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APPENDIX

Computing tissue level mechanical linear response

The tissue level mechanical response was quantified by the 
shear modulus G. We computed G using Born-Huang formu-
lation in the limit of infinitesimal affine strain γ [66, 67]:

G =
1

Atotal

(∂2E
∂γ2 −ΞiαH−1

iα jβΞ jβ
)
, (S.1)

where the Roman indexes i, j label cells and Greek indexes
α,β denote Cartesian components. Ξiα is the derivative of the
force on cell ith with respect to the strain γ:

Ξiα =
∂2E

∂riα∂γ
(S.2)

H is the Hessian matrix given by the second derivative of the
tissue energy E with respect to position cells position:

Hiα jβ =
∂2E

∂riα∂r jβ
(S.3)

Steady state solution and asymptotic behavior in dual-state SGR

In the Fokker-Planck equation of motion Eqn. 3, the total
yielding rate Γ(t) is given by [28]:

Γ(t) = Γ0

∫
dE dl P(E, l, t)exp

[
−E − kl2/2

x

]
. (S.4)

Since we are interested in the long-term steady shear, we look
for a steady state solution to Eqn. 3. In steady state, Eqn. 3
becomes an ODE with respect to l:

∂P
∂l

+
Γ0

γ̇
exp

[
−E − kl2/2

x

]
P =

Γ

γ̇
ρ(E)δ(l)

The steady-state solution is [28]:

P(E, l) =
Γ

γ̇
ρ(E)exp(−ze−E/x) (S.5)

Where z(l) is:

z(l) =
Γ0

γ̇

∫ l

0
dl′ekl′2/2x (S.6)

In steady state, the total yielding rate Γ is just a constant
and can be found by normalizing P(E, l), giving the steady
state solution for P(E, l) of the form:

P(E, l) =
ρ(E)exp(−ze−E/x)∫

∞

0 dl Gρ(z)

Where Gρ is:

Gρ(z) =
∫

∞

0
dE ρ(E)exp(−ze−E/x)

Gρ can be separated into two parts. The first part, denoted
by Gδ, comes from the contribution of the zero energy traps
(the Dirac-delta function in ρ(E)). GΓ denotes the second part
coming from the non-zero energy traps (the Gamma function
in ρ(E)):

Gδ(z) =
∫

dE δ(E)exp(−ze−E/x) = exp(−z)

GΓ(z) =
∫

dE
Eκ−1e−E/x0

Γ(κ)xκ
0

exp(−ze−E/x)

Gρ(z) = f0Gδ +(1− f0)GΓ
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The steady-state solution in the long-time limit can be studied
more conveniently using the following auxiliary functions:

I0δ =
∫

dl Gδ

I1δ = kδ

∫
dl lGδ ≈ 0

I0Γ =
∫

dl GΓ

I1Γ = k
∫

dl lGΓ

Since our main focus is the rheological response of the sys-
tem, reflected in the macroscopic stress, we compute the sys-
tem stress by ensemble averaging the local stress [28]:

σ =
〈
kl
〉
=

∫ ∫
dEdl klP(E, l) (S.7)

Using the auxiliary functions and the steady-state solution,
the stress is therefore given by:

σ =
(1− f0)I1Γ

f0I0δ +(1− f0)I0Γ

(S.8)

For an element with zero yielding energy, the strain of the
element is of order γ̇

Γ0
. Therefore, in the low strain-rate limit,

the strain of the element with zero yield energy is typically
small so Gδ can be approximated in this limit as:

Gδ = exp(−lΓ0/γ̇)

In the case of κ = 2 and let χ = x
x0

< 2, using the substitution

u = e−E/x and integration by part, GΓ(z) can be integrated as
follow:

GΓ(z) =
∫ 0

1
χ

2 ln(u)uχ−1 exp(−zu)du

=
χ2(χ−1)!

zχ

∞

∑
n=1

(−z)n

nn!

The series ∑
∞
n=1

(−z)n

nn! converges by alternating series test and
therefore GΓ(z) scales as z−χ. We then obtain the following
scaling relations:

I0δ ≈ γ̇/Γ0 (S.9)
I0Γ ≈C(χ)γ̇χ (S.10)
I1Γ ≈ D(χ)γ̇χ (S.11)

Using, the steady state solution, the proportion of time that
elements spends in the zero yielding energy traps (fluid state)
P can be expressed in terms of f0:

P =
f0I0δ

f0I0δ +(1− f0)I0Γ

(S.12)

Combining Eq. S.8 and Eq. S.12, the yield stress can be cal-
culated as:

σy(x) =
(1− f0)I1Γ

f0I0δ +(1− f0)I0Γ

= (1−P)
I1Γ

I0Γ

= (1−P)σ0

(S.13)

Where σ0 is the yield stress that arises solely from elements in
a solid state, which is finite based on the scaling relation S.10
and S.11.

