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Figure S1. (a) A comparison of the percent of site polyclonal migrations for each patient’s migration history when using the best
migration history chosen by Metient (x-axis) vs. a model that assumes primary-only seeding (y-axis). (b) Percent of patients
in each dataset with the root cancerous clone observed in a metastatic site. (c) The distribution of seeding patterns in each
dataset when taking the migration history on the approximate Pareto front with the lowest number of seeding sites, run with
Metient-calibrate. (d) The distribution of seeding patterns across all patients if we choose the migration history on the Pareto front
with the lowest number of seeding sites (primary-only seeding model), lowest number of migrations (migration penalizing model),
or the top Metient-calibrate solution. (e) A comparison of the number of metastatic sites that seed other sites between migration
histories chosen by a model which chooses the migration history with a model that assumes primary-only seeding vs. Metient.
Statistical significance assessed by a paired t-test, p=2.233e-06.
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Figure S2. Comparison of Gundem et al. 9 reported body maps (left of each square) and Metient-calibrate inferred histories. The
Metient-calibrate solutions with unique migration graphs on the Pareto front are shown. For example, in cases where there are
multiple Pareto optimal migration histories with the same migration graph, only the migration history with the lowest loss is shown.
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Figure S3. Comparison of Gundem et al. 9 reported body maps (left of each square) and Metient-calibrate inferred histories. The
Metient-calibrate solutions with unique migration graphs on the Pareto front are shown. For example, in cases where there are
multiple Pareto optimal migration histories with the same migration graph, only the migration history with the lowest loss is shown.
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Figure S4. Comparison of Sanborn et al. 3 reported histories and Metient-calibrate inferred histories. In the Sanborn et al. 3

reported histories, solid lines denote probable dissemination patterns and dashed lines denote multiple possible paths. The
Metient-calibrate solutions with unique migration graphs on the Pareto front are shown. For example, in cases where there are
multiple Pareto optimal migration histories with the same migration graph, only the migration history with the lowest loss is shown.
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*Left ovary and right ovary were both run as possible primaries.
Left ovary gave lowest loss top solution. 
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*Right ovary, left ovary, and right uterosacral were run as possible primaries.
Right uterosacral gave lowest loss top solution.
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Solution 2

Figure S5. Comparison of McPherson et al. 4 reported histories and Metient-calibrate inferred histories. The Metient-calibrate
solutions with unique migration graphs on the Pareto front are shown. For example, in cases where there are multiple Pareto
optimal migration histories with the same migration graph, only the migration history with the lowest loss is shown. When multiple
possible primaries were available, Metient-calibrate was run once with each possible primary, and the primary with the lowest
loss solution is shown.
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Figure S6. The percent of simulated data where a more parsimonious solution than ground truth is found when running
Metient-1024 in calibrate mode with polytomy resolution. More parsimonious is defined as at least one of the parsimony metrics
(migration, comigration and seeding site number) being less than the ground truth and all other metrics being equal.
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Figure S7. (a) Polytomy resolution algorithm with two nodes (A and AC) that have polytomies that can be resolved. (b) Polytomy
resolution algorithm for a single node with four children and thus two resolver nodes. (c) Weight initialization is done such that
nodes start with higher probabilities of being in the same site as the site that they or their children are detected in (after UMAP

estimation).
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a b c d

Figure S8. The (a) migration penalty/weight, (b) comigration penalty/weight, and (c) seeding site penalty/weight for each cohort,
when taking 100 bootstrap samples of each cohort and fitting the weights to the bootstrapped sample. (d) The polyclonality index,
which is 1 − (wc/(wm + wc)), where wm is the migration penalty/weight and wc is the comgiration penalty/weight. Statistical
significance tested through a Welch’s t-test; ns: 5e-02 < p <= 1, *: 1e-02 < p <= 5e-02, **: 1e-03 < p <= 1e-02, ***: 1e-04 < p <=
1e-03, ****: p <= 1e-04.
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Figure S9. The distribution of tumors (number of distinct anatomical sites) for each cohort: (a) melanoma, (b) high-grade serous
ovarian cancer (HGSOC), (a) high-risk neuroblastoma (HR-NB) and (a) non-small cell lung cancer (NSCLC).

