpG effects in cis (cis-meQTL effects). Alto-

gether, 76,442 CpG sites (cis-CpGs, 18.8% of tested

CpGs) were associated with at least one of 63,976 indepen-

dent genetic loci (cis-meQTLs).

The mean distance between lead independent cis-

meQTL variants and cis-CpGs was 49.8 kb. As expected

from studies in other tissues, cis-meQTL effects closer to

the CpG site had larger effect sizes and smaller p values

(Figure 2A). The most significant association was observed

between cg01543583 and rs1253098, both located in

L3HYPDH (Figure 2B) 2,137 bp apart.
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On average, cis-meQTLs explained 14.8% of the variance

in cis-CpG adjusted DNAmethylation levels, ranging from

4.8% to 100%. As expected, cis-CpGs had greater average

narrow sense heritability (22.1%) compared to non cis-

CpGs (7.2%), and CpG sites under stronger meQTL effects

have higher narrow sense heritability on average

(Figure 1D). However, 26.5% (3,996) of highly heritable

CpG sites (>50% of variance explained by additive herita-

ble effects) were not associated with anmeQTL effect, indi-

cating that a substantial proportion of skin DNA methyl-

ation heritability remains unexplained.

Distal genetic effects on the skin DNA methylome

We also identified distal skin meQTL effects, or in trans,

where the meQTL is at least 1 Mbp away from the CpG

site or on a different chromosome. At a genome-wide FDR

of 5% (p < 2.63 3 10�10), and after conditional analysis,

1,775 CpG sites were associated with at least one indepen-

dent genetic variant in trans. However, a substantial propor-

tion (27.1%) of these CpGs were also associated with cis-

meQTLs. This suggests that some trans effects may be

long-range cis effects, that is, driven by LD between a cis-

meQTL and genetic variants in trans. To address this, the

conditional analyses were repeated for each CpG site, with

cis effects included in the analysis if the CpG site had a
tember 5, 2024



Figure 2. Genetic effects on the whole-skin methylome
(A) Distance between lead cis-meQTL and CpG vs. strength of association of the meQTL effect.
(B) Most associated cis-meQTL association between variant rs1253098 (chr14:59945536) and cg01543583 (chr14:59947673).
(C) Most associated trans-meQTL association between the variant rs10744202 (chr12:125800244) and cg03923277 (chr12:104359732).
(D) Enrichment and depletion of meQTL effects in different genomic contexts. Green indicates significant (FDR < 0.05) enrichment,
purple indicates significant depletion. CpG islands based on UCSC refGene annotations (CpG shore, <2 kbp from CpG island; CpG
shelf, 2–4 kbp from CpG island; open sea, >4 kbp from CpG island), and gene context is based on refGene annotations (TSS200, <
200 bp from transcription start site (TSS); TSS1500, 200–1,500 bp from TSS).
(E) Enrichment and depletion of meQTL effects in transcription factor binding sites (TFBSs) in suprapubic skin and genomic states in leg
skin generated using an 18-state ChromHMMmodel from the Roadmap Epigenomics Consortium.59 White asterisks indicate significant
depletion, black asterisks indicate significant enrichment. Suprapubic skin TFBS and leg skin chromatin state annotations were obtained
from the EpiMap Repository60 (TssA, active TSS; TssBiv, bivalent/poised TSS; TssFlnk, flanking active TSS; TssFlnkU, flanking TSS up-
stream; TssFlnkD, flanking TSS downstream; Tx, strong transcription; TxWk, weak transcription; EnhA1, active enhancers 1; EnhA2,
active enhancers 2; EnhG1, genic enhancers 1; EnhG2, genic enhancers 2; EnhBiv, bivalent enhancer; EnhWk, weak enhancer;
ReprPC, repressed polycomb; ReprPCWk, weak repressed polycomb; ZNF_Rpts, ZNF genes and repeats; Quies, quiscent chromatin;
Het, heterochromatin; see Kundaje et al.59).
cis-meQTL. This second conditional analysis identified

1,480 trans-meQTL effects comprised of 1,438 CpGs

(trans-CpGs, 0.35% of tested sites) associated with 1,261 in-

dependent trans-meQTLs. The most significant association

was between rs10744202 in TMEM132B, and cg03923277

in TDG (Figure 2C). Notably, TDG has previously been pro-

posed as a therapeutic target to treat melanoma.73

Most distal effects were inter-chromosomal, with only a

small proportion of intra-chromosomal trans-meQTL effects

(10.5%). On average, trans-meQTL effects had larger effect

sizes than cis-meQTL effects, which is likely because of

increased power to detect cis-meQTL effects. As expected,

given these larger effect sizes, trans-CpGs had higher average

heritability (30.8%) compared to cis-meQTL effects (22.1%).

Distribution of cis and trans meQTL-CpG associations in

regulatory and functional genomic features

We next examined the distribution of skin meQTLs

and associated CpGs across regulatory and functional
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genomic regions. Both cis- and trans-meQTLs were signif-

icantly depleted (FDR < 0.05) in intergenic and ‘‘open

sea’’ (> 4 kbp from a CpG island) regions. Both categories

of meQTLs were also enriched in regions relevant to the

regulation of gene expression, in particular CpG islands,

regions <1,500 bp upstream of TSSs, and in gene exons

(Figure 2D).

In contrast, skin cis-CpGs showed different genomic

annotation patterns to trans-CpGs. Cis-CpGs were en-

riched in intergenic and open sea regions and were

depleted in CpG islands and all genic regions, mirroring

our finding that genic CpGs are less heritable. The distribu-

tion of trans-CpGs in regulatory regions was more com-

plex. We observed enrichment of trans-CpGs in CpG

islands, regions<200 bp upstream of TSSs, 50 UTRs, and in-

tergenic regions, but depletion in 30 UTRs, gene bodies, and

open sea regions (Figure 2D).