AN EXPONENT OF INSTABILITY

We extract the instability exponent, θ, from the cumula-
tive distribution function (c.d.f) of edge lengths, denoted as
c.d.f(L), by fitting a power law to c.d.f(L) in the interval
0.05 < L < 0.5. This interval specifically represents the short
edges that are capable of undergoing T1 transitions.

We focused on tissues exclusively in the solid regime
(shape index p0 less than 3.81) and integrated this under-
standing with the dual-state coexistence proportion to extend
the analysis to higher shape indices. For purely solid tis-
sues, as stress builds up, the instability exponent θ gradu-
ally decreases. Conversely, when stress is relieved through
avalanches, θ experiences a sharp increase (S1a), indicating
that a significant number of soft spots are relaxed, making the
system considerably more stable.

Furthermore, the θ exponent is correlated with avalanche
properties, as evidenced by its relationship with the average
avalanche size (S̄) and the probability of avalanche occur-
rence. Systems with a lower θ exponent, indicating greater
instability, tend to experience larger avalanches on average
(Figure S1b) and are more prone to yielding (Figure S1b in-
set).

NORMAL MODES ARE UNABLE TO IDENTIFY THE SOFT
SPOTS IN THE VERTEX-BASED MODEL

In amorphous solids, localization plays a crucial role in un-
derstanding the rheology of the material. An example of lo-
calization is shear transformation zone (STZ) [37–39, 51, 52],
localized regions in which sudden and irreversible rearrange-
ments occur when the material is subjected to shear. These
STZ, also referred to as weak spots, can interact and lead to
avalanches of irreversible plastic events, making the identifi-
cation of these weak spots in disordered systems a crucial and
challenging task. Research has indicated that the local yield
stress could serve as a reliable predictor for these weak spots
[37]. However, locally probing the system is impractical and
does not align with our objective of making predictions based
solely on current and historical snapshots. Another approach
to this task involves analyzing the normal mode of the system
near failure. Studies on systems of harmonic repulsive par-
ticles have demonstrated that low-frequency modes typically
correspond to low energy barriers [68], making them dom-
inant modes during a plastic event [68–70]. Furthermore, in
systems with explicit separation dependence potential (such as
Hertzian and Lennard-Jones potentials), under the quasistatic
limit, the evolution of low-frequency modes follows a distinct
pattern: as the system approaches failure, a gradual decrease
in frequency towards zero is anticipated [36, 70].

To see whether the normal modes of the Hessian could help
to identify failure events, whenever there is a known avalanche
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FIG. S1. A proposed exponent of instability. (a) An example of the evolution of tissue shear stress σxy and θ exponent as strain increases. (b)
Dependence of average avalanche size and the exponent of instability θ. Inset: the probability to yield ρ+ versus θ. (c) The polar distribution
of edges vector in an unstable and stable configuration. Data shown in Figure 3 is extracted from a system with shape index p0 = 3.74 in the
solid regime.

in our simulation, we rerun the simulation starting at this par-
ticular strain but with the strain step decreased by 100 times
and let the system approach to the avalanche again in the more
detailed fashion. The low-frequency modes at the starting
strain were then extracted from the Hessian. To keep track of
the mode while the system evolves, we found the most sim-
ilar mode to these starting low-frequency modes at each step
and used them to represent the starting modes using the over-
lapping function Ω = ei.ej, where ei and ej are eigenvectors of
comparison. The overlap is shown on the right panel of Figure
S2. In contrast to what was observed in other systems, we did
not see a gradual decrease in the low-frequency mode eigen-
values. Instead, it is always a sharp decrease but not zero right
at the onset of avalanches, no matter how detailed we zoom in
on the approaching process. This non-smooth sudden drop

in the eigenvalues at the onset of avalanches arises from the
cuspiness of the energy landscape. Because of the cuspiness,
there is no saddle point when the system approaches a rear-
rangement event and therefore the curvature is always posi-
tive.
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FIG. S2. Evolution of low-frequency mode near avalanches.
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transitions) at various values of p0.
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FIG. S4. Fitting σxy vs C∗ to exponential and power-law model.
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