Previous Methods for Migration History Inference
Method Labels

clone tree
Estimates
clone
proportions
in sites

Models
Complex
Seeding

Multiple
solutions

Organo-
tropism

Genetic
Distance

Polytomy
Resolution

ClonEvol15 Y Y N Y N N N
Treeomics16 N Y N N N N N
MACHINA17 Y Y Y N N N Y
PathFinder40 Y N N Y N Y Y
Metient Y Y Y Y Y Y Y

Table 1. Summary of previous methods which perform some aspect of migration history inference. Y = yes, N = no. Labels clone
tree refers to whether the method infers the labels of the internal vertices of a clone tree (e.g. labeling clone AB as originating in
lymph in Figure 1c, solution A). Estimates clone proportions in sites refers to whether the method infers the leaf nodes (witness
nodes) (e.g. identifying that clone ABC is present in both lymph and liver in Figure 1c, solution A). Multiple solutions indicates
whether a method outputs multiple possible migration histories.
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Parsimony model Migration number
weight (wm)

Comigration number
weight (wc)

Seeding site
number weight
(ws)

wm >> wc >> ws

(MACHINA model)
1000 100 1

wc >> wm >> ws 100 1000 1
ws >> wm >> wc 100 1 1000
ws >> wc >> wm 1 100 1000
wc >> ws >> wm 1 1000 100
wm >> ws >> wc 1000 1 100

Table 2. The multiple parsimony models that Metient uses to build a Pareto front of solutions for a patient’s data. Each parsimony
model has a different relative weighting on each parsimony metric.

Average migration graph F1-scores

Method Primary-only Met-to-met Macro-F1 Micro-F1
Evaluate (MP) 0.930 0.688 0.809 0.736

Evaluate (MP) + polyres 0.983 0.648 0.816 0.715
Evaluate (GD) 0.857 0.691 0.774 0.724

Evaluate (GD) + polyres 0.829 0.649 0.739 0.685
Calibrate 0.930 0.716 0.823 0.759

Calibrate + polyres 0.983 0.662 0.823 0.726

MACHINA 0.968 0.643 0.806 0.708

Table 3. Average F1-scores of migration graph for each broad seeding pattern (primary-only seeding or metastasis-to-metastasis
seeding) on simulated data. All Metient models were run with a sample size of 1024. When multiple solutions are found for a given
input, all lowest loss solutions were taken. Evaluate (MP): Metient in evaluate mode with maximum parsimony only. Evaluate
(GD): Metient in evaluate mode with genetic distance only. Calibrate: Metient in calibrate mode, using genetic distance as the
metastasis prior. polyres: polytomy resolution is used. mS: monoclonal single-source seeding. pS: polyclonal single-source
seeding. pM: polyclonal multi-source seeding. pR: polyclonal reseeding.

Average migrating clone F1-scores

Method Primary-only Met-to-met Macro-F1 Micro-F1
Evaluate (MP) 0.795 0.781 0.788 0.784

Evaluate (MP) + polyres 0.873 0.791 0.832 0.808
Evaluate (GD) 0.954 0.876 0.915 0.892

Evaluate (GD) + polyres 0.979 0.928 0.954 0.939
Calibrate 0.961 0.916 0.938 0.925

Calibrate + polyres 0.961 0.890 0.926 0.905

MACHINA 0.954 0.876 0.915 0.892

Table 4. Average F1-scores of migrating clones for each broad seeding pattern (primary-only seeding or metastasis-to-metastasis
seeding) on simulated data. All Metient models were run with a sample size of 1024. When multiple solutions are found for a given
input, all lowest loss solutions were taken. Evaluate (MP): Metient in evaluate mode with maximum parsimony only. Evaluate
(GD): Metient in evaluate mode with genetic distance only. Calibrate: Metient in calibrate mode, using genetic distance as the
metastasis prior. polyres: polytomy resolution is used.
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Supplementary Information717

