Supplemental Information: β-barrel proteins determine the effect of core oligosaccharide bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610904; this version posted September 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made composition on outer membrane mechanics

Dylan Fitzmaurice¹, Anthony Amador¹, Tahj Starr¹, Glen Hocky², Enrique R. Rojas^{1*}

¹Department of Biology, New York University, New York, New York, 10003, USA

²Department of Chemistry and Simons Center for Computational Physical Chemistry, New York

University, New York, New York, 10003, USA

*: Correspondence: rojas@nyu.edu

Running Title: Molecular basis of bacterial envelope mechanics

Supplemental Figures

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610904; this version posted September 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure S1. Plasmolysis-lysis assay used to measure the ratio between the stiffness of the cell wall and the outer membrane. Model of a fully turgid cell at a steady-state length (l_l) . The cell is depressurized by a large 3M hypo-osmotic shock resulting in a plasmolysed cell whose length contracts (l_2) . The strain resulting from this shock is calculated by: $\varepsilon_p = \frac{l_1 - l_2}{l_2}$. The cell is then treated with 20% detergent which dissolves the outer membrane allowing the cell wall to relax to its rest state (l_3) . The strain resulting from this shock is calculated by: $\varepsilon_l = \frac{l_2 - l_3}{l_3}$. By treating the outer membrane and cell wall as parallel linear springs, relative stiffness is calculated by: $\frac{k_{om}}{k_{cw}} = \frac{\varepsilon_l}{\varepsilon_p(\varepsilon_l+1)}$. bioRxiv preprint doi: https://doi.org/10.1 W/2024.09.02.610904; this version posted September 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpendity. It is made available under a CC-BY-NC-ND 4.0 International license.

Figure S2. Calcium distribution reflects the phosphate distribution in simulated lipopolysaccharide bilayers. A) Simulated wild-type lipopolysaccharide bilayer. B) Calcium distribution across the thickness of the bilayer.

Figure S3. Modifications to lipid A have weak effects on cell envelope stiffness. A) Cell envelope stiffness of modified lipid A strains, normalized by wild-type (BN1) cell-envelope stiffness; n = 48, 54, 64, for BN1pE (removal of 1-phosphate), BN1pP (addition of acyl chain), and BN1 wild-type cells. B). Outer membrane stiffness of normalized by wild-type (BN1) cell-envelope stiffness; n = 45, 51, 87, for BN1pE, BN1pP, and BN1 wild-type cells.

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610904; this version posted September 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Table S1. Strains used in this study.

Strain	Genotype	Relevant features	Source/Reference		
DEOCE	F- lambda-	MC16FF wild type	<i>E. coli</i> Genetic Stock center		
			(Tale)		
DF153	DF065, ΔrfaC::kan	MG1655, rfac deletion, KanR			
DF154	DF065, ΔrfaF::kan	MG1655, rfaF deletion, KanR			
DF155	ΔrfaG::kan	KanR			
DF156	DF065, ∆rfaJ∷kan	MG1655, rfaJ deletion, KanR			
	Δ (araD-araB)567 Δ lacZ4787(::rrnB- 3) λ - rph-1				
DF005	Δ(maD-maB)568 hsdR514	BW25113, wild type	<i>E. coll</i> Genetic Stock center (Yale)		
DF032	DF005, ∆rfaC::kan	BW25113 <i>, rfaC</i> deletion, KanR	<i>E. coli</i> Genetic Stock center (Yale)		
DF152	DF005, ΔrfaF::kan	BW25113, <i>rfaF</i> deletion, KanR	<i>E. coli</i> Genetic Stock center (Yale)		
DF041	DF005, ΔrfaG::kan	BW25113, <i>rfaG</i> deletion, KanR	<i>E. coli</i> Genetic Stock center (Yale)		
DF036	DF005, ΔrfaJ::kan	BW25113, <i>rfaJ</i> deletion, KanR	<i>E. coli</i> Genetic Stock center (Yale)		
DF053	ΔοmpA::kan	KanR			
DF104	DF065, ∆lpp∷kan	MG1655, <i>lpp</i> deletion, KanR			
DF103	DF065, ∆pal∷kan	MG1655, <i>pal</i> deletion, KanR			
DF106	DF065, ompA 1- 192 ::kan	MG1655 <i>, ompA</i> 1-192 deletion <i>,</i> KanR			
DF049	DF005, ∆ompA::kan	<i>BW25113, ompA</i> deletion, KanR	<i>E. coli</i> Genetic Stock center (Yale)		

