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A Supplementary Figures
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Figure A.1: Comprehensive tracking results obtained using BNP-Track for Supplementary Data 6. a–b,
BNP-Track’s tracking results for the x and y trajectories are displayed. Ground truth tracks are depicted in
orange, while BNP-Track’s MAP tracks are green. Shading denotes confidence (the probability of the emitter
being in a 10 nm bin), with darker shades indicating higher confidence. c–d, Histograms illustrating BNP-
Track’s localization resolution and linking errors, respectively. e–f, BNP-Track’s estimates of the diffusion
coefficient and background flux are presented as posterior probability densities. Ground truth values are
shown in orange, prior probability distributions in red, and the 95% CIs are depicted as shaded regions. g,
The pairwise spatial separation between each emitter pair is plotted as a function of time, with the Rayleigh
diffraction limit represented by the shaded region.
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Figure A.2: Performance of BNP-Track under variable diffusion coefficients. a–b, Tracking results of
BNP-Track for x and y trajectories, corresponding to Supplementary Data 7 with a diffusion coefficient
of 0.01µm2s−1. The ground truth tracks are orange, while BNP-Track’s MAP tracks are green. Shading
indicates confidence (the probability of the emitter being in a 10 nm bin), with darker colors representing
higher confidence. c, Histogram illustrating the localization resolution of BNP-Track, derived from the re-
sults in a and b. BNP-Track’s MAP tracks’ localization resolution and tracking error are displayed in the
top-left and top-right, respectively. d, BNP-Track’s estimate of the diffusion coefficient presented as its pos-
terior probability density. The ground truth value is represented in orange, the prior probability distribution
in red, and the 95% CI is depicted as the shaded region. e–h, same layout as a–b but for Supplementary
Data 6 with a diffusion coefficient of 0.05µm2s−1. i–l, same layout as a–b but for Supplementary Data 8
with a diffusion coefficient of 0.25µm2s−1.
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Figure A.3: BNP-Track’s performance was evaluated across varying numbers of positions sampled within
the exposure period of a single frame. The synthetic movie, presented in Supplementary Data 9, features a
single emitter diffusing at 1µm2s−1 only in the lateral plane. a–b, BNP-Track’s tracking results with two
positions sampled in each exposure period for the x and y trajectories are displayed. Ground truth tracks are
depicted in orange, while BNP-Track’s MAP tracks are green. Shading denotes confidence (the probability of
the emitter being in a 10 nm bin), with darker shades indicating higher confidence. c, Histogram illustrating
BNP-Track’s localization resolution. The localization resolution and tracking error of BNP-Track’s MAP
track are presented in the top-left and top-right, respectively. d, BNP-Track’s estimate of the diffusion
coefficient is presented as a posterior probability density. The ground truth value is depicted as a solid
orange line, the prior probability distribution in red, and the 95% CI shaded. The dashed orange lines
represent the effective ground truth diffusion coefficient, 0.67µm2s−1. e–h, Same layout as a–d, with
Supplementary Data 9 analyzed using five positions sampled in each exposure period. i–l, Same layout as
a–d, with Supplementary Data 9 analyzed using five positions sampled in each exposure period. m, Frame
24, 25, and 26 in Supplementary Data 9 (noise removed for illustration) show highly aberrated PSFs due to
motion blur.
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Figure A.4: Performance of BNP-Track across various levels of emitter brightness. See appendix D.4 for
details on how we define emitter brightness. All datasets here share a common set of ground truth tracks.
a–b, Tracking results of BNP-Track for Supplementary Data 10 (5×102 s−1 brightness) are presented for the
x and y trajectories. Ground truth tracks are orange, while BNP-Track’s MAP tracks are green. Shading
indicates confidence (the probability of the emitter being in a 10 nm bin), with darker shades signifying higher
confidence. c, Histogram illustrating BNP-Track’s localization resolution. The localization resolution and
tracking error of BNP-Track’s MAP track are presented in the top-left and top-right corners, respectively. d,
BNP-Track’s estimate of the diffusion coefficient is presented as a posterior probability density. The ground
truth value is depicted as a solid orange line, the prior probability distribution in red, and the 95% CI shaded.
e, Frame 2 of the movie analyzed. f–j, k–o, p–t, u–y, Similar layout as a–e, but for Supplementary Data 11
(1×103 s−1 brightness), 12 (2×103 s−1 brightness), 6 (1×104 s−1 brightness), and 13 (5×104 s−1 brightness),
respectively.
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Figure A.5: Performance of BNP-Track across various levels of background photon flux. See appendix D.4 for
details on how we define background flux. All datasets here share a common set of ground truth tracks. a–b,
Tracking results of BNP-Track for Supplementary Data 14 (5× 104 µm−2s−1 background) are presented for
the x and y trajectories. Ground truth tracks are orange, while BNP-Track’s MAP tracks are green. Shading
indicates confidence (the probability of the emitter being in a 10 nm bin), with darker shades signifying higher
confidence. c, Histogram illustrating BNP-Track’s localization resolution. The localization resolution and
tracking error of BNP-Track’s MAP track are presented in the top-left and top-right corners, respectively. d,
BNP-Track’s estimate of the diffusion coefficient is presented as a posterior probability density. The ground
truth value is depicted as a solid orange line, the prior probability distribution in red, and the 95% CI shaded.
e, Frame 2 of the movie analyzed. f–j, k–o, p–t, u–y, Similar layout as a–e, but for Supplementary Data
6 (1× 105 µm−2s−1 background), 15 (5× 105 µm−2s−1 background), 16 (1× 106 µm−2s−1 background), and
17 (2× 106 µm−2s−1 background), respectively.
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Figure A.6: BNP-Track’s performance under for various numbers of emitters in the fixed field of view. a,
Tracking results of BNP-Track for Supplementary Data 5 with one emitter are presented for the x trajectory.
Ground truth tracks are orange, while BNP-Track’s MAP tracks are green. Shading indicates confidence (the
probability of the emitter being in a 10 nm bin), with darker shades signifying higher confidence. Crowdedness
(see main text equation 4) is presented in the top-right corner. b, Zoomed-in view for the boxed region in
a. c, Tracking results of BNP-Track for the y trajectory. The tracking error of BNP-Track’s MAP track
is presented in the top-right corner. d, BNP-Track’s estimate of the diffusion coefficient is presented as a
posterior probability density. The ground truth value is depicted as a solid orange line, the prior probability
distribution in red, and the 95% CI shaded. e, Frame 2 of the movie analyzed. f–j, k–o, p–t, u–y, Similar
layout as a–e, but for Supplementary Data 6 (three emitters), 24 (seven emitters), 25 (ten emitters), and
26 (twelve emitters), respectively.
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Figure A.7: Tracking results for Supplementary Data 27 using BNP-Track. The layout of this figure mirrors
that of Fig. A.1. Shading indicates confidence (the probability of the emitter being in a 10 nm bin), with
darker shades signifying higher confidence. Furthermore, the shaded areas in a indicate the spatial variation
of the diffusion coefficient. The diffusion coefficient values are presented in the respective regions. In e, the
dashed orange line represents the average ground truth diffusion coefficient, 0.068µm2s−1, and the purple
line represents the diffusion coefficient estimated by TrackMate with MSD, 0.085µm2s−1.
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Figure A.8: Tracking results for Supplementary Data 28 using BNP-Track. The three emitters have ground
truth diffusion coefficients 0µm2s−1, 0.05µm2s−1, and 0.1µm2s−1, respectively. The layout of this figure
mirrors that of Fig. A.1. Shading indicates confidence (the probability of the emitter being in a 10 nm bin),
with darker shades signifying higher confidence. Furthermore, in e, the dashed orange line represents the
average ground truth diffusion coefficient, 0.05µm2s−1, and the purple line represents the diffusion coefficient
estimated by TrackMate with MSD, 0.071µm2s−1.
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Figure A.9: Tracking results for Supplementary Data 29 using BNP-Track. Each emitter can undergo
independent transitions between a slow-diffusive state (0.05µm2s−1) and a fast-diffusive state (0.1µm2s−1).
The layout of this figure mirrors that of Fig. A.1. Shading indicates confidence (the probability of the emitter
being in a 10 nm bin), with darker shades signifying higher confidence. Furthermore, in e, the dashed orange
line represents the average ground truth diffusion coefficient, 0.077µm2s−1, and the purple line represents
the diffusion coefficient estimated by TrackMate with MSD, 0.10µm2s−1. In h, the number of emitters in
the slow-diffusive state is plotted as a function of time.