A. Evaluating migration histories718

We present our technique for optimizing migration histories in the context of variational inference. Our goal is to719

approximate the conditional density of latent variable V given observed variables U and T: p(V | U,T). U has720

been optimized as described in the section “Estimating observed clone proportions” in Methods. p(V | U,T) can be721

written as:722

p(V | U,T) = p(U,T | V)p(V)
p(U,T) (S1)

We cannot calculate the denominator, or the evidence, as its derivation is intractable (there are many possible values723

of V):724

p(U,T) =
∑
V

p(U,T,V) (S2)

We approximate the posterior distribution p(V | U,T) with a simpler distribution q(V), and we aim to minimize the725

Kullback-Leibler (KL) divergence between q(V) and the true posterior p(V | U,T). The Evidence Lower Bound726

(ELBO) is given by:727

ELBO(q) = Eq(V)[log p(U,T,V)] + H(V) (S3)

Where the second term is the entropy term.728

To handle the categorical nature of V, we use the Gumbel-Softmax reparameterization trick to optimize V. Starting729

with a matrix ψ ∈ {0, 1}K×C , of randomly initialized values, where K is the number of anatomical sites and C is the730

number of clones, and each column represents the unnormalized log probabilities of clone c being labeled in site k:731

1. At every iteration, for each clone c, we sample g1c...gkc, k i.i.d. samples from Gumbel(0,1) and compute732

yic = ψic + gic. Where a sample g from the Gumbel is computed as:733

g = − log(− log(u)) where u ∼ Uniform(0, 1) (S4)

2. We then sample from the categorical distribution represented by the column vector ψ:c by setting i∗ =734

argmaxi yic and represent that sample with a one-hot encoding in V, i.e., Vic = 1 if i = i∗, 0 otherwise.735

3. Then we evaluate the ELBO(ν) where736

νic = exp(yic/τ)∑k
j=1 exp(yjc/τ)

for i = 1, ..., k,

using a stochastic approximation based on V, and take the gradient of this ELBO in the backward pass, thus737

implementing the straight-through estimator.738
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4. During training, start with a high τ to permit exploration, then gradually anneal τ to a small but non-zero value739

so that the Gumbel-Softmax distribution, ν resembles a one-hot vector.740

At the end of training, as τ approaches 0, then the gradient becomes unbiased and ν approaches V. In order741

to capture multiple modes of the posterior distribution, each representing different hypotheses about the migration742

history, we optimize multiple Vs in parallel. To do this, we set up steps 1-3 such that x ψs are solved for in parallel58
743

(with a different random initialization for each parallel process), where x is equal to the sample size and is calculated744

according to the size of the inputs (∝ KC ).745

Using the Gumbel-Softmax reparameterization as described above, we approximate the expectation in the ELBO746

with a sample of V, which we denote Ṽ:747

Eq(V)[log p(U,T,V)] ≈ log p(Ṽ,U,T) (S5)
748

H(V) ≈ −
C∑

j=1

K∑
k=1

q(Ṽjk) log q(Ṽjk) (S6)

In the following sections, we describe how we calculate p(Ṽ,U,T), which is broken down into (1) pm(Ṽ,U,T), i.e.,749

the scoring of Ṽ using maximum parsimony, (2) pg(Ṽ,U,T), i.e., the scoring of Ṽ using genetic distance, and (3)750

po(Ṽ,U,T), i.e., the scoring of Ṽ using organotropism.751

A.1. Evaluating maximum parsimony. As previously described by MACHINA17, the maximum parsimony metrics are752

defined as:753

• migration number m: Given clone tree T and clone tree labeling V, the migration number is the number of754

edges in T where the outgoing node and incoming node have a different label. It is the number of edges in755

migration graph G.756

• comigration number c: Given clone tree T and clone tree labeling V, the comigration number is a subset of757

the migration edges between two anatomical sites, such that the migration edges occur on distinct branches758

of the clone tree. It is the number of multi-edges in migration graph G if G does not contain cycles.759

• seeding site number s: Given a clone tree T and clone tree labeling V, the seeding site number is the760

number of unique anatomical sites with an outgoing edge. It is the number of edges in migration graph G with761

an outgoing edge.762
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Maximum parsimony scoring calculates the number of migrations m , comigrations c, and seeding sites s.

