Supporting Information

Biodegradation of volatile chemicals in soil – Separating volatilization and degradation in improved test setup (OECD 307)

<u>Prasit Shrestha^{1,2}</u>, Boris Meisterjahn^{1*}, Michael Klein¹, Philipp Mayer², Heidi Birch², Christopher B. Hughes.³, Dieter Hennecke.¹

¹Fraunhofer IME-AE, Auf dem Aberg 1, 57392 Schmallenberg Germany.

²Department of Environmental Engineering, Technical University Denmark, 2800 Kongens.

Lyngby, Denmark

³Ricardo Energy and Environment, Harwell, OX11 0QR, United Kingdom

Table of Contents

S1) Measured parameters of soils used during this project	S4
S2) Schematic diagram of flow-through set up connected with a catalytic oven	S4
S3) A picture of test setup 1	S5
S4) Mass Balance of ¹⁴ C labelled tetralin in three different test setups.	S5
S5) Sterile samples	S6
S6) Microbial biomass measurements	S6
S7) Oxygen measurement in the headspace of the closed setup (test setup 2)	S6
Preparation of the reference sample	S7
Oxygen measurement	S7
S8) Headspace air stripping during the sampling date	S7
S9) Extraction of the soil	S8
S10) Confirmation of trapped ¹⁴ CO2 using BaCl ₂ test	S8
S11) Radio-HPLC method	S8
S12) Degradation time series of tetralin main study	S9
S13) Degradation time series of decane main study	S11
S14) Variability of results in terms of mass balance	S13
S15) Comparison of radioactivity recovered in tenax in different soils in sterile samples	S13
S16) Degradation kinetics	S14
Standard modelling	S14
Extended modelling	S16
S17) Microbial biomass measurements results during the main tests	S17
S18) Prediction of bio-NER using MTB and comparison with total NER from the tests	S19

List of Figures

Figure S1 Schematic diagram representing a modified flow-through setup used during this project	S 4
Figure S2 A Picture of test setup 1 used to test ¹⁴ C labelled tetralin during this study	S5
Figure S3 Different pools of radioactivity observed in the degradation study carried out with ¹⁴ C labelled tetralin in three different test setups	S5
Figure S4 Degradation of tetralin in soil: Distribution of radioactivity for soil 01-A in non-sterile samples	S 9
Figure S5 Degradation of tetralin in soil: Distribution of radioactivity for soil 02-A in non-sterile samples	S 9

Figure S6 Degradation of tetralin in soil: Distribution of radioactivity for soil 03-G in non-sterile samples
Figure S7 Degradation of tetralin in soil: Distribution of radioactivity for soil 04-A in non-sterile samples
Figure S8 Degradation of decane in soil: Distribution of radioactivity for soil 01-A in non-sterile samples
Figure S9 Degradation of decane in soil: Distribution of radioactivity for soil 02-A in non-sterile samples
Figure S10 Degradation of decane in soil: Distribution of radioactivity for soil 03-G in non-sterile samples
Figure S11 Degradation of decane in soil: Distribution of radioactivity for soil 04-A in non-sterile samples
Figure S12: Structure of the model used for optimisation of the parent compound
Figure S13: Structure of the model used for the extended model

List of Tables

Table S1 Soil texture and additional parameters of the soil used during this project
Table S2 List of soil extraction methods applied during this project
Table S3 Comparison of ¹⁴ C-mass balances and variability of results in tetralin and decane main study
Table S4 Comparison of volatilization of tetralin and decane in different soils in sterile samples S13
Table S5 CAKE results for calculation of degradation rates DegT ₅₀ and DegT ₉₀ of tetralin in four different soils
Table S6: Microbial biomass determined by means of substrate induced respiration (SIR) at different stages of the test during tetralin main study S17
Table S7: Microbial biomass determined by means of substrate induced respiration (SIR) at different stages of the test during decane main study S18
Table S8 The data entries made for the prediction of bio-NER using MTB method for tetralin and decane S19
Table S9 Total NER versus bio-NER predicted using MTB method for decane and tetralin

S1) Measured parameters of soils used during this project

Soil	Sand %	Silt %	Clay %	Soil type	Org. C %	pH (CaCl ₂)	WHC g/kg	CEC _{eff} (mmol/kg)
01-A	76.70	17.20	6.10	loamy sand	0.73	5.73	291.0	17.90
02-A	2.30	82.00	15.70	silty loam	1.01	6.69	471.0	53.40
03-G	17.71	57.49	24.80	silty loam	2.80	6.23	734.0	73.50
04-A	82.70	12.70	4.60	loamy sand	2.48	5.96	382.0	37.30

Table S1 Soil texture and additional parameters of the soil used during this project.