We next tested the enrichment of meQTLs and CpGs in

functional genomic categories, using leg skin chromatin
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state annotations from EpiMap,60 predicted using an

18-state ChromHMM model. We found that cis-meQTLs

were depleted in quiescent chromatin and heterochromat-

in regions and enriched in all other chromatin states.

Trans-meQTLs were similarly depleted in quiescent chro-

matin regions but were neither enriched nor depleted

within heterochromatin regions (Figure 2E). These distri-

butions broadly follow the distributions of meQTLs seen

in regulatory genomic regions.

We again observed contrasting patterns of enrichment

for cis- vs. trans-CpGs across functional genomic categories

(Figure 2E). In line with observations from regulatory re-

gions, cis-CpGs were depleted in regions of active (i.e.,

TSSs of transcribed genes) and strong transcription (i.e.,

in gene bodies of transcribed genes) and enriched in quies-

cent chromatin and heterochromatin regions (Figure 2E).

Additionally, skin cis-CpGs were enriched in most types

of enhancers, mirroring findings from Min et al.2 in blood

but not in ‘‘genic enhancer 2’’ regions. This enhancer is

distinct from others as it is preferentially located within

transcribed gene bodies and evolutionarily conserved ele-

ments.59,60 Interestingly, cis-CpGs were also enriched in re-

gions with repressing polycomb complexes, which bind to

CpG islands in a methylation-dependent manner.74

In contrast, the distribution of trans-CpGs showed deple-

tion in strongly transcribed regions (i.e., gene bodies of

transcribed genes), but enrichment in regions of active

transcription (i.e., TSSs of transcribed genes). Trans-CpGs

were also depleted in active enhancers, quiescent chro-

matin, and regions with repressing polycomb complexes,

again in contrast to cis-CpGs.

The differences in the regulatory and functional

genomic distribution of cis- and trans-CpGs suggests that

cis-meQTL effects might serve a different biological func-

tion to trans-meQTL effects in skin, in line with findings

from previous meQTL studies in non-skin tissues.2

Tissue and cell specificity of whole-skin meQTL effects

Previous meQTL studies have shown that a significant pro-

portion of meQTL effects appear to be tissue specific. To

explore the tissue specificity of skin meQTLs, we compared

our results to meQTLs in blood fromMin et al.2 Altogether,

summary statistics for 53,264 independent cis- and 1,246

trans-meQTL effects reported in whole skin in the current

study were also reported in blood by Min et al.,2 but Min

et al.2 only report meQTL effects that surpassed a nominal

significance threshold. Using the p1 statistic, 59% of previ-

ously reported blood cis-meQTL effects that we also tested

in whole skin (>42 million associations in total, 64.3% of

all reported blood CpG-SNP associations in cis) validated in

whole skin. In total, 1,230 (98.7%) of the whole-skin trans-

meQTL effects that were reported in blood by Min et al.2

were validated in blood (at a Bonferroni-adjusted threshold

of p < 4.01 3 10�5). Additionally, we observed a high cor-

relation between these reported skin and blood CpG-SNP

associations in cis (rb ¼ 0.825) (Figure S3) and an even

stronger correlation for trans effects (rb ¼ 0.964). These
1940 The American Journal of Human Genetics 111, 1932–1952, Sep
findings indicate that most identified skin meQTL effects

are not skin specific. However, because Min et al.2 only

report CpG-SNP associations that were nominally signifi-

cant in the first phase of their study, we expect a bias to-

ward increased validation rates. Despite this, the observed

differences in correlation of whole-skin meQTLs with

blood meQTLs for cis vs. trans effects corroborates previous

findings fromMin et al.2 that trans-meQTL effects are more

likely to be found in other tissues compared to cis effects.

To understand how whole-skin meQTL effects compare

to meQTL effects detected in a single skin cell type, we

compared the whole-skin meQTLs with previously re-

ported melanocyte meQTL-CpG associations from Zhang

et al.4 Using the p1 statistic, we estimated the validation

rate of whole-skin cis-meQTLs in melanocytes to be only

43.3%. The validation rate of distal signals was also low,

with only 64 whole-skin trans-meQTL effects validating

in melanocytes. However, it should be noted that the esti-

mates of skin cell-type composition in whole-skin sample

were very low for melanocytes. Furthermore, the popula-

tion was different, and sample size of the melanocyte

meQTL study (n ¼ 106) is lower than of the current

whole-skin meQTL study (n ¼ 394).

Local genetic effects on the skin transcriptome

To explore the functional impact of meQTLs, we also char-

acterized local eQTL effects in a partially overlapping set of

664 whole-skin samples from female twins, using previ-

ously published RNA sequencing data.37,43 To this end,

we tested the association between �5,200,000 autosomal

SNPs with 23,838 RNA sequencing gene expression levels,

taking into account biological and technical covariates (see

material and methods).

At a genome-wide FDR of 5%, we identified >1.5 million

variant-gene associations in cis where the genetic variant

was within 1 Mbp from the gene TSS. Conditional analysis

of these results identified 14,293 independent cis-eQTL ef-

fects. In total, the expression of 10,255 genes (cis-eGenes,

41.5% of tested genes) were associated with at least one

of 13,550 independent genetic loci (cis-eQTLs).

The median distance between independent cis-eQTLs

and cis-eGene TSSs was 26.3 kbp, and eQTLs closer to the

eGene TSS tended to have larger effect sizes and stronger

evidence for association (Figure S5). A previous eQTL

analysis in a subset (n ¼ 370) of this data with a different

RNA-seq quantification pipeline, published in the eQTL

catalog75 identified 5,285 cis-eGenes at an FDR of 5%

(including only genes also tested in our analysis), of which

4,865 (92.05%) were also cis-eGenes in our analysis.