10



B Supplementary Tables

Description Symbol Unit Value
Background flux C µm−2s−1 105

Emission wavelength λ nm 665
Emitter brightness h s−1 104

Exposure period τ s 0.03
Frame period s 0.033
Frame height pixel 23
Frame with pixel 15
Numerical aperture NA 1.45
Pixel size nm 133
Refractive index nRI 1.515
Noise excess factor f 2

Table B.1: List of parameter values used in data simulation.
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BNP-
Track
MAP

Track-
Mate

u-track
BNP-
Track
MAP

Track-
Mate

u-track
BNP-
Track
MAP

Track-
Mate

u-track

Gate value (ϵ, pixel) 2 5 10
Global measures
Pairing distance (pixel) 13.0 13.3 12.1 13.0 13.3 12.1 13.0 13.3 12.1
Normalized pairing score (α) 0.867 0.867 0.879 0.948 0.947 0.952 0.974 0.973 0.976
Full normalized score (β) 0.867 0.867 0.879 0.948 0.947 0.952 0.974 0.973 0.976
Tracks
Number of reference tracks 1 1 1 1 1 1 1 1 1
Number of candidate tracks 1 1 1 1 1 1 1 1 1
Similarity between tracks 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Number of paired tracks 1 1 1 1 1 1 1 1 1
Number of missed tracks 0 0 0 0 0 0 0 0 0
Number of spurious tracks 0 0 0 0 0 0 0 0 0
Detections
Number of reference detections 50 50 50 50 50 50 50 50 50
Number of candidate detections 50 50 50 50 50 50 50 50 50
Similarity between detections 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Number of paired detections 50 50 50 50 50 50 50 50 50
Number of missed detections 0 0 0 0 0 0 0 0 0
Number of spurious detections 0 0 0 0 0 0 0 0 0
Detection accuracy (pixel)
Root mean-square error 0.300 0.314 0.297 0.300 0.314 0.297 0.300 0.314 0.297
Minimum distance 0.0310 0.0168 0.0241 0.0310 0.0168 0.0241 0.0310 0.0168 0.0241
Maximum distance 0.660 0.809 0.888 0.660 0.809 0.888 0.660 0.809 0.888
Distance standard deviation 0.150 0.166 0.173 0.150 0.166 0.173 0.150 0.166 0.173

Table B.2: A comprehensive comparison of tracking performance, generated using the Tracking Performance Measures plugin in Icy [1]. The
comparison involves tracks from BNP-Track’s MAP, TrackMate, and u-track, focusing on the one-emitter movie presented in Supplementary
Data 6, as depicted in Fig. 3a–c. Details on how these tracks were obtained can be found in the main text. The evaluation was performed
three times with varying gate values. For an in-depth explanation of each metric, please refer to Ref. [2].
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BNP-
Track
MAP

Track-
Mate A

Track-
Mate B

BNP-
Track
MAP

Track-
Mate A

Track-
Mate B

BNP-
Track
MAP

Track-
Mate A

Track-
Mate B

Gate value (ϵ, pixel) 2 5 10
Global measures
Pairing distance (pixel) 69.9 154 183 75.4 337 386 75.4 642 672
Normalized pairing score (α) 0.767 0.486 0.389 0.899 0.550 0.484 0.950 0.572 0.552
Full normalized score (β) 0.767 0.486 0.389 0.899 0.550 0.484 0.950 0.572 0.552
Tracks
Number of reference tracks 3 3 3 3 3 3 3 3 3
Number of candidate tracks 3 3 3 3 3 3 3 3 3
Similarity between tracks 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Number of paired tracks 3 3 3 3 3 3 3 3 3
Number of missed tracks 0 0 0 0 0 0 0 0 0
Number of spurious tracks 0 0 0 0 0 0 0 0 0
Detections
Number of reference detections 150 150 150 150 150 150 150 150 150
Number of candidate detections 150 106 93 150 106 93 150 106 93
Similarity between detections 0.899 0.583 0.455 1.00 0.593 0.620 1.00 0.593 0.620
Number of paired detections 142 88 76 150 89 93 150 89 93
Number of missed detections 8 62 74 0 61 57 0 61 57
Number of spurious detections 8 1 17 0 0 0 0 0 0
Detection accuracy (pixel)
Root mean-square error 0.518 0.424 0.596 0.807 0.473 1.77 0.807 0.473 1.77
Minimum distance 0.0441 0.0242 0.0227 0.0441 0.0242 0.0227 0.0441 0.0242 0.0227
Maximum distance 1.90 1.07 1.96 3.62 1.07 4.65 3.62 6.19 4.65
Distance standard deviation 0.353 0.247 0.371 0.631 0.303 1.40 0.631 0.303 1.40

Table B.3: A comprehensive comparison of tracking performance, generated using the Tracking Performance Measures plugin in Icy [1]. The
comparison involves tracks from BNP-Track’s MAP and TrackMate, focusing on the three-emitter movie presented in Supplementary Data 7,
as depicted in Fig. 3d–f. Details on how these tracks were obtained can be found in the main text. The evaluation was performed three times
with varying gate values. For an in-depth explanation of each metric, please refer to Ref. [2].
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Supplementary Data 18 19 20 21 22 23
Corresponding panel in Fig. 5 b c e f h i k l n o q r
Global measures
Pairing distance (pixel) 10.9 74.1 8.67 110 12.1 111 12.2 122 12.0 118 16.47 121
Normalized pairing score (α) 0.950 0.663 0.961 0.501 0.945 0.498 0.945 0.443 0.946 0.464 0.925 0.452
Full normalized score (β) 0.950 0.663 0.961 0.501 0.945 0.498 0.945 0.443 0.946 0.464 0.925 0.452
Tracks
Number of reference tracks 2 2 2 2 2 2 2 2 2 2 2 2
Number of candidate tracks 2 2 2 2 2 2 2 1 2 2 2 1
Similarity between tracks 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 0.5
Number of paired tracks 2 2 2 2 2 2 2 1 2 2 2 1
Number of missed tracks 0 0 0 0 0 0 0 1 0 0 0 1
Number of spurious tracks 0 0 0 0 0 0 0 0 0 0 0 0
Detections
Number of reference detections 44 44 44 44 44 44 44 44 44 44 44 44
Number of candidate detections 44 38 44 31 44 27 44 22 44 23 44 22
Similarity between detections 1.00 0.795 1.00 0.659 1.00 0.614 1.00 0.500 1.00 0.523 1.00 0.500
Number of paired detections 44 35 44 29 44 27 44 22 44 23 44 22
Number of missed detections 0 9 0 15 0 17 0 22 0 21 0 22
Number of spurious detections 0 0 0 0 0 0 0 0 0 0 0 0
Detection accuracy (pixel)
Root mean-square error 0.277 1.13 0.221 1.64 0.302 1.05 0.309 0.694 0.300 0.633 0.420 0.576
Minimum distance 0.0275 0.101 0.0439 0.103 0.0353 0.290 0.0195 0.0366 0.0599 0.0254 0.0803 0.0620
Maximum distance 0.511 3.54 0.495 3.73 0.508 2.09 0.664 1.91 0.566 1.15 1.09 1.16
Distance standard deviation 0.122 0.767 0.101 1.12 0.125 0.454 0.136 0.401 0.127 0.293 0.191 0.321

Table B.4: Comprehensive comparison of tracking performance for the synthetic movies illustrated in Fig. 4. Each column in the table
corresponds to specific panels.
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Probability distribution Variable Values Probability density

Normal(µ, v) x from −∞ to +∞ 1√
2πv

exp
(
− (µ−x)2

2v

)
Gamma(ϕ, β) w from 0 to ∞ 1

βΓ(ϕ)

(
w
β

)ϕ−1

exp
(
−w

β

)
InvGamma(ϕ, β) d from 0 to ∞ 1

βΓ(ϕ)

(
β
d

)ϕ+1

exp
(
−β

d

)
Uniform[x,y] z from x to y 1

y−x

Beta(α, β) q from 0 to 1 1
B(α,β)q

α−1(1− q)β−1

Bernoulli(q) b 0 or 1 qδ1(b) + (1− q)δ0(b)

Binomial(m, r) b 0 or 1 or 2 or . . .
∑∞

k=0
m!

k!(m−k)!r
k(1− r)m−kδk(b)

Poisson(γ) b 0 or 1 or 2 or . . .
∑∞

k=0
γk

k! e
−γδk(b)

Uniform1:N k from 1 to N 1
N

Table B.5: Summary of probability distributions. In this table Γ(·) and B(·, ·) denote the Gamma and Beta
functions, respectively [3]. Further, x! denotes the factorial of x and δx(·) denotes the Dirac delta centered
at x.

C Supplementary Discussion

C.1 Detailed comparison with TrackMate

We start with the simplest possible case of a single emitter in the FOV. In this case, both BNP-Track
(Fig. 3a) and TrackMate (Fig. 3b) successfully track the single emitter throughout the movie with similar
resolution (34.6 nm vs. 35.4 nm). To further demonstrate that conventional SPT tools typically perform well
in this simple scenario, we also include the track obtained with u-track [4] using the point source particle
detection process (Fig. 3c), which again achieves a similar resolution at 32.1 nm. We note that in Figs. 3a
to 3c, the resolution is equal to the tracking error, since there are no missing segments or incorrect links in
the tracks.

Having established that BNP-Track and TrackMate work well for the simple case, we move on to a more
complicated dataset with three emitters. Predictably, as we begin encountering PSF overlap in multiple
emitters for the three-emitter dataset (see Fig. A.1g and Supplementary Data 6), the performances of BNP-
Track and TrackMate diverge (we note that u-track’s performance is not shown here because the current
FOV is too small for running its algorithm). While BNP-Track remains capable of tracking all three emitters
throughout the entire movie with a resolution of 27.1 nm from the MAP tracks, even as these fall below the
diffraction limit in time intervals 0.03 s to 0.4 s and 1.1 s to 1.5 s (see Fig. A.1a), several issues arise for the
TrackMate tracks (Figs. 3e and 3f). For instance, diffraction-limited emitters get interpreted as one emitter
(solid boxes), incorrect links with large jumps (dashed boxes), and spurious detections (the dotted box) from
TrackMate Set B. These issues indicate that TrackMate can no longer resolve the emitters in this dataset;
hence, no resolution is calculated. As for the tracking error between the ground truth tracks and each SPT
method’s output, BNP-Track’s MAP tracks have a tracking error of 66.9 nm, while both TrackMate track
sets yield tracking errors of no less than 300 nm.
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These benchmarks highlight BNP-Track’s superior tracking performance. For instance, as illustrated by
the dashed boxes in Figs. 3e and 3f, TrackMate tracks exhibit mislinks with sizes that exceed the nominal
diffraction limit (approximately half of the scale bar). Consequently, estimating the diffusion coefficient
through the mean squared displacement (MSD) using these tracks results in approximately 0.074µm2s−1 and
0.11µm2s−1, respectively. In comparison to the ground truth value of 0.05µm2s−1, these values correspond
to an overestimation of roughly 50% and 100%, respectively.