WHC: Water Holding Capacity

S2) Schematic diagram of flow-through setup connected with a catalytic oven

Figure S1 Schematic diagram representing a modified flow-through setup used during this project. A constant stream of water saturated synthetic air was passed over the soil samples to keep the soil aerobic and the outgoing gas was bubbled through a series of adsorption traps and additionally through a tube furnace (850°C, copper oxide as catalyst in the tubes) to capture the possibly formed ¹⁴CO₂ in a traps behind the oven.

S3) A picture of test setup 1

Figure S2 A Picture of test setup 1 used to test ¹⁴C labelled tetralin during this study.

S4) Mass Balance of ¹⁴C labelled tetralin in three different test setups.

Figure S3 Different pools of radioactivity observed in the degradation study carried out with ¹⁴C labelled tetralin in three different test setups. The results after 14 days incubation with 02-A soil illustrate the difference in mass balance obtained between different test setups.

S5) Sterile samples

Sterile samples were prepared by autoclaving 50 g (dW) soil at 121°C for 20 min for 2 cycles (Dx-65 Systec) and applied with ¹⁴C labelled test chemical. The sterile samples were also prepared as per test setup 2 but without NaOH trap and incubated at similar test conditions as the other test flasks. The incubation time for the sterile samples were similar to that of non-sterile samples but only 3 samples in duplicates were scheduled between the incubation periods (start, middle and end of the study).

S6) Microbial biomass measurements

Soil samples in duplicates applied with and without co-solvent were prepared according to test setup 2 but without tenax and CO₂ absorption trap. These soil samples were used to see the effect of solvent and incubation conditions on the microbial biomass during the test and were sampled at the start, middle and end of the study. These samples were also oxygenated, if the oxygen saturation measured in the reference samples were lower than 15%. The microbial biomass measurement were based on the substrate induced respiration (SIR) method and was performed according to standard DIN ISO 17155.

S7) Oxygen measurement in the headspace of the closed setup (test setup 2) Fixation of Oxygen sensor spots and lens adaptor

Firstly, a contactless oxygen sensor spot (OXSP₅, Pyroscience) was attached to a 100mL sample bottle (approximately 12cm from the base of the bottle), to its inner wall using a silicone based glue. After the glue was completely dried, a lens spot adapter (SPADLNS, Pyroscience) was positioned exactly over the sensor spot on the outer wall of the sample bottle and fixed firmly using its belt.

Calibration of the sensor spots

An optical fibre (SPFIB, Pyrocience) was used to connect the adaptor with the optical oxygen meter (FireSting O2), which was also connected to an external temperature sensor. The oxygen meter was then connected to the laptop using a USB cable and operated with software (Pyro Oxygen logger). Each sensor spot was assigned a special sensor code, which was entered in the

software before its calibration. The sensor spots were calibrated using a 2-point calibration at $0\% O_2$ saturation and ambient air by filling in the bottles with nitrogen and air, respectively. The calibration file generated by the software for each of these sensors was then stored in the laptop.

Preparation of the reference sample

After the calibration, 50g of dry soil was added in each of the bottles without contaminating the sensor spots. One set of the soil sample was applied with solvent (same amount used for applying ¹⁴C test chemical in test samples) and the other without solvent. The bottles were then closed with the same insert head as in test setup 2 but without a NaOH flask attached. The reference samples were incubated in similar condition as the other test samples (20°C at dark)

Oxygen measurement

For the oxygen measurements in the headspace of the reference samples, the lens adaptor was connected to oxygen meter as described above. The calibration file associated with the sensor was assigned to the software and the oxygen measurement was performed for 3 min until a stable signal was reached.