Shared genetic effects on the skin methylome and

transcriptome

We explored evidence for shared genetic effects on skin

gene expression and DNA methylation using colocaliza-

tion and mediation analyses. We paired cis-eGenes with

cis-CpGs if the lead cis-eQTL variant associated with the

eGene was significantly associated with the CpG in cis.
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Figure 3. Colocalization and mediation between cis-CpGs and cis-eGenes
(A) The proportion of cis-CpGs and cis-eGenes associated with at least one colocalizing QTL and the proportion of cis-meQTLs and cis-
eQTLs that colocalize.
(B) The proportion of cis-CpGs and cis-eGenes with at least one colocalized QTL that also show evidence of mediation via SEM or SME.
(C) Proportion of effect mediated versus significance of the mediation effect (-log10(Sobel test p value). Only results with a positive pro-
portion of the effect mediated are shown.Mediation analyses under the SMEmodel tended to have a larger proportion of effect mediated
than results from the SEMmodel. Purple and yellow dashed lines indicate the FDR 5% threshold for SEM and SME Sobel mediation tests,
respectively.
(D) SME and SEM pathways.
Using 83,530 eGene-CpG pairs (including 8,200 eGenes

and 25,037 cis-CpGs), we performed Bayesian tests of co-

localization using the SuSiE method, which relaxes the

assumption that there is only a single shared causal

variant.69,70,76 Using a prior probability of a common

causal variant (p12 ¼ 1.93 3 10�3), we identified 13,462

potentially colocalized eGene-CpG pairs (posterior proba-

bility for a shared casual variant > 0.8), where a single ge-

netic locus is likely acting as both a cis-eQTL and a cis-

meQTL on the paired eGene and CpG, respectively. These

colocalized pairs consisted of 4,475 eGenes, and 10,067 cis-

CpGs, with 3,695 underlying genetic variants (Figure 3A).

Altogether, a substantial proportion of genes (44%) and

CpGs (13.2%) that are under genetic influence, showed ev-

idence for a shared genetic basis.

To validate the twin-based whole-skin colocalization

findings, we also carried out colocalization analyses of

the whole-skin meQTLs, with cis-eQTLs generated from

517 suprapubic skin samples in version 8 of the GTEx proj-

ect.72 The colocalization procedure was the same, but with

a p12 value of 1.97 3 10�3. Overall, we observed a similar

proportion of eGenes being under the influence of an

eQTL effect that is colocalized with an meQTL effect

(5,448, 35.2%) in this new suprapubic skin analysis

(Figure S16). Furthermore, if we consider only eGenes iden-

tified in both the twin-based whole-skin eQTL analysis and

in the GTEx suprapubic skin eQTL analysis (n ¼ 5,973),

then we find that 55% (3,321) and 52.8% (3,155) of genes

are under an eQTL effect that is also a meQTL effect,

respectively (posterior probability for a shared casual

variant > 0.8). Altogether, 17.9% (1,070 genes) of eGenes
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are under a colocalized eQTL effect in both the twin-based

and GTEx datasets (Figure S17).

Next, we performed mediation analyses of colocalized

pairs, by following the approach of Pierce et al.14 For

each eGene-CpG pair, we tested two hypotheses; first,

the SNP effect on methylation mediates expression

(SME), and second, the SNP effect on expression mediates

methylation (SEM) (Figure 3D). After accounting for co-

methylated CpGs (see material and methods), there were

142 SNP-CpG-gene triplets with evidence for eQTL effects

mediated via SME, and these included 133 genes. Similarly,

129 SNP-CpG-gene triplets showed evidence for mediation

via SEM, including 114 genes. There were 55 SNP-CpG-

gene triplets that showed evidence for mediation via

both SME and SEM effects. Pierce et al.14 suggests that

when there is evidence for mediation under both the

SEM and SME models, the proportion of effect mediated

will be higher when the correct model is specified. Under

this assumption, 32 of these 55 triplets showed greater ev-

idence for the SME model. Therefore, in total we have ev-

idence for 119 SNP-CpG-gene triplets (in 114 genes) medi-

ated via SME and 97 SNP-CpG-gene triplets (in 87 genes)

mediated via SEM (Figures 3B and 3C).

We characterized the distributions of colocalizing and

mediating meQTL effects across regulatory regions

compared to all cis-meQTL effects using genomic annota-

tions as previously described. As expected, cis-CpGs under

meQTL effects that colocalized with eQTL effects, and the

SNPs underlying these colocalized effects, were enriched in

regulatory and genic regions compared to all cis-CpGs.

Additionally, CpGs in mediating SNP-CpG-gene triplets
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Figure 4. Enrichment of skin meQTL-CpG effects in loci from published epi(genome)-wide association studies of skin-related traits
Left panel shows enrichment of cis-CpGs (CpG sites associated with a meQTL in cis) to overlap signals from skin-phenotype EWASs.
Right panel shows enrichment of cis-meQTLs to be in GWAS signals for skin-related phenotypes. Green indicates significant (FDR <
0.05) enrichment. GWAS enrichment analyses are performed using all SNPs associated with a CpG site in cis. Studies of the same pheno-
type have been pooled together. Biological sample types for EWASs is denoted in the EWAS trait label (s, skin; o, other). SCC, squamous
cell carcinoma; CSS, cutanous systemic sclerosis; PhenoAge AA, PhenoAge age acceleration; DNAm intrinsic AA, DNAm intrinisic age

(legend continued on next page)
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were significantly enriched in gene bodies (odds ratio