pm(Ṽ,U,T) = wm ·m+ wc · c+ ws · s (S7)

m =
∑

ij

G − Trace(G)

s =
n∑

j=1

(( m∑
i=1

(
G ⊙ (JK − IK)

)
i

)∗
)

j

c =
∑

ij

G∗
ij − Tr(G∗) +

∑
ij

( m∑
l=1

(
P ⊙ (W ⊙ X)

)
l

)
ij

where G = ṼTṼT
,P =

(
T ∨ IN

)N−1
,X = ṼT Ṽ,Y =

∑m
i=1

(
(ṼTṼT ⊙ (JCK − VT )

)
,Z∗ = sign(Z). ∨763

represents boolean matrix multiplication, In is a n×n identity matrix, ⊙ is the Hadamard, i.e., element-wise product,764

and Jmn is a matrix of ones with dimensions m× n.765

A.2. Evaluating genetic distance. Genetic distance is a measure of the number of mutations between clones. Given766

a distance matrix D which has normalized genetic distances between every clone:767

pg(Ṽ,U,T) = wg

m

∑
ij

−log(D) ⊙ T ⊙ (JC − X) (S8)

where JC is a square matrix of ones, ⊙ is the Hadamard, i.e., element-wise product, and X = ṼT Ṽ. The product768

T ⊙ JC − X tells us if two nodes have an edge between them and they are in different sites. Taking the hadamard769

product of this with the negative log of D gives lower scores to edges with higher genetic distances. We normalize by770

the migration number m so we don’t implicitly penalize migration histories with more migrations through this scoring.771

A.3. Evaluating organotropism. Organotropism refers to the observation that certain cancers metastasize to specific

organs. We penalize migration edges between organs that are less likely to occur based on clinical data. Given a

vector o which contains the frequency that a primary tumor seeds other anatomical sites:

po(Ṽ,U,T) = wo

mp

K∑
i=1

−log(o) ⊙ (G ⊙ (JK − IK))p,i (S9)

where G = ṼTṼT
, ⊙ is the Hadamard, i.e., element-wise product, JK is a square matrix of ones, and IK is772

the identity matrix. The product (G ⊙ (JK − IK)) contains the number of migrations between different sites, and773

taking the Hadamard product of this with the negative log of o gives lower scores to migration edges with higher774

organotropism frequencies. The subscript p, i represents taking the row of (G ⊙ (JK − IK)) which represents the775

primary site index and summing over the columns at every other anatomical site i. We normalize by mp, the number776

of migrations originating from the primary site, so we don’t implicitly penalize migration histories with more migrations777

through this scoring.778
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B. Calibrate alignment779

A parsimony model is represented by a set of parsimony weights – wm, wc, and ws – assigned, respectively, to the780

number of migrations (indicated by m), comigrations (c), seeding sites (s). A migration history’s parsimony score, p,781

is the model-weighted average of these three parsimony metrics, i.e., p = wmm+wcc+wss (Equation S7). Different782

parsimony models favor different histories on the Pareto front. To fit a parsimony model to a cancer type-specific783

cohort, we look at how well the maximum parsimony distribution aligns with the genetic distance distribution of each784

patient’s migration history trees.785

Take a cohort of N patients, where each patient, n, is associated with a set,786

S(n) =
{
t
(n)
i

}T (n)

i=1
,

of T (n) migration histories. Each migration history t is associated with a genetic distance gt (or, alternatively, an787

organotropism score), and a vector of parsimony metrics xt = [mt ct st] (i.e., the counts of migrations, comigrations,788

and seeding sites, respectively). The goal is to set the parameters, θ = [wm wc ws] of the parsimony prior q(t) ∝789

exp
(
−xT

t θ
)

so that it matches, as best as possible, a target distribution, p(t), over the migration histories t implied790

by the gt, where p(t) ∝ exp(−τgt) and τ is a user-defined "temperature" hyper-parameter.791