S8) Headspace air stripping during the sampling date

At sampling date, the sample bottle was removed from the incubation room and the tenax end of the sample bottle was connected to a pump (Air check Sampler, Model 224-PCXR7) and a gas meter (Ester Handel, GmBH) using a pipe. For 20 sec the headspace air was stripped out without opening the other end of the sample bottle. For the remaining 4 min 40 sec, the air was stripped out by loosening the swagelok screws on the other end. On average 0.76 ± 0.06 L (N=74, Decane main test) of air was stripped out during this procedure from each sample in a total time of 5 min. After this step, the sample bottle was opened and the NaOH bottle and the soil were taken for further processing steps.

S9) Extraction of the soil

Test chemical	Number of extraction/ Shaking time							
Tetralin	1 st / 30min	2 nd /30min	3 rd /18hrs					
Decane	1 st / 30min	2 nd /30min	3 rd /18hrs					

Table S2 List of soil extraction methods applied during this project

S10) Confirmation of trapped ¹⁴CO₂ using BaCl₂ test

In case the radioactivity detected in the NaOH trap exceeded 5 %AR a BaCl₂ test was performed in order to confirm mineralization. A volume of 1 ml of the NaOH solution was mixed with 50 ml of 0.05M BaCl₂, in a 50 mL tube and was shaken vigorously at 200 rpm for 30 min. During this process, the ¹⁴CO₂ absorbed in the NaOH solution would precipitate to Ba¹⁴CO₃. After shaking, the solution was taken for centrifugation at 4000 rpm for 10 min and an aliquot of the suspension was taken for liquid scintillation counting.

S11) Radio-HPLC method

The sample injection volume was 50 μ L with the flow rate of the mobile phase set to 0.5 mL/min. For decane analysis an isocratic elution was performed with the total run time of 10.0 min and a solvent ratio of 10%A and 90%B (Solvent A: UHQ Water, Solvent B: Acetonitrile) was used. As decane is UV inactive, it was only detected in ¹⁴C detector at a retention time of 5.13 min. For tetralin analysis a gradient elution (0.0-6.0 min: 95%A and 5%B, 6.00-18.0 min: 30%A and 70%B, 18.0-20.0 min: 95%A and 5%B) was used. The UV detector was set to measure the absorbance at three different wavelengths i.e. 195, 220, and 266 nm. The retention time recorded for the tetralin on the ¹⁴C detector was 12.65 min and on the UV detector was 12.94 min.

S12) Degradation time series of tetralin main study

Figure S4 Degradation of tetralin in soil: Distribution of radioactivity for soil 01-A in non-sterile samples

Figure S5 Degradation of tetralin in soil: Distribution of radioactivity for soil 02-A in non-sterile samples

Figure S6 Degradation of tetralin in soil: Distribution of radioactivity for soil 03-G in non-sterile samples

Figure S7 Degradation of tetralin in soil: Distribution of radioactivity for soil 04-A in non-sterile samples

S13) Degradation time series of decane main study

Figure S8 Degradation of decane in soil: Distribution of radioactivity for soil 01-A in non-sterile samples

Figure S9 Degradation of decane in soil: Distribution of radioactivity for soil 02-A in non-sterile samples

Figure S10 Degradation of decane in soil: Distribution of radioactivity for soil 03-G in non-sterile samples

Figure S11 Degradation of decane in soil: Distribution of radioactivity for soil 04-A in non-sterile samples

S14) Variability of results in terms of mass balance

Recovery	Ν	Decane	Tetralin
Recovery of all replicates [%aR]	90 ¹⁾		
Mean Standard deviation Coefficient of variation [%] ²⁾ Amount of recoveries within 100 ± 15 % aR		99.91 10.60 10.61 88.88%	104.78 5.50 5.25 100%
Coefficient of variation [%] between individual replicates – range	90	0.01%- 12.05%	0.07%- 9.1%

Table S3 Comparison of ¹⁴C-mass balances and variability of results in tetralin and decane main study

1) N = Total number of samples

2) Calculation: Coefficient of variation [%] = Standard deviation [%aR] of all replicates / Mean recovery [%aR] of all replicates \times 100

S15) Comparison of radioactivity recovered in tenax in different soils in sterile samples

Table S4	Comparison	of volatilization	of tetralin and	decane in different soils	in sterile samples
----------	------------	-------------------	-----------------	---------------------------	--------------------