In contrast, BNP-Track reports the diffusion coefficient’s 95% CI to be 0.039µm2s−1 to 0.059µm2s−1 with
both mean and median at 0.048µm2s−1. This underscores the substantial impact of BNP-Track’s tracking
accuracy on the reliability of research findings.

Three additional points are furthermore in order: (i) As illustrated in Fig. 3d, BNP-Track’s tracking error is
larger than its resolution, which is due to mislinks. However, we posit that this is not a major concern since it
only occurs near 1.1 s to 1.2 s (frame 35) where two emitters are laterally less than 40 nm apart (see Fig. A.1a)
while one of them is out-of-focus (300 nm away from the in-focus plane). Under this circumstance, these
two emitters are very difficult to distinguish. (ii) Even though the three-emitter dataset contains the same
track as the one-emitter dataset, BNP-Track actually achieves a better resolution in the more complicated
three-emitter dataset. We attribute this finding to the fact that BNP-Track leverages all spatiotemporal
correlations, as detailed in the next section, to localize more out-of-focus emitters. (iii) TrackMate Set B
does a little better than Set A in estimating the emitter numbers by increasing the overall tracking error.

More quantitative comparisons generated by the Tacking Performance Measures plugin [2] in Icy [1] are
provided in tables B.2 and B.3.

C.2 Robustness tests for parameter regimes

Here, we test the robustness of BNP-Track regarding several quantities of interest: diffusion coefficient,
emitter brightness, background photon flux, and the spatial separation between emitters. BNP-Track remains
robust in analyzing image sequences generated with different diffusion coefficients, as shown in Fig. A.2.
Here, BNP-Track accurately tracks all emitters, as determined by localization resolution, and determines
the correct diffusion coefficient, even when the diffusion coefficient changes by a factor of 25 from the slowest
to the fastest emitter. As observed in Fig. A.2, the distribution of emitter positions becomes broader as the
diffusion coefficient increases. This is supported by the 95% CIs of the localization resolutions, which range
from (15.2 to 18.8) nm in Figs. A.2a to A.2d, to (22.8 to 27.3) nm in Figs. A.2e to A.2h, to (47.8 to 65.4) nm
in Figs. A.2i to A.2l. One major factor contributing to this trend is the motion blur introduced by increasing
the diffusion coefficient. Another important factor is that faster diffusing species have less time to remain
within the FOV or move away from the in-focus plane, resulting in fewer informative frames (frames with
sufficient detected photons).

As a general framework, BNP-Track can also be extended to incorporate faster-diffusing species when needed.
Similarly to the approach taken in Ref. [5], we estimate multiple positions for each emitter within each camera
exposure period. See appendix D.6.4 for a mathematical explanation and, in Fig. A.3, we test this extension
using a synthetic dataset, Supplementary Data 9, consisting of an emitter diffusing at 1µm2s−1 with camera
exposure being 30ms, where motion blur creates significant PSF aberrations, see Fig. A.3m.

In addition to assessing the robustness of BNP-Track with various diffusion coefficients, the performance of
a particle tracking tool under different noise levels holds significant interest. To investigate this, we created
Supplementary Data 10–13, maintaining fixed parameters except for varying the emitter brightness within
the range of 5× 102 s−1 to 5× 104 s−1, and Supplementary Data 14–17, where the background photon flux
is adjusted only within the range of 5 × 104 µm−2s−1 to 2 × 106 µm−2s−1 (refer to appendix D.4 for the
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interpretation of these values). The corresponding outcomes are illustrated in Figs. A.4 and A.5. Through-
out most of these assessments, BNP-Track consistently accurately estimates emitter numbers, yielding a
localization resolution twice as small as the nominal diffraction limit. The sole exception arises when the
emitter brightness equals 5 × 102 s−1. Nevertheless, as depicted in Fig. A.4e, the human eye would fail to
detect any emitter in this scenario, indicating that this failure occurs in a very low brightness regime.

Next, in Fig. 4, we test how closely two emitters can come together while retaining the ability of BNP-Track
to enumerate the number of emitters and track them. To this end, a pair of estimated tracks from ROI-2
of Fig. 2 were used as the ground truth for the simulation of synthetic data (shown in the top row of Fig.
4) using the same parameters. Then, the mean displacement between emitters is gradually decreased. The
middle row of Fig. 4 shows reconstructed tracks and comparisons with the ground truth. Remarkably,
the tracking error remains ≈40 nm in 2D and increases slightly (by ≈50 nm) in 3D throughout synthetic
scenarios, below the diffraction limit.

As seen in Figs. 3e and 3f, existing tracking methods, such as TrackMate, can fail to resolve emitters with
separations close to or below the diffraction limit. To further demonstrate this point, we show the results
from TrackMate Set B (which better estimates emitter numbers). When the mean displacement between
emitters remains well above the lateral diffraction limit (the first three columns of Fig. 4), TrackMate Set
B can be tuned to resolve two emitters, albeit with missing track segments. These missing track segments
are attributed to out-of-focus emitters. This is most clearly evidenced by noting that one emitter’s average
intensity distribution is broader in the first three columns of Fig. 4. More quantitatively, this observation
is because this emitter, as seen in the second row of Fig. 4, has a |z| position at a distance 200 nm from
the in-focus plane. Once the mean displacement is close to or below the lateral diffraction limit (the fourth
and fifth columns of Fig. 4), even Set B can no longer be tuned to resolve two emitters in any frame.
In contrast, leveraging spatiotemporal information, BNP-Track successfully tracks out-of-focus emitters.
Additional comparisons (using quantitative performance metrics) are again provided in table B.4.

Similar to the approach presented in Fig. 4, where emitters are gradually brought closer together to achieve
a higher local emitter number density, we can employ a different strategy by fixing the FOV and introducing
additional emitters. This test is illustrated in Fig. A.6. As we increment the number of emitters from one to
ten within a FOV of approximately 6µm2, BNP-Track encounters challenges in connecting emitter positions
across frames. This results in tracking errors surpassing the nominal diffraction limit and overestimating the
diffusion coefficient, akin to the issues observed with TrackMate in Figs. 3e and 3f for three emitters. In
essence, BNP-Track can resolve approximately three times as many emitters as TrackMate.

While establishing a precise boundary for the emitter number density regime in which BNP-Track maintains
robustness proves challenging, given its substantial dependence on factors such as the system’s diffraction
limit and the axial positions of emitters, we propose the following heuristic unitless metric for “crowdedness”

crowdedness =
expected number of emitters× area occupied by one emitter

area of the FOV
. (C.1)

Here, the area occupied by one emitter is approximated by a circle with a radius equal to the nominal
diffraction limit. As presented in Fig. A.6, with this metric, BNP-Track remains robust until the crowdedness
approaches about 0.4.

C.3 Robustness tests for motion models

Thus far, we have validated the effectiveness of BNP-Track using experimental datasets, where the assump-
tion of the real motion model aligning with the currently employed 3D normal diffusion model in BNP-Track
cannot be assured. Nevertheless, we can strengthen this argument by incorporating synthetic data explicitly
generated with distinct motion models motivated by real experiments where ground truth is known.
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The first example has already been presented in Fig. A.3, wherein the data assumes 2D normal diffusion with
a diffusion coefficient of 1µm2s−1 (see Supplementary Data 9), similar to when the emitters are laterally
diffusing on a membrane [6, 7]. Despite BNP-Track successfully tracking under the assumption of 3D
normal diffusion, we briefly take note of BNP-Track’s diffusion coefficient estimate under this scenario. In
the context of isotropic diffusion, the discrepancy in motion dimensions implies that the actual mean squared
displacement is two-thirds of its expected value. Consequently, the effective ground truth diffusion coefficient
should be two-thirds of the actual ground truth diffusion coefficient, that is, 0.67µm2s−1. This value falls
right in the middle of the diffusion coefficient’s 95% CIs in Figs. A.3h and A.3l, 0.54µm2s−1 to 0.81µm2s−1

and 0.54µm2s−1 to 0.79µm2s−1, respectively.

In addition to variations in motion dimensions, various motion models may be present when the diffusion
coefficient varies across space [8], time [9], or different emitters [10]. For each of these cases, we generated
synthetic data (Supplementary Data 27–29), and the results are depicted in Figs. A.7 to A.9, respectively.
Once again, BNP-Track successfully tracks with a localization resolution of approximately 30 nm. Since
all these datasets involve more than one diffusion coefficient and BNP-Track current assumes one constant
diffusion coefficient, the best result it can produce would be an average of the ground truth values. This
average is calculated as the weighted average of all diffusion coefficients, where the weights are proportional
to the total time the emitters have spent in each state. Further extensions of BNP-Track, which incorporate
changes in diffusion coefficient, despite being possible, are out of the scope of this paper.

In Figs. A.7e and A.8e, the average ground truth diffusion coefficients fall within their respective 95% CIs
(0.068µm2s−1 versus 0.055µm2s−1 to 0.084µm2s−1 and 0.05µm2s−1 versus 0.044µm2s−1 to 0.071µm2s−1).
However, when emitters have a temporally dependent diffusion coefficient (Fig. A.9e), the average ground
truth of 0.077µm2s−1 falls outside the 95% CI is 0.083µm2s−1 to 0.13µm2s−1. Importantly, it should be
noted that BNP-Track’s estimation aligns with that derived from TrackMate combined with MSD, which is
0.10µm2s−1.

D Supplementary Notes

D.1 Probabilistic modeling

Because most of the notions in this study are stochastic, we use probabilistic relations and statistical nota-
tions. The methodology we adopt facilitates the description of the variables in BNP-Track and the relations
among them. Since the statistical conventions we follow are standard, we provide only a brief description
here. For a complete presentation, we refer to [11–14]. Also, a comprehensive introduction to the computa-
tional schemes we implement can be found in [13, 15] and complete descriptions in [14, 16, 17].