[OR] ¼ 1.75, p ¼ 2.9 3 10�5) and CpG islands (OR ¼ 1.5,

p ¼ 5 3 10�4) for both SME and SEM models. SNPs under-

ling thesemediated/mediatingmeQTL effects were also en-

riched in regions of gene regulation, including regions

within 200 bp of gene TSSs (OR ¼ 9.8, p ¼ 9.5 3 10�9),

POL2RA binding sites in leg skin (OR ¼ 9.1, p ¼ 4.5 3

10�6), and CpG islands (OR ¼ 5.9, p ¼ 5.2 3 10�10).
Relevance of skin meQTL effects to skin traits and

disease

To explore the relevance of skin meQTL effects to skin dis-

eases and phenotypes, we compared our results to associa-

tion statistics from the EWAS catalog61 (Table S2), EWAS

atlas62,63 (Table S3), and GWAS catalog64 (Table S4).

Altogether, cis- or trans-CpGs (CpG sites associated with

ameQTL in cis or trans, respectively) were tested for enrich-

ment to be in EWASs of 25 skin-related traits (Tables S2 and

S3). Cis-CpGs were significantly (FDR < 0.05) enriched to

also be EWAS signals for 13 of these skin-related traits

(Figure 4).

The trait for which cis-CpGs were most significantly en-

riched for was aging with 63,794 (83.5%) skin cis-CpGs

compared to 255,187 (77.1%) background CpGs (OR ¼
1.5, p < 2.23 10�16), though aging has the largest number

of EWAS signals reported, thus increasing power to detect

enrichment. In line with this result, we also observe a sig-

nificant enrichment of EWAS signals for Werner syndrome

and Hutchinson-Gilford progeria syndrome in cis-CpGs,

both characterized by accelerated aging.77 These results

provide robust evidence that meQTL effects may be related

to age-related changes in the skin DNA methylome. Addi-

tionally, cis-CpGs were enriched for EWAS signals for mul-

tiple skin-related immune disease traits. These included

diseases with moderate to high heritability such as sys-

temic lupus erythematosus, psoriasis, and atopic derma-

titis78–80 (Figure 4).

At the meQTL level, we compared variants associated

with DNA methylation in cis or trans (i.e., located in cis-

or trans-meQTLs) to GWAS loci for 44 skin-related pheno-

types. GWAS signals for 31 of the 44 traits were enriched

to be cis-meQTLs (FDR < 0.05, with at least five GWAS sig-

nals that are also cis-meQTL variants) (Figure 4) while none

were enriched in trans-meQTLs.

Notably, nine of ten tested skin cancer traits were en-

riched inmeQTL effects, includingmelanoma, substantiat-

ing previous findings that meQTL effects play a role inmel-

anoma risk.4,24 Our results also suggest that meQTLs may

play a role in squamous cell carcinoma and keratinocyte

cancer risk. Additionally, themeQTLGWAS enrichment re-

sults were also in line with cis-CpG EWAS enrichment re-

sults for aging and skin immune related traits. For example,
acceleration; GrimAge AA, GrimAge age acceleration; DNAm Hannu
MCID; multiple chronic inflammatory disease; SJS, Stevens-Johnso
hay fever, or eczema; Allergy 2, age of onset of asthma, hay fever, an
and/or eczema.
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meQTL enrichment was observed at GWAS loci for 11 of 13

tested skin-related immune traits, including psoriasis, as

seen for cis-CpGs, as well as eczema and several allergy

phenotype clusters (Figure 4).

We also explored the relevance to skin phenotypes of

meQTL effects showing evidence of mediation with eQTL

effects. Altogether, 280 cis-CpGs were previously identified

in the mediation set of SNP-CpG-gene triplets. Aging

EWAS signals were enriched in these mediation cis-CpGs

relative to all tested CpGs (OR ¼ 1.76, p ¼ 6.2 3 10�4)

but not relative to cis-CpGs only. No other EWAS pheno-

types were significantly enriched or depleted in these

mediating cis-CpGs regardless of the selection of back-

ground CpGs. SNPs in SNP-CpG-gene mediating triplets

were enriched for GWAS signals for six traits, including

cutaneous lupus erythematosus, rosacea symptom

severity, melanoma, cold sores, vitiligo, and non-mela-

noma skin cancers, relative to all cis-meQTL SNPs. This

suggests that mediation via SEM and SME pathways could

play a role in genetic susceptibility for a variety of skin

phenotypes.
Examples of genetic methylation and expression

mediating effects relevant to skin disease

We next focused on specific examples where colocalized

genetic, methylation, and expression signals with evi-

dence for mediation effects (SME or SEM) involved previ-

ously identified genomic regions and gene transcripts rele-

vant to skin disease. We observed a number of GWAS loci

and gene transcripts relevant to skin disease in mediating

SNP-CpG-gene triplets. One example is ALOX12, which

encodes a lipoxygenase enzyme that plays an important

role in arachidonic acid metabolism and has been associ-

ated with multiple skin diseases. ALOX12 expression is a

biomarker of melanoma and malignancy81 and a potential

therapeutic target for vitiligo.82 Additionally, the excretion

of its metabolite 12(S)-hydroxyeicosatetraenoic acid in

urine is significantly increased in individuals with psoria-

sis,83 and most recently, an increase in Alox12 expression

has been observed in mouse models of atopic dermatitis.84

Furthermore, an increase in expression of Alox12 induced

by the transcription factor p63 binding to the Alox12 pro-

moter is known to play an important role in the formation

of the epidermal barrier during development,85 high-

lighting its strong association with skin physiology.