	O.C content	Decane (days)	Tetralin (days)
01A	0.8	79.93 (14d)	30.96 (28d)
02A	0.98	87.13 (14d)	40.84 (28d)
03G	3.05	55.36 (14d)	15.13 (28d)
04A	2.79	34.08 (14d)	3.93 (14d)

S16) Degradation kinetics

Standard modelling

The scheme of the standard model is presented in Figure **Error! Reference source not found.**S12. First, kinetic analyses were performed using all available kinetic models, namely single first order (SFO), first order multi compartment (FOMC), hockey stick (HS), and double first order in parallel (DFOP). The calculation of DegT50 and DegT90 values were based on the fraction of radioactivity in extracts which could be identified as tetralin by radio-HPLC analysis. The results of the kinetic calculations for all four soils are summarized in Table **Error! Reference source not found.**S5.

Figure S12: Structure of the model used for optimization

Kinetic model	DegT ₅₀ [days]	DegT ₉₀	χ^2	Prob >t				
	[days]		1)	2)				
	Soil refesol 01-A							
SFO	15.3	50.6	4.47	2.44E-013				
DFOP	15.3	50.6	5.15	0.4999	0.5			
HS	15.0	52.4	5.04	2.77E-009	1.33E-004			
FOMC	13.6	45.0	4.76	N/A	N/A			
		Soil refeso	ol 02-A					
SFO	9.4	31.2	15.0	9.21E-010				
DFOP	9.4	31.2	17.3	6.57E-009	N/A			
HS	9.6	31.9	16.6	2.12E-008	0.4999			
FOMC	7.9	26.4	16.0	N/A	N/A			
		Soil refeso	ol 03-G					
SFO	7.3	24.4	7.14	3.02E-007				
DFOP	7.3	24.4	9.0	3.33E-006	N/A			
HS	8.9	16.8	2.77	3.70E-006	4.81E-004			
FOMC	6.4	21.3	7.87	N/A N/A				
		Soil refeso	ol 04-A					
SFO	28.6	94.9	5.0	1.71E-009				
DFOP	28.2	104	5.74	0.3573	0.5			
HS	28.6	85.2	4.42	0.3528	2.77E-008			
FOMC	28.5	96.6	5.34	N/A	N/A			

Table S5 CAKE results for calculation of degradation rates $DegT_{50}$ and $DegT_{90}$ of tetralin in four different soils

1) for α^{1} (FOMC kinetic model); for k1 (hs and DFOP kinetic model)

2) for β^2 (FOMC kinetic model); for k2 (hs and DFOP kinetic model)

Based on the results it could be concluded that the SFO kinetics (marked in bold) shows generally the best performance as indicated by minimum χ^{2-} errors.

In addition to the standard model with consideration of the parent fraction in extracts only, an extended model was applied taking into account also the fraction of parent adsorbed on the tenax.

 $^{1 \}alpha$ = Shape parameter determined by coefficient of variation of k values

 $^{^{2}\}beta$ = Location parameter

Extended modelling

In addition to parent residues the sum of extractable metabolites and the volatile parent fraction were available and was considered further using an extended model, which is presented in the next figure (A1 = metabolites , B1 = volatilized parent residues). The analyses for the metabolites were based on the best-fit kinetics for the parent compound (SFO).

Figure S13: Structure of the model used for the extended model (A1 = metabolites, B1 = volatilized parent residues)

S17) Microbial biomass measurements results during the main tests

Results for the microbial biomass at the different stages are listed in Table S6 for tetralin and Table S7 for decane study. Microbial biomass determinations at study start (0d) were conducted with control samples untreated with solvent. At further stages of the study additional samples treated with the same amount of organic solvent as the samples applied with test chemical were analyzed in parallel to assess possible effects of the solvent to the microbial community in the respective soil. Biomass results indicated viable microflora at study initiation with C_{mic}/C_{org} ratios > 1 % for all soils with exception of the 04-A soil in tetralin study, which was slightly below the threshold set by the test guideline. The measurements during and at end of the study demonstrate that the test system remained viable throughout the study, with exception of the 04-A soil, which was clearly below the required threshold.