D.1.1 Statistical notation

A statistical notation like θ ∼ P indicates that θ is a random variable, and this random variable follows the
probability distribution P. In our computations, the values of θ follow the probability density p(θ) associated
with P. For example, θ ∼ Normal

(
µ, σ2

)
, which means that θ is a normal random variable with mean µ and

variance σ2, indicates that θ is distributed according to the density p(θ) = 1√
2πσ2

exp
(
− (µ−θ)2

2σ2

)
.

Further, a notation like w|θ ∼ Pθ indicates that w is a random variable whose distribution depends on
another random variable θ. For example, w|θ ∼ Normal

(
θ, s2

)
, indicates that w is distributed according to

the density p(w|θ) = 1√
2πs2

exp
(
− (θ−w)2

2s2

)
.
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Our random variables do not necessarily have to be univariate. As such, w or θ can encompass multiple
individual random variables that describe various aspects of our image processing model. The densities p(w)
and p(w|θ) may also depend on other non-random parameters, which we do not explicitly include on the
left-hand side of statistical equations.

We summarize the distributions we use in this study and their densities in table B.5. Because some distri-
butions do not have a standardized parameterization, this table also clarifies our particular choices.

D.1.2 Statistical inference

The probability density of two random variables, w and θ, denoted by p(w, θ), can be expressed as the
product of their density functions, i.e., p(w, θ) = p(w|θ)p(θ). This relationship is symmetric, as shown
by the equality p(w, θ) = p(θ, w) = p(w|θ)p(θ) = p(θ|w)p(w). Therefore, the density function p(θ|w) is
proportional to the product p(w|θ)p(θ). In other words, the specification of the distributions of θ ∼ P and
w|θ ∼ Pθ is sufficient to derive the density function p(θ|w), and no other information is required.

Throughout this study, we use w to gather the image measurements and θ to gather the variables whose
values we seek to estimate. In this setting, the distributions of θ and θ|w, or their densities p(θ) and p(θ|w),
are designated as prior and posterior, respectively. These two are linked via w|θ, or its density p(w|θ),
designated as likelihood. As we demonstrate in Results, our approach focuses on the posterior p(θ|w). In
Methods, we describe this posterior by formulating each factor p(w|θ) and p(θ) separately. On appendices D.7
and D.8, we describe in detail how each of these factors is mathematically represented.

D.1.3 Statistical simulation

While the posterior distribution p(θ|w) is proportional to the product of p(w|θ) and p(θ), there is no mathe-
matical formula that enables a direct evaluation of this distribution. However, this paper presents a method
for indirectly computing the posterior through sampling simulations. Specifically, we generate a sequence of
values θ(1), θ(2), θ(3), . . . that have the same statistical properties as p(θ|w). We use this sequence to produce
results such as histograms, scatter plots, mean values, and credible intervals without relying on an analyt-
ical formula for p(θ|w). In appendix D.10, we provide a detailed description of how to carry out posterior
sampling in BNP-Track efficiently.

To facilitate the interpretation of our results, we present a simplified example in Fig. D.1 where we simulate
from a toy posterior p(θ|w). We consider a bivariate random variable θ = (θ1, θ2) in this example. There-

fore, we generate two simultaneous sequences of samples, θ
(1)
1 , θ

(2)
1 , θ

(3)
1 , . . . and θ

(1)
2 , θ

(2)
2 , θ

(3)
2 , . . . , with the

specific values shown in the left panels. Using these sequences, we construct histograms in the middle panels
to visualize the distribution of each variable and a scatter plot in the right panel to illustrate the correlation
between θ1 and θ2. It is important to note that if our posterior consisted of more than two random variables,
such as the posterior described in Methods, we would require more than two simultaneous sequences of sam-
ples to generate more than two histograms and multiple scatter plots to visualize all correlations developed
fully.
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Figure D.1: Sampling from a toy posterior p(θ|w) with a bivariate variable θ = (θ1, θ2) fully characterizes
the statistics of the involved variables as well as the correlations among them.

D.2 Frame of reference

In this study, we exclusively consider an object space frame of reference. Specifically, in the object space,
we consider Cartesian coordinates x, y, z as illustrated on the left side of Fig. D.2. Consistent with common
practice [18–21], our z axis is parallel to the microscope’s optical axis and points away from the image plane.
Specifically, on an inverted microscope, the z axis points upwards. Moreover, we assume that the microscope
and the camera are aligned such that the image plane is perpendicular to the optical axis [18–21]. Lastly,
we orient the x, y axes in such a way that they are parallel to the pixel edges of the camera. Overall, this
coordinate system follows the right-hand rule.

Under these conventions, the image plane, physically lying on the camera, can be projected to the object
plane, physically located on the object space. The object plane is the plane in the sample space yielding
focused images, as shown on the right of Fig. D.2. Assuming that the origins in the object space and image
plane are conjugated, image plane coordinates x′, y′ are related to object space coordinates x, y, z by

x =
x′

M
, y =

y′

M
, z = 0

where M is the combined magnification achieved through the microscope’s objective and tube lenses. With
this convention, a square pixel with the physical size of 16 µm, on a microscope imaging at 120x, is projected
on a pixel of 133.33 nm.
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Figure D.2: Frames of reference. Upper left: object space in front of the microscope’s lenses along the
optical path. Lower left: image plane, located behind the microscope’s lenses along the optical path. Right:
object space with the image plane projected on the object plane. In this study, we use exclusively the
latter configuration where the image plane is identified with the object plane, and position coordinates are
expressed in sample space units.

D.3 Time schedule

In this study, we refer to time in relation to the acquisition schedule of the images, which is determined by
the camera used. The acquisition of each image involves two phases: an integration period, during which
the camera pixels are sensitive to incident photons, and a dead period, during which the camera pixels
remain unresponsive to incident photons [22–24]. To improve the accuracy of dynamical approximations, as
described in detail in appendix D.5, we model the dead time associated with image acquisition as occurring in
two equal periods: one immediately before and one immediately after the corresponding integration period.
Our convention is illustrated in Fig. D.3. Analytically, our temporal frame of reference is as follows.

We label the images sequentially with n = 1, . . . , N , where n = 1 marks the earliest acquired image in the
experiment session and n = N is the latest. As shown in Fig. D.3, we denote with tmin

n and tmax
n the start and

end times of the integration period of the nth image. We sometimes report our estimates, which we denote
with tn and label with n = 0, 1, . . . , N , that separate successive image acquisitions. Specifically, we distribute
the total dead time τdeadn , associated with the nth image, equally between the time intervals immediately
preceding tmin

n and following tmax
n . With this choice, the acquisition of the nth image is separated by the

preceding and following one at the respective times tn−1 = tmin
n − τdeadn /2 and tn = tmax

n + τdeadn /2.

Provided the frame rate νframe and dead time τdead remain constant throughout the imaging course, as it is
common in most experiments, our convention becomes

tn =
n

νframe
, tmin

n = tn−1 +
τdead

2
, tmax

n = tn − τdead

2
.
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For example, with this convention, five images acquired at a frame rate of 10 Hz and a dead time of 10 ms
correspond to

t1 = 100 ms, t2 = 200 ms, t3 = 300 ms, t4 = 400 ms, t5 = 500 ms,

and the individual integration periods last between

tmin
1 = 5 ms, tmin

2 = 105 ms, tmin
3 = 205 ms, tmin

4 = 305 ms, tmin
5 = 405 ms,

tmax
1 = 95 ms, tmax

2 = 195 ms, tmax
3 = 295 ms, tmax

4 = 395 ms, tmax
5 = 495 ms.

Figure D.3: Temporal frame of reference. In our convention, the acquisition of each image contains three
separate phases: a dead time phase right before the integration time, an integration time phase, and a dead
time phase right after the integration time. Specifically, for the nth image the three phases are distinguished
by the times tn−1, t

min
n , tmax

n , tn.
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D.4 Optics representation

Due to the incoherent imaging conditions encountered in fluorescence microscopy [18–21, 23], we describe
the optical response of the imaging apparatus with an additive photon flux of the form

U(x, y, t) = Uback(x, y, t) +

M∑
m=1

bmUm
fluor(x, y, t)

that sums up background photon contributions Uback(x, y, t) and emitter photon contributions Um
fluor(x, y, t).

Our photon flux U(x, y, t) models the irradiance [24–26] on the image plane, which according to appendix D.2
we project to the object plane in the sample space, as it changes over the time course of the imaging
experiment t.

In turn, we model Uback(x, y, t) = C(t) as a uniform-in-space flux, which we denote with C(t), while we
model fluorophore contributions by summing flux contributions of each emitter Um

fluor(x, y, t) which we label
with m = 1, . . . ,M . We model the latter by the product

Um
fluor(x, y, t) = h(t)Gg (x, y;X

m(t), Y m(t), Zm(t)) .

This product consists of a point spread function Gg(x, y;X,Y, Z), which models how the incident photons
stemming from a light emitter at position X,Y, Z are spread over the image plane [18, 19, 21, 27–29]; and,
a photon emission rate h(t), which describes how often a single light emitter emits photons incident on the
image plane.

From the two factors forming each Um
fluor(x, y, t), the point spread function Gg(x, y;X,Y, Z) is measured in

units of 1/area and the photon emission rate h(t) is measured in units of photons/time. Together, these
result in a flux with units of photons/area/time.