To fit these parameters, we define patient-specific categorical distributions p(n)(t) and q(n)(t) as follows. Let g(n)
792

be the vector of length T (n) of genetic distances of the migration histories for patient n, where g(n)
i is the genetic793

distance for the i-th tree. And let the column vector x(n)
i be the parsimony metrics for the i-th migration history794

associated with patient n. We will append the T (n) vectors x(n)
i to make a 3 × T (n) design matrix X(n). Also we795

define the vector-valued softmax function in the typical way, i.e.,796

softmax(v)i = exp(vi)∑|v|
j=1 exp(vj)

where softmax(v)i is the i-th element of the vector output by softmax(v). Then the "parsimony" probability797

distribution over the trees for patient n is represented by the vector q(n)
798

q(n) = softmax(−θTX(n))

and the target distribution by the vector p(n)
799

p(n) = softmax(−τg(n)).
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Then we define the cohort calibration objective E(θ) as an average cross-entropy over the patient cohort, i.e.,800

E(θ) =
N∑

n=1
wn

T (n)∑
i=1

p
(n)
i log q(n)

i


and the MLE estimate of the parameters is θ∗ = argmaxθE(θ). wn is set to log(E/(r · b)), where E is the number of801

internal edges of a patient’s clone tree, r is the number of possible primaries for the patient, and b is the number of802

possible clone trees for a given patient (so as not to bias towards patients with multiple possible primaries or multiple803

possible clone trees). Since the number of edges is equal to the maximum number of migrations possible in a tree,804

it is also equal to the number of possible genetic distance observations that that tree can provide in the genetic805

distance scoring of that tree. Therefore, wn is representative of the information content that a patient can provide806

when fitting θ.807

B.1. Specifying the target distribution by setting the temperature parameter. The use of E(θ) to set θ requires that for808

a patient n that, generally speaking, the genetic distance g(n)
i for a potential migration history, represented by a tree809

i, is lower for more probable histories. However, because E(θ) is minimized when τg(n) = θX(n) + c1 for some810

constant c, this could be a very strong assumption, one that we might not always be comfortable making.811

Fortunately, we can set τ to increase the correctness of this assumption. Notice that in the limit of large τ that812

lim
τ→∞

E(θ) =
N∑

n=1
wn log q(n)

i∗
n

where i∗n = argmini g
(n)
i , assuming that the minimum is unique. If the minimum is not unique then the above is true813

if we replace log q(n)
i∗

n
with the average of log q(n)

t of all the trees t that have the minimum genetic distance for patient814

n.815

So, in other words, if we set τ to be very large, then E(θ) is just the (weighted) sum of the log probabilities of816

the minimum genetic distance trees in each patient, and optimizing E(θ) corresponds to maximizing the parsimony817

probabilities of the best scoring trees per patient under the genetic distance score.818

∏
i

exp(X(i)τ

θ)∑
j|rank(j)≥rank(i) exp(X(j)τ θ)

So, we set τ to be large, such that τ is multiple times the maximum genetic distance (assuming that the genetic819

distance is always positive). We do the same for the organotropism prior.820

C. Case-by-case differences to expert annotations821

C.1. Comparisons to Melanoma patients from Sanborn et al.. Migration histories generated for the metastatic822

melanoma cohort using Metient-calibrate agree with the expert analysis that most melanoma patients exhibit primary823

single-source seeding (7/7 patients; Supplementary Figure S4). For patient F (Supplementary Figure S4c), our824
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reconstruction of the clone tree and observed clones does not suggest that a lymph node to distant metastasis825

seeding event is likely, but that this patient also likely exhibits a primary-only seeding pattern. In the second best826

solution predicted for patient D, Metient predicts that a locoregional skin metastasis from the right ankle could have827

given rise to subsequent metastases, supporting one of the possible paths (in dotted lines) that the original authors828

propose (Supplementary Figure S4d). We also predict a primary single-source solution on the Pareto front which is829

another possible path proposed by the authors (Supplementary Figure S4d).830

C.2. Comparisons to HGSOC patients from McPherson et al.. In the seven HGSOC patients, predicted migration831