kiv preprint o	loi: https://doi.org/10.1101/20	24.09.02.610904; this version posted Septe	mber 3, 2024. The copyright holder for this pre
DF102	DE005 Alpa ···kana		l license. (Yale)
01102	D1000, Дірркан		(rate)
			E coli Genetic Stock center
DF101	DE005 Anal…kan	BW25113 nal deletion KanB	(Vale)
01101	DF005, 2pankun	BW25113, paracletton, kank	(Tale)
DE110	102 ··kan	deletion KanP	
DI IIU	192KUII		
	F-		
	araD139		
	$\Lambda(araF-lac)U169$		Silbawy et al. 1984
	rnsl 150		Sinavy et al. 1984
	relA1		
	thi		
	fib5301		
	deoC1		
	ntsF25		
DF090	rhsR	MC4100, wild type	
01050	DE090	MC4100 omp4 deletion	
DF043	AomnA…kan	KanR	
01010	W3110 AentA		
DF006	$\Lambda \ln xT$ $\Lambda naaP$	BN1	Needham et al. 2013
2.000	BN1, pOI inkN-		
DF008	loxE	BN1pE, AmpR	Needham et al. 2013
	BN1. pOI inkN-		
DF109	pagL	BN1pL, AmpR	Needham et al. 2013
	BN1. pOLinkN-	p_,p	
DF007	pagP	BN1pP. AmpR	Needham et al. 2013
2.007	DE065 AomnA		
	<>frt	MG1655, ompA and rfgC	
DF157	ArfaC::kan	double deletion. KanR	
0.107	DE065 AomnA		
	<>frt	MG1655 omnA and rfgE	
DF158	<pre>◇ fre ArfaF…kan</pre>	double deletion KanB	
01100	DE065 AomnA		
	<>frt	MG1655 omnA and rfaG	
DE150	ArfaG::kan	double deletion KanB	
5.155	DE065 AcmnA		
	<>frt	MG1655 omnA and rfal	
DF160	Arfal…kan	double deletion KanR	
51 100		addite deletion, Runn	

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610904; this version posted September 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made **Table S2. Primers used in this** study: a CC-BY-NC-ND 4.0 International license.

		Primer	Descripti
Name	Sequence	type	on
TS023	ATTCCGGGGATCCGTCGACC	FP	P1 - Kan FW
TS024	TGTAGGCTGGAGCTGCTTCG	RP	P2 - Kan RV
TS025	CAGTCATAGCCGAATAGCCT	RP	k1 - middle of kan cassette
TS026	CGGTGCCCTGAATGAACTGC	FP	k2 - middle of kan cassette
TS027	ATTGGTTTTTGCCCGGGT	FP	rfaC FW
TS028		RP	rfaC RV
TS020		FP	rfaE FW
TS030	GTCATAGTTCTCTGCTTGTAGCGC	RP	rfaF RV
TS031	ACAGCGCGTCAGATATTTAAG	FP	rfaG FW
TS032	TATCAACGCCAACATCACTCAGG	RP	rfaG RV
TS033	CAGGTTTCTGCACGAGCTA	FP	rfaJ FW
TS034	CTCAAAAAGGCGTTCGTAATAATCACC	RP	rfaJ RV
AA001	CGACCTGGACATCTACACTC	FP	ompA 1- 192 FW
AA002	GTATAGGAACTTCAGAGCGC	RP	ompA 1- 192 RV
	TAAAGGTATCAAAGACGTTGTAACTCAGCCGCAGGCTTAAATTCCGG		homolog y to ompA 1- 192 with stop codon, and homolog y to the Kan
AA003	GGATCCGTCGAC	FP	cassette
AA004	GAAGCAGCTCCAGCCTACACGTCAGTTATTCCTTACCCAGCAATGCC TGCAGATCCTGC	RP	y to the Kan cassette