In superresolution microscopy, the point spread function is primarily affected by diffraction and microscope-
specific aberrations [18, 19, 21, 27–30] and the photon emission rate is set by the labeling fluorophores
and the illumination modality applied [23, 24]. For these reasons, we obtain Gg(x, y;X,Y, Z) by fitting
calibration measurements, as described in appendix D.11, and h(t) by fitting during processing, as described
in appendix D.10.

D.4.1 Point spread function

For all light emitters, we consider Gaussian point spread functions [18, 27, 31, 32]. These have the form

Gg(x, y;X,Y, Z) =
1

2πσ2
g(Z)

exp

(
−1

2

(x−X)2 + (y − Y )2

σ2
g(Z)

)
.

By convention, we normalize each point spread function to unit total volume, i.e.∫∫ +∞,+∞

−∞,−∞
dxdy Gg(x, y;X,Y, Z) = 1,

so we can readily compare photon emissions from in-focus and out-of-focus emitters.

The extent of the point spread function, which is proportional to σg(Z), depends upon the position Z of
the emitter along the optical axis [21, 28–30]. Assuming the axial light propagation is similar to a Gaussian
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beam [20, 31], we model σg(Z) by

σg(Z) = σref

√
g1 + g2

(
Z

Zref

)2

,

where σref and Zref are reference values for our point spread function with units of length and g1, g2 are
unitless parameters that allow our point spread function to accommodate microscope specific aberrations in
the width of the focused point spread function and the depth of focus. Namely, g1 adjusts for deviations in
the width of the point spread function of an in-focus emitter, Z = 0, while g2 adjusts for deviations in the
width of the point spread function of an out-of-focus emitter, Z ̸= 0.

We obtain reference values σref , Zref considering diffraction-limited imaging under ideal conditions. Specifi-
cally, following [18, 21, 24, 26, 27, 32] we use

σref = 0.21
λ

nNA
Zref = 4πnRI

σ2
ref

λ

where nNA denotes the microscope’s numerical aperture, λ denotes the imaged wavelength (in vacuum),
and nRI denotes the index of refraction of the objective’s immersion fluid. However, the values of g1, g2
must be adjusted to fit each particular microscope. This is achieved following the calibration protocol in
appendix D.11.

D.4.2 Effective pixel function

Combining the flux U(x, y, t) with the pixel response, which integrates photon contributions over space and
time [23, 24, 33], the average number of incident photons on the pth pixel during the nth exposure takes the
form

up
n =

∫ tmax
n

tmin
n

dt

∫∫ xp
max,y

p
max

xp
min,y

p
min

dxdy U(x, y, t)

=

∫ tmax
n

tmin
n

dt

(
C(t)Ap + h(t)

M∑
m=1

bm
∫∫ xp

max,y
p
max

xp
min,y

p
min

dxdy Gg(x, y;X
m(t), Y m(t), Zm(t))

)

where Ap = (xp
max − xp

min)(y
p
max − ypmin) is the area monitored by the pth pixel.

To simplify the notation from now on, for each pixel, we consider an effective function defined by

Qp
g(X,Y, Z) =

∫∫ xp
max,y

p
max

xp
min,y

p
min

dxdy Gg(x, y;X,Y, Z),

which combines the effects of diffraction and finite pixel size. Our effective functions are unitless. With this
convention, the average number of photons incident on the pth pixel during the nth exposure becomes

up
n =

∫ tmax
n

tmin
n

dt

(
C(t)Ap + h(t)

M∑
m=1

bmQp
g(X

m(t), Y m(t), Zm(t))

)
.
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D.5 Dynamics representation

D.6 Temporal discretization

To proceed with image analysis, the average numbers of incident photons u1:P
1:N over all pixels and exposures

need to be related to dynamical, temporally discretized variables. For this, we approximate the integral of

up
n =

∫ tmax
n

tmin
n

dt

(
C(t)Ap + h(t)

M∑
m=1

bmQp
g(X

m(t), Y m(t), Zm(t))

)
.

Ideally, we seek to evaluate this integral analytically. However, due to the unknown forms of both terms in
the integrand, namely (i) C (t), which depends on the specific experimental system, and (ii) the stochastic
spatial trajectory of the emitter between tmin

n and tmax
n , the aforementioned integral must be approximated

numerically.

Our approximations rely on the following numerical quadrature formulas∫ tmax
n

tmin
n

dtC(t) ≈ τ expsn Cn,∫ tmax
n

tmin
n

dt h(t)Qp
g(X

m(t), Y m(t), Zm(t)) ≈ τ expsn hnQ
p
g(X

m
n , Y m

n , Zm
n ),

where τ expsn = tmax
n − tmin

n is the integration time of the nth exposure and the discretized variables C1:N ,
h1:N , X1:M

1:N , Y 1:M
1:N , and Z1:M

1:N are related to their continuous counterparts C(t), h(t), X1:M (t), Y 1:M (t), and
Z1:M (t) according to

Cn = C (Tn) , hn = h (Tn) , Xm
n = Xm (Tn) , Y m

n = Y m (Tn) , Zm
n = Zm (Tn) .

Finally, the discretized time levels T1:N are given by

Tn =
tmin
n + tmax

n

2
.

In essence, we use the mid-point rules [34–37] to approximate the quadrature of C(t), h(t), X1:M (t), Y 1:M (t),
and Z1:M (t). As explained in appendix D.3, since the times t0:N are centered, both rules result in errors that
decrease super-linearly concerning the frame rate when the frame rate remains constant over the imaging
course.

Ignoring the errors introduced by the quadrature formulas, from now on, we consider average numbers of
incident photons u1:P

1:N that we evaluate according to

up
n = τ expsn

(
CnA

p + hn

M∑
m=1

bmQp
g(X

m
n , Y m

n , Zm
n )

)
.

Since in typical experiments, background arises from uncharacterized sources and the photon emission rate
is affected by uncontrolled factors, in this study, we do not model the variables C1:N and h1:N any further.
However, to link each emitter’s discretized positions Xm

1:N , Y m
1:N , and Zm

1:N across time, we invoke physically
realistic dynamical models of motion that we describe below.
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D.6.1 Simplification for time-independent emitter brightness and background photon flux

As mentioned in the main text, for the sake of easier comparison of BNP-Track to other single particle
tracking tools, we remove the time-dependence in emitter brightness and background flux to decrease the
number of inferred quantities BNP-Track needs to estimate (where background flux, for instance, would need
to be provided to competing tools). This can easily be done by modifying the equation above to

up
n = τ expsn

(
CAp + h

M∑
m=1

bmQp
g(X

m
n , Y m

n , Zm
n )

)
.

Here, h and C are constant values for emitter brightness and background photon flux.

D.6.2 Emitter motion

To represent emitter motion, we consider dynamics consistent with free Brownian motion [35, 38–43]. Ac-
cordingly, successive positions Xm

n , Y m
n , Zm

n and Xm
n+1, Y

m
n+1, Z

m
n+1 or Xm

n−1, Y
m
n−1, Z

m
n−1 and Xm

n , Y m
n , Zm

n

along an emitter’s trajectory are linked via independent Normal increments of zero mean and variance equal
to 2D(Tn+1−Tn) or 2D(Tn−Tn−1), respectively. In our model, D indicated the emitters’ diffusion coefficient.

For successive positions before a given time level, this leads to

Xm
n

∣∣Xm
n+1, D ∼ Normal

(
Xm

n+1, 2D(Tn+1 − Tn)
)
,

Y m
n

∣∣Y m
n+1, D ∼ Normal

(
Y m
n+1, 2D(Tn+1 − Tn)

)
, n = 1, . . . ,Km − 1

Zm
n

∣∣Zm
n+1, D ∼ Normal

(
Zm
n+1, 2D(Tn+1 − Tn)

)
,

while, for successive positions after a given time level, leads to

Xm
n

∣∣Xm
n−1, D ∼ Normal

(
Xm

n−1, 2D(Tn − Tn−1)
)
,

Y m
n

∣∣Y m
n−1, D ∼ Normal

(
Y m
n−1, 2D(Tn − Tn−1)

)
, n = Km + 1, . . . , N

Zm
n

∣∣Zm
n−1, D ∼ Normal

(
Zm
n−1, 2D(Tn − Tn−1)

)
.

Similar to all models representing Brownian motion, our formulation leaves one position per trajectory
unspecified. Namely, in our notation, the unspecified position of the mth emitter’s trajectory corresponds to
time level n = Km and needs to be modeled separately.

To model experiments under conditions that resemble a stationary state, in which the statistics of the
dynamical variables remain stable over the imaging course, we obtain the position left unspecified by

Xm
n ∼ Uniform[Xmin,Xmax],

Y m
n ∼ Uniform[Ymin,Ymax], n = Km

Zm
n ∼ Uniform[Zmin,Zmax]

and the corresponding time level by

Km ∼ Uniform1:N .
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Overall, our representation of an emitter’s motion is equivalent to the following Brownian probability density

p (Xm
1:N , Y m

1:N , Zm
1:N ,Km) = Uniform[Xmin,Xmax] (X

m
Km)

N−1∏
n=1

Normal
(
Xm

n+1 −Xm
n ; 0, 2D(Tn+1 − Tn)

)
· · ·

×Uniform[Ymin,Ymax] (Y
m
Km)

N−1∏
n=1

Normal
(
Y m
n+1 − Y m

n ; 0, 2D(Tn+1 − Tn)
)
· · ·

×Uniform[Zmin,Zmax] (Z
m
Km)

N−1∏
n=1

Normal
(
Zm
n+1 − Zm

n ; 0, 2D(Tn+1 − Tn)
)
· · ·

×Uniform1:N (Km)p (Xm
1 , Y m

1 , Zm
1 ,Km)

∝
N−1∏
n=1

Normal
(
Xm

n+1 −Xm
n ; 0, 2D(Tn+1 − Tn)

)
· · ·

×
N−1∏
n=1

Normal
(
Y m
n+1 − Y m

n ; 0, 2D(Tn+1 − Tn)
)
· · ·

×
N−1∏
n=1

Normal
(
Zm
n+1 − Zm

n ; 0, 2D(Tn+1 − Tn)
)

× p (Xm
1 , Y m

1 , Zm
1 ) .