In our data, ALOX12 expression is under the influence of

an eQTLwithin the first�6 kbp of the gene. This eQTL SNP

also acts as a cis-meQTL for cg05215272 (posterior proba-

bility of colocalisation ¼ 0.95), a CpG site located in

a CpG island 289 bp upstream of the ALOX12 TSS. Media-

tion analysis indicates that this meQTL mediates the eQTL

association (Sobel p ¼ 0.0007), explaining approximately
m, Hannum DNAm age acceleration; CM, cutaneous melanoma;
n syndrome; TEN, toxic epidermal necrolysis; Allergy 1, asthma,
d/or eczema; Allergy 3, multivariate analysis of asthma, hay fever,
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73% of the eQTL effect. Interestingly, after adjusting for co-

variates, methylation at cg05215272 and expression of

ALOX12 are positively correlated (r ¼ 0.3, after adjusting

for covariates), an effect previously observed at ALOX12

in atherosclerotic plaques by Kim et al.86 Traditionally,

DNA methylation near the TSS of a gene is associated

with down regulation of gene expression, but the opposite

effect has also been documented in multiple studies.87,88

Our results indicate that the cis-meQTL effect is a key regu-

lator of ALOX12 expression in skin (Figure 5A).

Another example of a skin-disease-relevant SNP-CpG-

gene SMEmediation involves CSPG4, or melanoma-associ-

ated chondroitin sulfate proteoglycan,. CSPG4 is selec-

tively up regulated in melanoma, is essential to melanoma

growth, and has been identified as a target for chimeric an-

tigen receptor T cell therapy for individuals with mela-

noma.89,90 We find that an eQTL effect of rs4886456 on

CSPG4 is mediated by DNA methylation at the

rs4886456 associated cg21460582 (Sobel p ¼ 0.0001).

rs4886456 is both an eQTL for CSPG4 and an meQTL for

cg21460582 (posterior probability of colocalization ¼
0.95) and is located in an intergenic region 10.6 kbp up-

stream of the TSS of CSPG4 and 2 kbp upstream of

ODF3L1. Interestingly, rs4886456 is located within a re-

gion predicted to have higher levels of H3K27AC in supra-

pubic skin,91,92 which is a marker of increased transcrip-

tional activity. cg21460582 is located 672 bp upstream of

the CSPG4 TSS. Unlike the ALOX12 example, here

cg21460582 methylation and CSPG4 expression are nega-

tively correlated (r ¼ �0.39), indicating a putative role of

cg21460582 in down regulation of CSPG4 expression

(Figure 5B). Regulation of CSPG4 by this pathway could

be relevant to the up regulation of the gene in melanoma

cells.

Another example of a mediation effect related to skin

disease involves CDK10 with rs1805008 (c.478C> T [Gen-

Bank: NM_002386.4] [p.Arg160Trp]), a missense variant in

an exon ofMC1R.MC1R variants, and rs1805008 in partic-

ular, have been identified as important risk variants for

melanoma, keratinocyte carcinoma, and sunburn.29,93,94

CDK10 is an important gene in several cancers, although

its specific functional effect (i.e., tumor suppression or up

regulation) is unclear.95

We find that the rs1805008 risk allele for melanoma, ker-

atinocyte cancer, and sunburn (C > T) is associated with

reduced expression of CDK10 and also reduced DNA

methylation of cg00001687 (posterior probability of

colocalization ¼ 0.96) located within one of the last in-

trons of MC1R. Mediation analysis shows putative media-

tion via both SME or SEM pathways (Sobel p ¼ 0.00017

and 0.00011, respectively), although SEM is more likely

(26% mediation in the SEM model vs. 18% mediation in

the SME model). The location of cg00001687 in the gene

body of CDK10 provides a possible mechanism to explain

SEM mediation (Figure 5C). Baubec et al.96 showed that

DNMT3B binds to the bodies of transcribed genes, promot-

ing DNA methylation of CpG sites in gene bodies, which
1944 The American Journal of Human Genetics 111, 1932–1952, Sep
could explain our observation that decreased expression

of CDK10 results in decreased methylation of cg0000

1687. A previous study by Bonilla et al.97 used summary-

based Mendelian randomization to show that CDK10

expression is reduced in self-diagnosed melanoma and in

sun-exposed skin (compared to non-sun-exposed skin)

via a pleiotropic effect with rs1805008, reinforcing our

findings. Despite this, further work is needed to determine

if DNAmethylation at cg00001687 is involved in the asso-

ciation between CDK10 expression andmelanoma and the

precise mechanisms underlying this link.
Discussion

In this study, we report genome-wide genetic analysis of

DNA methylation profiles in human whole skin, identi-

fying skin meQTL effects in multiple GWAS loci for skin

conditions and diseases. As expected, most meQTL effects

were local, rather than distal, which likely in part reflects

differences in statistical power. We observed lower methyl-

ation heritability in skin compared to other tissues, sug-

gesting a stronger impact of environmental factors on

the skin methylome relative to previously studied tissues

and cell types. We find robust evidence for coordinated ge-

netic effects on the skin methylome and transcriptome

and identify over two hundred putative mediation effects

that underlie this shared genetic basis. The results give in-

sights into the genetic regulation of skin DNA methyl-

ation, the regulation of skin gene expression, and human

skin disease pathways.

The twin-based, narrow-sense heritability of the skin

methylome is lower than previously reported in blood1

and adipose tissue.9 The results indicate that the skin

methylome is more susceptible to environmental influ-

ences, and by its nature, skin is a barrier exposed to a num-

ber of physical and chemical environmental factors. We

find that a smaller proportion of Illumina 450K CpG sites

are under meQTL effects in skin compared to blood where

Min et al.2 identified over twice as many cis- or trans-CpGs.