histories by McPherson et al.4 were made available using an algorithm that only minimizes migrations (Sankoff832

algorithm60). We find that four out of seven patients are in complete agreement (Supplemental Figure S5). For833

patient 1, by resolving polytomies, we offer an explanation with less migrations and comigrations, and predict that834

the left fallopian tube rather than the small bowel served as a possible intermediate site before further metastatic835

dissemination (Supplemental Figure S5a). For patient 3, we offer an explanation with less migrations, comigrations836

and seeding sites, suggesting that all metastases were seeded from the primary (Supplemental Figure S5c). Finally837

for patient 7, solving for polytomies allows us to reduce the migration number by 1 from the right uterosacral to left838

ovary, although the overall seeding pattern is in agreement (Supplemental Figure S5d).839

C.3. Comparisons to HR-NB patients from Gundem et al.. Because the HR-NB annotations only indicate the presence840

of a migration between two sites and not the directionality, we compared our site-to-site migrations (i.e., a binarized841

representation of migration graph G (Figure 1c)) to those that were previously reported. We looked at the 14 HR-NB842

patients for which there were manual expert annotations from Gundem et al.9, and found that we predict the same843

overall site-to-site migrations for 10 out of 14 cases. For patient H103207, we predict their before therapy pattern844

on the Pareto front (Solution 3 in Figure S2a), but we prioritize two solutions with metastasis-to-metastasis seeding845

between the lung and the liver. A subset of this seeding between the liver and two lobes of the lung is suggested in846

their after therapy hypothesis of spread (Figure S2a). While Gundem et al. suggest seeding between the two lobes847

of the lung as well as from each lobe of the lung to the liver, we infer a simpler, serial progression, where the right848

lung lower lobe seeds the liver, which subsequently seed the left lung lower lobe (Solution 1 in Figure S2a). For849

patient H132396, Metient prioritizes migration histories with fewer migrations (Solutions 1 and 2 in Figure S2g), but850

presents the expert annotation on the Pareto front (Solution 3 in Figure S2g). For patient H132384, Metient proposes851

bone-to-bone secondary metastasis formation (Solution 1 in Figure S3d), but again presents the expert annotation852

on the Pareto front (Solution 2 in Figure S3d). For patient H134821, we infer the same pancreas to hilar lymph node853

seeding proposed by the authors as spread after therapy, but suggest that all other metastases were seeded directly854

by the primary (Solution 1 in Figure S3f). However, we report the same metastasis-to-metastasis seeding between855

the cervical and thoracic lymph nodes and cervical metastases as the authors in alternative solutions on the Pareto856

front (Solutions 3-5 in Figure S3f).857
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D. Model choice impacts downstream analyses858

As we were analyzing different aspects of metastatic dissemination, we asked how these answers might change if a859

seeding model is enforced when reconstructing a patient’s migration history. To highlight how the choice of seeding860

model can impact the analysis and interpretation of metastatic dissemination, we compared the migration histories861

produced by three models: (1) assumption of primary, single-source seeding, (2) the MACHINA assumptions, which862

first minimize migrations, and then break ties based on comigration number followed by seeding site number, and863

finally (3) the adaptive Metient model fit to each cohort. As expected, a primary, single-source seeding model864

chooses a primary, single-source dissemination pattern for 100% of patients (Supplementary Figure S1c). The865

migration penalizing model chooses a primary single-source seeding explanation in 82.6% of patients, and Metient866

falls in between the two, choosing a primary single-source seeding explanation in 86.2% of patients (Supplementary867

Figure S1d). Importantly, since Metient can recover and evaluate the relative trade-offs of the parsimony metrics,868

when choosing a primary single-source solution, our model has either not found a plausible metastasis-to-metastasis869

explanation for a patient’s data on the Pareto front, or has used the metastasis priors to deem such an explanation870

less likely. In contrast, previous models do not automatically recover multiple possible hypotheses, therefore reducing871

confidence in these algorithms’ choice of best history.872

In addition to having an impact on the inferred seeding patterns, a model that assumes primary single-source seeding873

also changes other interpretations of metastatic seeding. We asked two questions about the best migration histories874

produced by the two extremes of models, i.e. the assumption of primary, single-source seeding and Metient: (1)875

the frequency in which a new seeding site is added, and (2) the frequency of polyclonal migrations between two876

sites. As expected, a model which assumes primary, single-source seeding promotes migration histories with only877

one seeding site (Supplementary Figure S1e). In turn, such a model infers a higher fraction of polyclonal migrations878