The proportionality above shows that our representation of the emitters’ motion is consistent with studies
characterizing single particle motion and diffusion coefficients using mean square displacements [35, 43, 44].
In addition, p (Xm

1 , Y m
1 , Zm

1 ) is the prior placed on an emitter’s initial position.

D.6.3 Extended BNP-Track for other motion models

Up to this point, we have discussed emitter motion through free Brownian motion in three dimensions.
Nevertheless, BNP-Track can incorporate various motion models, provided their justification. In this context,
we offer a concise demonstration of BNP-Track’s adaptability to encompass motion models wherein the
diffusion coefficient exhibits spatial, temporal, or emitter dependencies.

In all of these scenarios, we can introduce an additional variable, denoted as Sm
n , representing the diffusive

state of emitter m at time point n. Subsequently, the probability density governing the motion of this emitter
becomes:

p (Xm
1:N , Y m

1:N , Zm
1:N , Sm

1:N ,Km) ∝
N−1∏
n=1

Normal
(
Xm

n+1 −Xm
n ; 0, 2DSm

n
(Tn+1 − Tn)

)
· · ·

×
N−1∏
n=1

Normal
(
Y m
n+1 − Y m

n ; 0, 2DSm
n
(Tn+1 − Tn)

)
· · ·

×
N−1∏
n=1

Normal
(
Zm
n+1 − Zm

n ; 0, 2DSm
n
(Tn+1 − Tn)

)
× p (Xm

1 , Y m
1 , Zm

1 ) p (Sm
1:N ) .

Here, DSm
n

represents the diffusion coefficient of state Sm
n , and p (Sm

1:N ) denotes the probability density of
the diffusive state trajectory. If the diffusion coefficient is emitter-dependent, we set Sm

n = m and remove
p (Sm

1:N ) since it is now deterministic.
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When an emitter’s diffusive state exhibits spatial dependency exclusively, p (Sm
1:N ) should be revised as

follows:

p (Sm
1:N |Xm

1:N , Y m
1:N , Zm

1:N ) =

N∏
n=1

p (Sm
n |Xm

n , Y m
n , Zm

n )

where p (Sm
n |Xm

n , Y m
n , Zm

n ) depends on the specific system. For instance, if there is a boundary denoted by
x = x′ separating two regions with distinct diffusion coefficients, we can formulate

p (Sm
n = 1|Xm

n , Y m
n , Zm

n )

{
1, Xm

n ≤ x′,

0, Xm
n > x′;

and

p (Sm
n = 2|Xm

n , Y m
n , Zm

n )

{
0, Xm

n ≤ x′,

1, Xm
n > x′.

Similarly, in scenarios where the diffusion coefficient is time-dependent and under the assumption of the
Markov (memoryless) property, we modify p (Sm

1:N ) to

p (Sm
1:N |Π) = p (Sm

1 )

N−1∏
n=1

p
(
Sm
n+1

∣∣Sm
n ,Π

)
where Π is the transition probability matrix for diffusive states.

It is crucial to emphasize that the extensions outlined in this section will augment the computational cost of
BNP-Track. This is because the trajectories of the diffusive states, S1:M

1:N , are frequently unknown, thereby
introducing additional variables that require inference.

D.6.4 Extended BNP-Track to estimate multiple positions of one emitter within one frame

t1,1

t0 t1 tN-1 tN

t1,2 t1,3 t2,1 t2,2 t2,3 tn,1 tn,2 tn,3 tN-1,1tN-1,2tN-1,3 tN,1 tN,2 tN,3

S
p
a
ce

exposure 1 exposure 2

:exposure time

time

exposure n exposure N-1 exposure N

Figure D.4: How BNP-Track can be extended to consider intra-exposure emitter motion. This figure shows
an example of estimating three positions for each emitter within each exposure.

As a general tracking framework, BNP-Track can be extended to estimate multiple positions of one emitter
within one frame, see Fig. D.4. This is important when emitters move appreciably compared to a pixel
dimension within one exposure, resulting in motion blur, also termed aliasing, which distorts the PSF [18].
To address this issue, we can better approximate the first equation in appendix D.5 using the trapezoidal
rule [45, 46]. To be more specific, we can replace our simple quadrature rule∫ tmax

n

tmin
n

dt h(t)Qp
g(X

m(t), Y m(t), Zm(t)) ≈ τ expsn hnQ
p
g(X

m
n , Y m

n , Zm
n )
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with a composite one as follows∫ tmax
n

tmin
n

dt h(t)Qp
g(X

m(t), Y m(t), Zm(t))

≈ τ expsn

K − 1

K−1∑
k=1

[
hn,kQ

p
g(X

m
n,k, Y

m
n,k, Z

m
n,k) + hn,k+1Q

p
g(X

m
n,k+1, Y

m
n,k+1, Z

m
n,k+1)

]
.

Here, K is the number of discretized time points in an exposure, and we define hn,k = h(tn,k), and Xm
n,k =

Xm(tn,k). As K approaches infinity, the evaluation of the time integral becomes exact with the quadratic
rate of convergence [47]. In practice, as illustrated in Fig. A.3, when confronted with a diffusion coefficient
of 1µm2s−1 and a camera exposure time of approximately 30ms, the utilization of five subintervals for the
composite trapezoidal rule proves to be adequate.
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D.7 Model likelihood

In the preceding sections, we outlined our spatial and temporal frames of reference (appendices D.2 and D.3),
within which we define the various quantities of interest, and our mathematical formulation (appendices D.4
and D.5), which establishes the relationships between those quantities. However, in an imaging experiment,
most of the quantities of interest have unknown values. For example, in a typical superresolution experiment,
the unknowns include

θ =
{
C1:N , h1:N , D, b1:M , X1:M

1:N , Y 1:M
1:N , Z1:M

1:N ,K1:M
}
.

As we explain in appendix D.1, we aim to infer these values through a posterior distribution that uses the
images acquired.

In quantitative microscopy, image measurements are provided in the form of image values w1:P
1:N obtained

from the camera’s array of pixel photosensors, which we label with p = 1, . . . , P , and a sequence of exposures,
which we label with n = 1, . . . , N . Following the conventions introduced in appendices D.2, D.3 and D.4.2,
an image value wp

n probes the average photons up
n incident on the region of space monitored by the pth pixel

during the nth exposure. These correspond to

xp
min < x < xp

max, ypmin < y < ypmax, tmin
n < t < tmax

n .

Because of shot-noise and noisy camera read-out, the relation between wp
n and up

n is stochastic and varies
among different types of cameras. For scientific-grade cameras of the EMCCD type, which are commonly
used in superresolution imaging [30, 48], the relationship is given by

wp
n|up

n ∼ Normal
(
µ+ ξup

n, υ + fξ2up
n

)
where µ, υ, ξ, and f are the EMCCD’s read-out offset, variance, overall gain, and excess noise factor [48],
respectively. These values are reported in units of ADU,ADU2,ADU/photon and 1/photon, respectively.
Because µ, υ, ξ, and f are camera characteristics and not specimen characteristics, we obtain these values
separately following the calibration protocol of appendix D.11.

Since µ, υ, ξ, and f are specified via calibration before image processing, we use adjusted values

w̄p
n =

wp
n − µ

ξ
, ῡ =

υ

ξ2

and cast our model’s likelihood in its equivalent form

w̄p
n|up

n ∼ Normal (up
n, ῡ + fup

n)

which allows for faster evaluation. With this convention, according to the definitions of table B.5, our
likelihood’s probability density takes the form

p(w̄p
n|up

n) =
1√

2π(ῡ + fup
n)

exp

(
−1

2

(w̄p
n − up

n)
2

ῡ + fup
n

)
.

Finally, we may invoke a Laplace approximation [49, 50], according to

p(w̄p
n|up

n) ≈
1√

2π(ῡ + fw̄p
n)

exp

(
−1

2

(w̄p
n − up

n)
2

ῡ + fup
n

)
∝ exp

(
−1

2

(w̄p
n − up

n)
2

ῡ + fup
n

)
to speed up the evaluation of our likelihood even further. Under the typical values encountered in a super-
resolution setting, such an approximation has a negligible effect on our results.
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D.8 Model priors

D.8.1 Nonparametric prior distributions

Our method is nonparametric and relies on indicator parameters denoted by b1:M , which play a crucial role
in our analysis. As we describe in Methods, these parameters are model variables whose values are inferred
concurrently with the other unknowns during processing.

To infer the values of b1:M , we use independent Bernoulli priors with emitter-specific hyperparameters q1:M ,
given by:

bm|qm ∼ Bernoulli (qm) ,

To avoid overfitting as the number of model emitters grows, we employ Beta hyper-priors of the form:

qm ∼ Beta
( γ

M
, 1− γ

M

)
on the Bernoulli weights q1:M . With these priors and hyper-priors, our model remains well-defined at the limit
M → ∞, where it converges to a Beta-Bernoulli process [51–55]. The choice of M has no interpretational
side effects and only affects computation speed. Provided M is sufficiently large, the precise value of M has
an insignificant influence on the results.

Because the prior and hyper-prior on each bm is independent of the others, we can combine them into a
single distribution which takes the form

bm ∼ Bernoulli
( γ

M

)
and, because the total number of imaged emitters B =

∑M
m=1 b

m is a derived variable, we can derive its
prior statistics. In particular, as a sum of independent Bernoulli variables, the induced prior is

B ∼ Binomial
(
M,

γ

M

)
which, at the limit M → ∞, converges to a Poisson(γ) random variable. Accordingly, γ can be interpreted
as the prior mean number of light emitters anticipated to contribute photons in the supplied images.