However, there are significant differences in power to

detect meQTLs between the two studies. Regardless, we

find that skin and blood meQTL effects reported in both

datasets correlate strongly, with an rb of 0.825 for cis-

meQTL effects, and 0.964 for trans-meQTL effects. Our

results suggest that the majority of whole-skin meQTLs

identified in the current study are not predominantly

skin specific. However, because Min et al.2 only report

SNP-CpG associations that reached nominal significance

in blood, we expect that our cross-tissue comparison will

be biased toward increased tissue-shared rates. It is unclear

if whole-skin meQTL effects that are not reported by Min

et al.2 were never tested or were tested but were not nomi-

nally significant.

Previous work has identified genetic effects on DNA

methylation levels in human melanocytes.4 We estimated

a replication rate of 43.3% of whole-skin local meQTL
tember 5, 2024



Figure 5. Three examples of mediating SNP-CpG-gene triplets
Methylated CpG sites are represented by a filled black circle, and un-methylated CpG sites are represented by an empty circle.
(A) Hypothetical mechanism by which cg05215272mediates an eQTL effect on ALOX12 expression where ALOX12 has been implicated
in melanoma, vitiligo, psoriasis, and atopic dermatitis.
(B) Hypothetical mechanism by which cg21460582 mediates an eQTL effect on CSPG4 expression, which is strongly associated in
melanoma.
(C) Hypothetical mechanism by which CDK10 expression mediates a meQTL effect on cg00001687.
effects in melanocytes. This replication rate is likely

affected by several differences between the two studies.

Zhang et al.4 used cultured melanocytes from newborn

males while our study used whole-skin samples that were

not cultured and originated from older females. These

study differences likely contribute toward the low meQTL

replication rate.

Our genomic and functional annotation analyses show

distinct patterns for CpGs under genetic control of local

and distal meQTL effects. This suggests that cis- and

trans-meQTL effects likely operate through distinct molec-

ular mechanisms, as previously discussed in blood.2,3,12,19
The American Jour
It has previously been suggested that trans-CpGsmay oper-

ate through local eQTL effects on genes that produce DNA-

binding proteins, which might then bind to DNA at or

near to distal trans-CpGs, resulting inmethylation changes

in these distal genetic regions.2,3,98 In line with this hy-

pothesis, skin trans-CpGs are strongly enriched to fall in re-

gions of gene regulation and transcription factor binding.

On the other hand, skin cis-CpGs were depleted in these

regulatory and transcription factor binding regions, sug-

gesting that they operate under a different mechanism.

One such mechanism previously discussed is that cis-

meQTLs may affect local chromatin organization,
nal of Human Genetics 111, 1932–1952, September 5, 2024 1945



changing the activity of DNMT and TET proteins, thus im-

pacting DNA methylation at nearby CpG sites.98 There-

fore, our genomic annotation results in skin further rein-

force similar findings in blood and other tissues.2,3,12

Previous studies have reported that a substantial propor-

tion ofmeQTLs exhibit coordinated effects on gene expres-

sion.14,16 To explore functional consequences of whole-

skin meQTLs, we carried out meQTL-eQTL colocalization

analyses, observing evidence for shared genetic effects

affecting over 10,000 CpGs (13.2% of cis-CpGs) and

4,000 genes (43.7% of cis-eGenes) in skin. Of these, we

identified mediation effects in 217 pairs, showing that at

least 114 genes have eQTL effects mediated at least

partially by an meQTL effect, and 87 genes have eQTL ef-

fects mediating local meQTL effects. Banovich et al.16 esti-

mated that perhaps 25% of eQTL effects identified in a

lymphoblastoid cell line (LCL) were also in meQTLs, while

only 7% of skin eQTLs were colocalized with an meQTL in

our analysis. Partly this is attributable to the small number

of eQTLs (595) identified and thus tested for meQTL effects

by Banovich et al.,16 but differences between our study and

that of Banovich et al.,16 such as the use of immortalized

LCL cultures, are also likely to contribute. Pierce et al.14 re-

ported 2,913 potentially colocalized eQTL-meQTL pairs in

blood while we identified 13,462 potentially colocalized

eQTL-meQTL pairs in skin at the same threshold (posterior

probability for a shared casual variant > 0.8), using similar

sample sizes (Pierce et al.14 eQTL sample size ¼ 992,

meQTL sample size ¼ 337) and numbers of identified cis-

CpGs (Pierce et al.14 identified 77,664 blood cis-CpGs, we

identified 76,442 skin cis-CpGs). One explanation for

this is our use of coloc-SuSIE, which, in contrast to the

method used by Pierce et al.,14 relaxes the assumption of

a single causal variant for each phenotype. Results from

our conditional analysis of skin eQTLs indicate that this

assumption is often invalid, and as such using coloc-SuSIE

gives us greater power to detect colocalized eQTL-meQTL

pairs. In addition, colocalization analyses using our

whole-skin meQTL data and suprapubic skin cis-eQTL

data from the GTEx project,72 validated our whole-skin

eQTL-meQTL colocalization analyses. In line with results

from both Pierce et al.14 and Gutierrez-Arcelus et al.,17 we

find that eQTL-meQTL mediation effects can occur under

both SME and SEM pathways. While we detect more medi-

ated SNP-CpG-gene pairs via the SME pathway than via the

SEM pathway, this highlights the complexity of effects

linking the genome, epigenome, and transcriptome.