(Supplementary Figure S1a) compared to the histories prioritized by Metient. The trade-off between polyclonality879

and seeding sites occurs because additional seeding sites reduce the number of migration edges that must be880

placed between the primary and all other metastases. Balancing this trade-off correctly is important as it impacts881

the interpretation of seeding clonality as well as which clones perform seeding. Specifically, 9% (15/167) of patients882

have differing colonizing clones between the two models, changing the inference of which clones, and therefore883

which mutations, have metastatic competence.884

E. Bulk DNA sequencing pre-processing885

E.1. Variant read probability calculation (ω). In order to account for non-diploid copy number and tumor purities, we886

require a variant read probability ω to be input for every genomic locus in each sample. For a given sample s and887

variant allele j, the variant read probability ωjs is the probability of observing a read with the variant allele at that888

locus in a cell with the mutation, and is calculated as:889
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ωjs = Mjs/Njs (S10)

where Mjs is the number of copies of the mutant allele j in sample s in the cells that contain the mutant allele, and890

Njs is the average number of copies at the genomic locus of the mutation j in all cells in s.891

To account for the fact that cancer cells frequently have different numbers of copies at genomic loci compared to

normal cells, Njs is calculated as:

Njs = ρsN
(c)
js + (1 − ρs)N (h)

js (S11)

where:892

• N (c)
js is the population average copy number of the locus which contains mutant allele j in the cancer cell893

population894

• N (h)
js is the copy number at the genomic locus of mutation j in the normal cell population. In diploid cells this895

is 2, and in haploid cells this is 1.896

• ρs is the tumor purity of sample s897

ρs and N
(c)
js (and sometimes Njs) are normal outputs from a copy number calling pipeline. We suggest setting898

Mjs = 1 unless there is strong evidence that the j allele has been amplified. In this case, allele-specific copy number899

callers provide the major allele copy number Ajs and minor allele copy number Bjs, where N (c)
js = Ajs + Bjs, and900

Mjs = Ajs. When a locus is impacted by many different CNAs, accurately estimating Mjs is challenging since901

there are likely subclonal changes in the multiplicity of the j allele, in which case we recommend excluding these902

mutations. For additional information on how to estimate Mjs and Njs please refer to Tarabichi et al.61.903

If clustering is used, we have to properly combine multiple SNV loci with different potential variant read probabilites.904

To do this, we rescale the reference and variant allele read counts for each locus and then set its variant read905

probability to 0.5 before combining variants within a cluster (where we add the reference and variant allele read906

counts for all variants within a cluster). This rescaling allows us to effectively treat the variant as coming from a907

diploid locus. To achieve this, we use the following rescaling formulas, which has been previously described in908

Wintersinger et al.53:909
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Tjs = Vjs +Rjs

T̂js = 2ωjsTjs

V̂js = min(Vjs, T̂js)

R̂js = T̂js − V̂js

ω̂js = 1
2

Where Tjs is the input count of total reads, Vjs is the input count of variant reads, Rjs is the input count of reference910

reads, and ωjs is the variant read probability at a genomic locus j in anatomical site s. The rescaled total, reference,911

and variant allele read counts and variant read probability are T̂js, V̂js, R̂js and ω̂js, respectively.912