D.8.2 Parametric prior distributions

We have already described our choices for the nonparametric prior on the indicators b1:M as well as appro-
priate dynamical representations for the emitter positions X1:M

1:N , Y 1:M
1:N , Z1:M

1:N , and K1:M . To complete our
model, for the remaining unknowns C1:N , h1:N , and D we make the following choices.

On the background photon fluxes C1:N and emitter photon emission rates h1:N we place independent Gamma
priors

Cn ∼ Gamma

(
AC

n ,
Cref

n

AC
n

)
,

hn ∼ Gamma

(
Ah

n,
href
n

Ah
n

)
,

These depend on reference values Cref
1:N and href

1:N that set prior scales and provide units, as well as on
dimensionless parameters AC

1:N and Ah
1:N that can be used to model prior confidence on the assigned reference
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values Cref
1:N and href

1:N or lack thereof. For example, setting AC
n ≫ 1 restricts the background fluxes C1:N to

attain values near Cref
n and similarly for h1:N .

Finally, on the diffusion coefficient D, we place an Inverse-Gamma prior

D ∼ InvGamma (αD, (αD − 1)Dref)

with, similarly, prior scale and units set by Dref and prior confidence set by αD.
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D.9 Summary of model equations

The following equations summarize our entire Bayesian nonparametric imaging data processing method.

Cn ∼ Gamma
(
AC

n , C
ref
n /AC

n

)
, n = 1, . . . , N

hn ∼ Gamma
(
Ah

n, h
ref
n /Ah

n

)
, n = 1, . . . , N

D ∼ InvGamma (αD, (αD − 1)Dref) ,

bm ∼ Bernoulli (γ/M) , m = 1, . . . ,M

Km ∼ Uniform1:N , m = 1, . . . ,M

Xm
n |Km ∼ Uniform[Xmin,Xmax], n = Km m = 1, . . . ,M

Xm
n |Xm

n+1,K
m, D ∼ Normal

(
Xm

n+1, 2D(Tn+1 − Tn)
)
, n = 1, . . . ,Km − 1 m = 1, . . . ,M

Xm
n |Xm

n−1,K
m, D ∼ Normal

(
Xm

n−1, 2D(Tn − Tn−1)
)
, n = Km + 1, . . . , N m = 1, . . . ,M

Y m
n |Km ∼ Uniform[Ymin,Ymax], n = Km m = 1, . . . ,M

Y m
n |Y m

n+1,K
m, D ∼ Normal

(
Y m
n+1, 2D(Tn+1 − Tn)

)
, n = 1, . . . ,Km − 1 m = 1, . . . ,M

Y m
n |Y m

n−1,K
m, D ∼ Normal

(
Y m
n−1, 2D(Tn − Tn−1)

)
, n = Km + 1, . . . , N m = 1, . . . ,M

Zm
n |Km ∼ Uniform[Zmin,Zmax], n = Km m = 1, . . . ,M

Zm
n |Zm

n+1,K
m, D ∼ Normal

(
Zm
n+1, 2D(Tn+1 − Tn)

)
, n = 1, . . . ,Km − 1 m = 1, . . . ,M

Zm
n |Zm

n−1,K
m, D ∼ Normal

(
Zm
n−1, 2D(Tn − Tn−1)

)
, n = Km + 1, . . . , N m = 1, . . . ,M

wp
n|Cn, hn, b

1:M , X1:M
n , Y 1:M

n , Z1:M
n ∼ Normal

(
µ+ ξup

n, υ + fξ2up
n

)
, n = 1, . . . , N, p = 1, . . . , P

The last equation may be substituted with its equivalent form,

w̄p
n|Cn, hn, b

1:M , X1:M
n , Y 1:M

n , Z1:M
n ∼ Normal (up

n, ῡ + fup
n) , n = 1, . . . , N, p = 1, . . . , P

or approximated as described in appendix D.7.

In all equations, the parameters Cn, hn, b
1:M , X1:M

n , Y 1:M
n , and Z1:M

n are related to the image measurements
by

up
n = τ expsn

(
CnA

p + hn

M∑
m=1

bmQp
g(X

m
n , Y m

n , Zm
n )

)
.

33



D.10 Evaluation and interpretation of the model posterior

Our image analysis method, BNP-Track, is entirely contained in the statistical model whose equations are
listed in appendix D.9. We have adapted these equations to meet the particular imaging conditions of
superresolution microscopy as well as to facilitate the estimation of the variables of typical interest in a
biological, biochemical, or biophysical experiment [30] that we detailed in appendices D.2 to D.5.

As we explain in appendix D.1, we encode our model’s equations and an experiment’s measured images in
a posterior probability distribution [11–14]. This distribution assimilates into our analysis the information
supplied by the form of the model itself (e.g. information such as parameter ranges or relations among the
parameters) and the information provided by the experimental data, which takes the form of image values
reported by the camera devices used.

Our posterior distribution, in its complete form, is

p
(
C1:N , h1:N , D, b1:M , X1:M

1:N , Y 1:M
1:N , Z1:M

1:N ,K1:M︸ ︷︷ ︸
unknowns

∣∣∣ w1:P
1:N︸ ︷︷ ︸

data

)
.

For convenience, we define a single variable θ that gathers all unknowns, including C1:N , h1:N , D, b1:M ,
X1:M

1:N , Y 1:M
1:N , Z1:M

1:N , and K1:M . We also use W to represent the image measurement, denoted as w1:P
1:N . This

notation can compactly express the posterior distribution as p(θ|W ).

The posterior p(θ|W ) quantifies, in an absolute scale, the consistency between any given assignment of spe-
cific values to the unknowns, e.g. an assignment such as C1 = 5×104 photons/s/µm2, h1 = 6×104 photons/s,
D = 0.11 µm2/s and so on, with the measured images. In principle, with p(θ|W ), we can precisely quantify
how probable it is for the assigned values to have generated the recorded images; high posterior corresponds
to highly probable value assignments, and, vice versa, low posterior corresponds to highly improbable as-
signments. Nevertheless, due to the nonparametric prior and the non-trivial relations among our unknowns,
an exhaustive quantification of all possible value assignments via greedy computations is impossible. This
is because, at the limit M → ∞, our infinite number of unknowns b1:M , X1:M

1:N , Y 1:M
1:N , Z1:M

1:N , K1:M , and the
non-linear dependencies underlying u1:P

1:N lead to intractable formulas.

Instead, we use the posterior p(θ|W ) in a different but statistically equivalent manner. In particular, instead
of seeking to quantify exhaustively every possible parameter value assignment, the vast majority of which
is highly inconsistent with the measured images, we compute only those value assignments that are most
consistent with the images [14]. This way, we quantify value assignment on a relative scale. Practically, as we
illustrate in appendix D.1, we generate computationally random assignments so that most probable values
occur with higher frequency than the others. As we demonstrate in Results and Fig. D.1, we can derive any
statistic of interest by those assignments, which, to avoid confusion, we will call posterior samples.

Next, we describe the steps necessary to generate and handle posterior samples.

D.10.1 Evaluation

We denote the posterior samples we seek to generate with superscripts (i). Specifically, these are θ(0), θ(1), θ(2), . . . , θ(i), θ(i+1), . . . .
To generate these samples, we develop a Markov chain Monte Carlo scheme [16, 17]. Namely, we use pseudo-
random computer simulations to advance from one sample to the next. For this, we apply a custom Gibbs
sampling scheme [14–17].

Specifically, we initialize θ(0) values for all variables by sampling from their respective priors. Subsequently,
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to advance from θ(i) to θ(i+1), our scheme proceeds in steps during which we update only a designated block
of parameters. In detail, we update the parameters in blocks by interlacing, in random order, the following
six steps:

1. We update the variables C1:N . This step involves sampling from the conditional distribution

p
(
C1:N

∣∣∣h1:N , D, b1:M , X1:M
1:N , Y 1:M

1:N , Z1:M
1:N ,K1:M , w1:P

1:N

)
.

2. We update the variables C1:N and h1:N . This step involves sampling from the conditional distribution

p
(
C1:N , h1:N

∣∣∣D, b1:M , X1:M
1:N , Y 1:M

1:N , Z1:M
1:N ,K1:M , w1:P

1:N

)
.

3. We update the variables b1:M , X1:M
1:N , Y 1:M

1:N , Z1:M
1:N ,K1:M . This step involves sampling from the condi-

tional distribution

p
(
b1:M , X1:M

1:N , Y 1:M
1:N , Z1:M

1:N ,K1:M
∣∣∣C1:N , h1:N , D,w1:P

1:N

)
.

4. We update the variables C1:N and b1:M , X1:M
1:N , Y 1:M

1:N , Z1:M
1:N ,K1:M . This step involves sampling from

the conditional distribution

p
(
C1:N , b1:M , X1:M

1:N , Y 1:M
1:N , Z1:M

1:N ,K1:M
∣∣∣h1:N , D,w1:P

1:N

)
.

5. We update the variables C1:N and X1:M
1:N , Y 1:M

1:N , Z1:M
1:N ,K1:M . This step involves sampling from the

conditional distribution

p
(
C1:N , X1:M

1:N , Y 1:M
1:N , Z1:M

1:N ,K1:M
∣∣∣h1:N , b1:M , D,w1:P

1:N

)
.

6. We update the variables X1:M
1:N , Y 1:M

1:N , Z1:M
1:N ,K1:M . This step involves sampling from the conditional

distribution

p
(
X1:M

1:N , Y 1:M
1:N , Z1:M

1:N ,K1:M
∣∣∣C1:N , h1:N , b1:M , D,w1:P

1:N

)
.