We observed an enrichment of whole-skin meQTL ef-

fects in loci previously associated with multiple skin dis-

eases and traits in genetic and epigenetic studies. We find

that cis-CpGs are enriched in many published EWASs of

skin-related diseases and phenotypes. Of the eight traits

with EWASs that were entirely performed in skin (total

body nevus count, melanoma classification, melanoma,

high-risk cutaneous squamous cell carcinoma (cSCC),

stages of cSCC, cSCC survival, non-genital cutaneous

warts, and psoriasis), four were enriched for cis-CpGs
1946 The American Journal of Human Genetics 111, 1932–1952, Sep
(high-risk cSCC, cSCC survival, non-genital cutaneous

warts, and psoriasis).Cis-CpGs identified in EWASs of these

traits included a CpG in the gene body of ARRB2 (involved

in the Hedgehog signaling pathway, which has been linked

to SCC99) for high-risk cSCC, a CpG in the 30 UTR of CSK

(involved in Src kinase signaling, which has been linked

to squamous cell carcinoma [SCC]100) for cSCC survival,

a CpG in the gene body of RAP1GAP (which has been pre-

viously linked to human papillomavirus infection101) for

non-genital cutaneous warts, and four CpGs near the TSS

of PSORS1C1 (psoriasis susceptibility 1 candidate 1) for

psoriasis. Furthermore, an enrichment of skin meQTL ef-

fects was observed in many more skin phenotype GWAS.

In particular, skin cancer GWASs, where we observed sig-

nificant enrichment for nine out of ten cancer phenotypes

(basal cell carcinoma, cutaneous melanoma or hair color,

cutaneous malignant melanoma, melanoma, nevus count

or cutaneous melanoma, cutaneous SCC, SCC, keratino-

cyte cancer, and non-melanoma skin cancer). These en-

richments were attributable to skin cancer GWAS loci

such as rs7705526, a variant located in an intron of

TERT, and rs1805008, a missense variant ofMC1R. In addi-

tion, a similar pervasive enrichment of meQTL effects was

observed for GWAS loci of skin-related immune traits and

diseases, with 11 of 13 considered phenotypes showing

enrichment effects. These were attributed to disease-risk

loci including loci in or near NOS2 (psoriasis), TLR1

(eczema and allergic disease phenotypes), and FADS2 (viti-

ligo). Psoriasis was one of the few phenotypes for which we

observed an enrichment of skin cis-meQTLs in GWAS loci

and an enrichment of skin cis-CpGs in EWAS loci. These

enrichments are driven at least partly by CpG-meQTL pairs

where both the CpG under the meQTL effect and a SNP or

SNPs within the meQTL are associated with psoriasis. For

example, the intergenic cis-CpG cg23904955 has been

identified as differentially methylated in psoriatic skin

compared to healthy skin from individuals with psoriasis

(n ¼ 24),102 and the lead SNP of its associated meQTL,

rs10748781, has been identified as a risk marker for multi-

ple immune traits, including psoriasis (6,530 psoriasis

cases, 34,213 controls).103

We also observed that meQTL effects may mediate eQTL

effects in skin, including in genes relevant to skin disease.

Two specific examples highlighted here focused onmeQTL

effects mediating eQTL effects on genes linked to mela-

noma. The first was in ALOX12, a biomarker of melanoma,

which has an eQTL in skin that is likely mediated via an

meQTL effect on a CpG island near the ALOX12 TSS. In

addition to being a biomarker of melanoma malignancy,81

ALOX12 expression has also been linked to vitiligo,82 pso-

riasis,83 and atopic dermatitis.84 On the other hand,

CSPG4, which is essential for melanoma growth, is under

an eQTL effect mediated by an meQTL effect on a CpG

site 672 bp upstream of the CSPG4 TSS. CSPG4 is essential

tomelanoma growth andmay even represent a therapeutic

target for treatment of melanoma.89,90 In addition, the

findings here are evenmore notable, given that themeQTL
tember 5, 2024



effects are influencing gene activity within healthy skin,

indicating the mediation effect might be conferring sus-

ceptibility of skin to these different diseases (rather than

the presence thereof).

This study characterizes the genetic basis of whole-skin

DNA methylation at a genome-wide level; however,

there are a number of limitations. One limitation is

that our analyses included individuals of European

ancestry, and genetic effects on skin DNA methylation

might differ in other genetic ancestry groups. Another

limitation is the relatively modest sample size, with

394 skin DNA methylation profiles and 664 skin gene

expression profiles used for meQTL and eQTL detection,

respectively. Although we detect a large number of cis-

meQTLs, power to detect cis effects with smaller effect

sizes, as well as trans-meQTL effects, is limited. A related

point is that the sample size is limited for undertaking

mediation analyses of meQTLs and eQTLs (n ¼ 346).

The mediation analyses also make two prior assump-

tions, of no measurement error, and a linear effect of

the SNP on both mediator and outcome variable. To

address these, we adjusted both gene expression and

DNA methylation levels for multiple covariates.

Another limitation relates to the uncertainty in esti-

mating cell-type proportions within whole skin. We used

EpiSCORE41,42 for cell-type prediction and validated these

by combining our DNA methylation data with the human

skin dermis and epidermis methylome data from Vandiver

et al.25 A principal component analysis (PCA) of the com-

bined data clearly differentiates dermis and epidermis sam-

ples, and our whole-skin samples skew toward dermis

(Figure S1). The PC loadings strongly correlate with the

EpiSCORE-predicted skin-cell-type proportions, in partic-

ular those most representative of dermis and epidermis (fi-

broblasts and keratinocytes, respectively) (Figure S2).

Despite this validation, there is still uncertainty, particu-

larly for the melanocyte estimates, which were null, while

we expect that a small number of melanocytes to be pre-

sent. Therefore, we did not include these EpiSCORE cell-

type estimates as covariates in the QTL analyses, but

instead adjusted for PCs. Nonetheless, the PC adjustment

may remove cell-type or dermis-/epidermis-specific

meQTL effects that may be important to skin disease,

such as the melanocyte-specific effects identified by Zhang

et al.4 Therefore, our approach may tend toward identifica-

tion of meQTL effects shared across skin cell types, which

are more likely to be shared across tissues than cell-specific

effects.