		Start of test (0d)		During test*		End of test**	
Soil	Soil sample	mg C _{mic} /kg	C_{mic}/C_{org}	mg C _{mic} /kg	C_{mic}/C_{org}	mg C _{mic} /kg	C_{mic}/C_{org}
		dry mass	(%)	dry mass	(%)	dry mass	(%)
01-A	untreated	83.5	1.1	81.5	1.1	46.7	0.6
	treated with solvent	NS	NS	161.1	2.2	237.4	3.3
02-A	Untreated	214.0	2.1	165.6	1.6	194.6	1.9
	Treated with solvent	NS	NS	645.6	6.4	1254.2	12.4
03-G	Untreated	434.6	1.6	417.0	1.5	428.7	1.5
	Treated with solvent	NS	NS	794.0	2.8	543.3	1.9
04-A	Untreated	153.3	0.6	232.9	0.9	76.9	0.3
	Treated with solvent	NS	NS	135.0	0.5	177.2	0.7

Table S6: Microbial biomass determined by means of substrate induced respiration (SIR) at different stages of the test during tetralin main study

NS: not sampled

* for soil 01-A: 28d; for soil 02-A: 28d; for soils 03-G and 04-A: 14d

** for soils 01-A/04-A: 123d; for soil 02-A: 61d; for soil 03-G: 28d

		start of te	est (0d)	During	During test*		End of test**	
Soil	Soil sample	mg C _{mic} /kg	C_{mic}/C_{org}	mg C _{mic} /kg	C _{mic} /C _{org}	mg C _{mic} /kg	C_{mic}/C_{org}	
		dry mass	(%)	dry mass	(%)	dry mass	(%)	
01-A	Untreated	119.0	1.5	86.3	1.1	165.5	2.1	
	treated with solvent	NS	NS	165.5	2.1	134.8	1.7	
02-A	Untreated	205.1	1.9	209.6	1.9	488.2	4.5	
	Treated with solvent	NS	NS	247.2	4.0	186.0	1.7	
03-G	Untreated	523.2	1.8	473.2	1.6	872.1	3.0	
	Treated with solvent	NS	NS	881.5	3.1	531.3	1.8	
04-A	Untreated	236.3	0.8	207.2	0.7	488.2	1.6	
	Treated with solvent	NS	NS	370.5	7.2	330.8	1.1	

Table S7: Microbial biomass determined by means of substrate induced respiration (SIR) at different stages of the test during decane main study

NS = not sampled

* = 7 d

** = 14 d

S18) Prediction of bio-NER using MTB and comparison with total NER from the tests An excel based program for prediction of bio-NER using MTB method was obtained from (Trapp et al. 2018) The required fields and entered values for the calculations have been listed below in the table.

Test					
Chemical	Required fields : Entered data				
	Name: Tetralin				
	Structure: C10H12				
	molar mass g/mol: 132.2				
	Delta G0 of ATP:-80 kJ/mol ATP				
	Y ATP: 5 g dry cell per mol ATP				
Tetralin	DeltaG0-values				
	Substrate S1 : 630.3 (n=1) kJ/mol				
	Number of C atoms: 10				
	Number of H atoms: 12				
	Number of CH bonds: 12				
	measured CO ₂ % : (see Table S9 below)				
Decane	Name: Decane				
	Structure: C10H22				
	molar mass g/mol: 142.28				
	Delta G0 of ATP:-80 kJ/mol ATP				
	Y ATP: 5 g dry cell per mol ATP				
	DeltaG0-values				
	Substrate S1:924.9 (n=1) kJ/mol				
	Number of C atoms: 10				
	Number of H atoms: 22				
	Number of CH bonds: 22				
	measured CO₂% : (see Table S9 below)				

Table S8 The data entries made for the prediction of bio-NER using MTB method for tetralin and decane

Table S9 Total NER versus bio-NER predicted using MTB method for decane and tetralin

Test					
Chemical	Parameter (% AR)	01-A	02-A	03-G	04-A
Tetralin	% Mineralization	8.79	23.33	45.48	6.83
	% total NER	9.53	23.04	48.05	8.0
	% bio-NER	6.70	17.76	34.72	5.21
	(bio-NER : total NER)				
	Factor	0.70	0.77	0.72	0.65
Decane	% Mineralization	46.60	40.90	39.60	51.40
	% total NER	38.60	40.40	48.80	47.00
	% bio-NER	68.20	59.80	58.00	75.30
	(bio-NER : total NER)				
	Factor	1.77	1.48	1.19	1.60