E.2. Breast Cancer Dataset. The single nucleotide variant calls from two breast cancer patients with whole genome913

sequencing data were taken from Hoadley et al.20. The variant calls were in copy number neutral variant positions914

and tumor purity was not reported, so reference and variant counts along with defaults for tumor purity, major915

copy number and minor copy number (defaults are 1.0, 1, 1, respectively) were inputted into PyClone-0.13.1 clonal916

analysis62. PyClone’s MCMC chain was run for 100,000 iterations, discarding the first 50,000 as burnin. Orchard917

was run using the PyClone clusters as input with -p flag to force trees to be monoprimary (come from a singular918

root cancer clone) and all variant read probabilities set to the default of 0.5, since SNVs from regions with CNAs919

were excluded, and tumor purity was not reported and thus assumed to be 1. We ran Metient-evaluate on this data920

using all default configurations (dynamically calculated sample size based on size of input clone tree and number of921

anatomical sites).922

E.3. High-grade Serous Ovarian Cancer Dataset. To better compare to McPherson et al.’s own migration history923

analysis, we used the mutation clusters, clone trees and cellular prevalences of each clone that they estimate and924

report4. Metient was run with the U matrix inputted, and we solve for V for each patient. We ran Metient-calibrate925

on this data using all default configurations (dynamically calculated sample size based on size of input clone tree926

and number of anatomical sites) and with polytomy resolution.927

E.4. Melanoma Dataset. The single nucleotide variant and copy number calls from eight melanoma patients with928

whole exome sequencing data were taken from Sanborn et al.3, along with estimated tumor purity. Only SNVs in929

copy number neutral regions were considered. Patient H was excluded due to a lack of copy number neutral SNVs.930

Reference and variant read counts along with major and minor copy number and tumor purity were inputted into931

PyClone-VI 0.1.3 for clonal analysis63. PyClone-VI’s fit command was run with all default parameters. Orchard932

was run using the PyClone clusters as input with -p flag to force trees to be monoprimary (come from a singular933

root cancer clone). Variant read probabilities for Orchard were calculated using major copy number, minor copy934

number and tumor purity according to Equation S10. We ran Metient-calibrate with the clonal proportions estimated935
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by running Orchard (i.e., η in Orchard’s output) using all default configurations and with polytomy resolution.936

E.5. Neuroblastoma Dataset. Access to multi-WGS data for 45 neuroblastoma patients was provided through dbGaP937

accession phs031119. Of these 45 patients, 27 patients had at least one primary and one metastatic tumor sample938

with a tumor purity of >10%, and all analysis was conducted on this patient subset. Single nucleotide variant, copy939

number calls and tumor purities were collected from this dataset, and clusters produced from the original paper using940

DPClust64 were used. Multiple samples for the same anatomical site and sample time (i.e., diagnosis, therapy-naive941

re-resection, therapy resection during induction chemotherapy, relapse or further relapse) were combined by pooling942

reference and variant allele counts. Orchard was run using the DPClust clusters as input with -p flag to force trees943

to be monoprimary (come from a singular root cancer clone). Variant read probabilities for Orchard and Metient944

were calculated using major copy number, minor copy number and tumor purity according to Equation S10. We945

ran Metient-calibrate with the clonal proportions estimated by running Orchard (i.e., η in Orchard’s output) using all946

default configurations and with polytomy resolution.947

For three patients (H103207, H132388, H134822), multiple primary tumor samples were collected at different time948

points (diagnosis and resection during therapy). For these patients, we treated the therapy resection and diagnosis949

tumor as multiple samples from the same anatomical site if the anatomical site was labeled the same, and as two950

different primaries if the anatomical sites were different. The therapy resections were usually taken a few months951

after diagnosis tumor samples.952

E.6. Non-small Cell Lung Cancer Dataset. We used the clustered SNVs, clone trees and observed clone proportions953

made available by the TRACERx consortium for 126 non-small cell lung cancer (NSCLC) patients (downloaded from954

https://zenodo.org/record/7649257). When samples for multiple regions of a tumor were available, the reference955

and variant allele counts were summed together to generate reference and variant allele counts for the entire tumor.956

Since we model variant allele counts as binomially distributed with n total reads (variant + reference) and p probability957

of generating a variant read, this summing assumes that each sampled region of a tumor has the same probability958

p. Metient was run with the U matrix inputted, and we solve for V for each patient. We ran Metient-calibrate on959

this data using all default configurations (dynamically calculated sample size based on size of input clone tree and960

number of anatomical sites) and with polytomy resolution.961
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