Lastly, our study identified that skin cis-CpGs are en-

riched in many signals from published EWASs of skin-

related diseases and phenotypes. However, many pub-

lished EWASs were performed using DNA methylation

data from non-skin tissues, predominantly blood

(Tables S2 and S3). It is unknown if these skin trait DNA

methylation effects from other tissues are also present in

skin; however, a large proportion of the identified skin

meQTL effects were shared with blood meQTLs. This
The American Jour
might partly be due to presence of immune cells in skin

and highlights how persistent genetic effects on DNA

methylation are in cells across blood and skin.

In summary, our study identified meQTL effects in whole

skin. The skin meQTL effects tend to be predominantly tis-

sue shared and replicate previous melanocyte specific ef-

fects. A substantial proportion of signals show evidence

for a shared genetic basis between skin methylation and

expression and are located in genomic regions previously

associated with skin-related phenotypes and disease. The re-

sults show the utility of identifying these genetic effects on

the skin methylome for investigating the regulatory geno-

mics of skin-related diseases and phenotypes.
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Figure S1. (a) Biplot of PC1 and PC2 from PCA of whole skin DNA methylation data from 414
samples, with dermis and epidermis DNA methylation data from 92 samples from Vandiver et 
al.1 (b) Scatter plot of PC1 from S1a (“Tissue Type PC”) with PC1 from PCA on just the 414 
whole skin DNA methylation data. 



Figure S2. Scatter plots of PC1 from PCA of whole skin DNA methylation data from 414 
samples vs EpiSCORE cell-type estimates for each sample. 



Figure S3. Scatter plot of significant whole skin cis-meQTL effect betas against blood cis-
meQTL effect betas from Min et al.,2, coloured by the density of points. 



Figure S4. Number of discovered eGenes in whole skin at a Benjamini-Hochberg FDR of 5% 
in cis-eQTL analyses with different numbers of PEER factors included as covariates. 30 PEER 
factors were retained for our primary cis-eQTL analysis, to maximise eGene discovery whilst 
avoiding over-fitting. 



Figure S5. Distance from lead eQTL SNP from conditional analysis to TSS of its eGene vs -
log10(P-value) of the eQTL association. 



Figure S6. Plots used to find the optimal value of p12 in eQTL-meQTL co-localisation 
analysis. NSNPs vs observed Posterior Probability of a Common Causal Variant for p12 values 
corresponding to 10%, 25%, 50%, and 75% probability of a causal cis-eQTL SNP also being a 
causal cis-meQTL SNP. The purple curve is the loess smoothed curve of these points. The 
orange dashed line is the loess smoothed curve of NSNPs vs the Prior Probability of a 
Common Causal Variant (not plotted), calculated using the formula described by Guo et al.,3.



Figure S7. Scatter plots showing the correlation between the 30 PEER factors used as 
covariates in the skin eQTL analysis and the mean GC content per RNA sample. A yellow 
background indicates a nominally significant correlation (Pearson P<0.05).



Figure S8. Box plots showing the correlation between the 30 PEER factors used as covariates 
in the skin eQTL analysis and the RNAseq batch. A yellow background indicates a nominally 
significant difference between groups (Anova P<0.05).



Figure S9. Scatter plots showing the correlation between the 30 PEER factors used as 
covariates in the skin eQTL analysis and chronological age. A yellow background indicates a 
nominally significant correlation (Pearson P<0.05).



Figure S10. Scatter plots showing the correlation between the 30 PEER factors used as 
covariates in the skin eQTL analysis and Endothelial Cell proportion as estimated from DNA 
methylation data. A yellow background indicates a nominally significant correlation (Pearson 
P<0.05).



Figure S11. Scatter plots showing the correlation between the 30 PEER factors used as 
covariates in the skin eQTL analysis and Fibroblast Cell proportion as estimated from DNA 
methylation data. A yellow background indicates a nominally significant correlation (Pearson 
P<0.05).



Figure S12. Scatter plots showing the correlation between the 30 PEER factors used as 
covariates in the skin eQTL analysis and Differentiated Keratinocyte Cell proportion as 
estimated from DNA methylation data. A yellow background indicates a nominally significant 
correlation (Pearson P<0.05).



Figure S13. Scatter plots showing the correlation between the 30 PEER factors used as 
covariates in the skin eQTL analysis and Undifferentiated Keratinocyte Cell proportion as 
estimated from DNA methylation data. A yellow background indicates a nominally significant 
correlation (Pearson P<0.05).



Figure S14. Scatter plots showing the correlation between the 30 PEER factors used as 
covariates in the skin eQTL analysis and Macrophage Cell proportion as estimated from DNA 
methylation data. A yellow background indicates a nominally significant correlation (Pearson 
P<0.05).



Figure S15. Scatter plots showing the correlation between the 30 PEER factors used as 
covariates in the skin eQTL analysis and T-Cell proportion as estimated from DNA methylation
data. A yellow background indicates a nominally significant correlation (Pearson P<0.05).



Figure S16. Proportion of eGenes colocalised in both the original meQTL-eQTL colocalisation 
analysis using TwinsUK data, and the validation analysis using the suprapubic skin GTEx 
eQTL data with TwinsUK meQTL data. 



Figure S17. Proportion of eGenes tested in both the original meQTL-eQTL colocalisation 
analysis using TwinsUK data, and the validation analysis using the suprapubic skin GTEx 
eQTL data with TwinsUK meQTL data, which colocalise in each analysis. 
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