For all steps, we use customized Metropolis-Hastings samplers [14–17]. Our samplers are purpose-built
and use techniques based on slice-sampling [56–58], or multiplicative random walks [59]. We evaluate our
posterior with a fixed and finite total number of model emitters M ≫ 1. As we explain in appendix D.8.1,
this introduces an approximation in our analysis with an insignificant error [51, 60].

Although our computational scheme is mathematically valid, its performance can be improved considerably
if it is combined with simulated annealing [61–64]. Annealing can speed up the convergence rate, reducing
processing time, which may be slow for image data of typical sizes. In our sampler, we introduce an
annealing factor F (i) and implement simulated annealing by replacing the EMCCD’s excess noise factor f
in our likelihood by the product F (i)f . The annealing factor F (i) ≥ 1 is set to a large value at the beginning
of our Gibbs iterations and gradually reduces to 1, for instance, such as in

F (i) = 1 + (F (0) − 1)max (0, 1− i/iref)
2

where F (0) indicates the initial value, iref the reduction speed, and i is the iteration number.
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D.10.2 Interpretation

Once a sequence of posterior samples θ(1), θ(2), . . . is obtained by the successive repetition of the Gibbs
sampling scheme, we may compute any statistic directly related to the sampled variables [13–17].

As with every Markov chain Monte Carlo method [13–17], the accuracy of the computed statistics is dras-
tically improved if, from the entire chain of posterior samples, we first discard an initial burn-in portion.
To identify this portion, we use batching [15]. Specifically, once simulated annealing terminates at iteration
i = iref , we divide the remaining sequence into three batches, each covering 1/3 of successive samples in the
chain. For each of the last two batches, we compute the statistics of interest and compare them. If these
agree, we use either of them as our estimate; however, if they do not agree, we expand our initial chain by
computing additional posterior samples and repeat until the statistics of the terminal two batches match.

Similarly, we may also compute statistics of interest of derived quantities that depend upon the sampled
variables [15, 17]. One such quantity is the total number B of light emitters that contribute photons to
the measured images. Since B depends upon the sampled indicators b1:M , its posterior samples are readily
obtained by the sum B =

∑M
m=1 b

m.

Unlike B, which is uniquely determined by the sampled variables, statistics that are sensitive to the labeling
of the emitters, i.e. statistics that require distinctive labels m assigned to each model emitter, may not
be determined uniquely by the sampled variables. This is a common characteristic shared by Bayesian
nonparametric methods [65–67] and reflects the fact that both a priori and a posteriori, all emitters are
equivalent in the sense that there is no preference for a particular labeling out of all M ! possible ones. For
this reason, following our Markov chain Monte Carlo computations, we relabel the emitters in our posterior
samples so that they maintain fixed labels. Essentially, from the M ! equivalent posterior modes that our
posterior allows for, we chose methodologically only one to base our estimates upon with our relabeling
approach. We explain our relabeling strategy below.

In any posterior sample θ, the variables requiring relabeling are b1:M , X1:M
1:N , Y 1:M

1:N , Z1:M
1:N ,K1:M . For clarity,

we denote their relabeled counterparts with θ̇ and ḃ1:M , Ẋ1:M
1:N , Ẏ 1:M

1:N , Ż1:M
1:N , K̇1:M , respectively. To obtain

these, we first choose a pivot sample out of the computed ones θ(i) that remain after burn-in removal. Our
pivot is the posterior sample corresponding to the highest posterior p(θ|W ). For clarity, we denote the pivot
with θ̃ and its variables with b̃1:M , X̃1:M

1:N , Ỹ 1:M
1:N , Z̃1:M

1:N , K̃1:M . Subsequently, for each available θ(i) we form

all M ! possible samples θ̈
(i)
k through the permutations of the labels and for θ̇(i) we select the sample θ̈

(i)
k that

is most similar to the pivot.

Our comparison with the pivot is based on the similarity metric

D
(
θ̈; θ̃
)
=

M∑
m=1

Rg̈

(
b̈m, Ẍm

1:N , Ÿ m
1:N , Z̈m

1:N ; b̃m, X̃m
1:N , Ỹ m

1:N , Z̃m
1:N

)
which, in turn, depends additively on the metric

Rg̈

(
b̈, Ẍ1:N , Ÿ1:N , Z̈1:N ; b̃, X̃1:N , Ỹ1:N , Z̃1:N

)
=

P∑
p=1

N∑
n=1

τ expsn hn

∣∣∣b̈ Qp
g̈(Ẍn, Ÿn, Z̈n)− b̃ Qp

g̈(X̃n, Ỹn, Z̃n)
∣∣∣ ,

that compares θ̈ and θ̃ emitterwise based on the respective images. From these two, the former metric
compares the entire population of emitters, while the latter metric compares individual emitters. Because

the population metric, D
(
θ̈; θ̃
)
depends additively on the emitter metric

Rg̈

(
b̈, Ẍ1:N , Ÿ1:N , Z̈1:N ; b̃, X̃1:N , Ỹ1:N , Z̃1:N

)
,
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selecting the optimum θ̇(i) out of θ̈
(i)
1:M ! reduces to a linear assignment problem that can be solved effi-

ciently [68, 69], for instance through the Hungarian algorithm, without explicitly forming the permutations

θ̈
(i)
1:M !, which is impractical.
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D.11 Calibration

D.12 Camera read-out

For cameras of the EMCCD type, agreement with the signal-to-noise specifications [48, 70, 71] requires a
fixed excess noise factor f = 2/photon. However, the other camera parameters, e.g. µ, υ and ξ, are device
and configuration dependent [71]. For this reason, their values must be calibrated separately for each camera
and imaging configuration adopted. Below, we describe a standard calibration procedure.

The values of readout offset µ, and variance υ can be evaluated with dark images, i.e. images under no
photon flux such as those obtained with the camera’s shutter closed [70, 71]. We denote with ω0,1:P

1:N such
recorded images. Specifically, for these u0,p

n = 0, and so our model reduces to

ω0,p
n ∼ Normal (µ, υ) .

For a sufficiently large number of exposures N , offset µ and variance υ can be recovered by the sample mean
and variance, respectively

µ =
1

NP

N∑
n=1

P∑
p=1

ω0,p
n , υ =

1

NP − 1

N∑
n=1

P∑
p=1

(
ω0,p
n − µ

)2
.

The value of the gain ξ can be evaluated based on static images, i.e. images under constant photon flux such
as those obtained when imaging an illuminated empty sample in plain buffer or other optically homogenous
media. We denote with ωk,1:P

1:N such recorded images, and use super-scripts k = 1, . . . ,K to denote different

illumination levels. Specifically, for such images uk,p
n = Cp,k

staticA
pτ expsn where Cp,k

static is the photon flux
achieved at the kth illumination level, and so our model reduces to

ωk,p
n ∼ Normal

(
µ+ ξuk,p

n , υ + fξ2uk,p
n

)
Accordingly, for each illumination level, each pixel’s recordings mean and variance across exposures are
given by µk,p = uk,p

n ξ + µ and υk,p = uk,p
n fξ2 + υ, respectively. Consequently, they are related to each

other by υk,p − υ = fξ
(
µk,p − µ

)
. This relation can be used to obtain the value of ξ through least squares

estimation [14, 72]. The result is

ξ =
1

f

∑K
k=1

∑N
n=1

(
υk,p − υ

) (
µk,p − µ

)∑K
k=1

∑N
n=1 (µ

k,p − µ)
2 ,

where the mean and variance of each pixel’s recordings are recovered by the sample mean and variance,
respectively

µk,p =
1

N

N∑
n=1

ωk,p
n , υk,p =

1

N − 1

N∑
n=1

(
ωk,p
n − µ

)2
.

D.12.1 Point spread function and illumination profile

For the calibration of the point spread function, suspended fiducial markers [73] can be imaged at multiple

stages as graphically illustrated in Fig. D.5. For clarity, we denote with ω∗,1:P
1:N the images obtained with

corresponding stage displacement dstg1:N and, to proceed, we denote with X̄m, Ȳ m, Z̄m the emitters’ positions
in a laboratory’s frame of reference. Further, we assume that the latter is oriented such that when the stage
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Figure D.5: Configuration of sample space and stage displacement used to calibrate the point spread function.
We depict only two of the three spatial coordinates to increase clarity here. Suspended fiducial markers,
immobile concerning the laboratory’s frame of reference (left panel), are imaged at different stages (middle
panels). Image analysis allows characterizing and reconstructing the point spread function along all spatial
dimensions (right panel).

is displaced by d, the emitters are imaged at Xm = X̄m, Y m = Ȳ m, Zm = Z̄m + d concerning the object
plane which is our common frame of reference. Therefore, in the nth image, the emitters are located at
Xm

n = X̄m, Y m
n = Ȳ m, Zm

n = Z̄m + dstgn . We illustrate this convention in Fig. D.5.

Assuming no emitter motion, the average number of incident photons in our calibration model reduces to

up
n = τ expsn

(
CnA

p + h

M∑
m=1

bm
∫∫ xp

max,y
p
max

xp
min,y

p
min

dxdy Gg(x, y;X
m
n , Y m

n , Zm
n )

)
.

Under these assumptions, image analysis for the calibration of the point spread function can be performed
with the model

gj ∼ InvGamma (αg, αg − 1) , j = 1, 2

Cn ∼ Gamma (αC , Cref/αC) , n = 1, . . . , N

h ∼ Gamma (αh, href/αh)

bm ∼ Bernoulli (γ/M) , m = 1, . . . ,M

X̄m ∼ Uniform[Xmin,Xmax], m = 1, . . . ,M

Ȳ m ∼ Uniform[Ymin,Ymax], m = 1, . . . ,M

Z̄m ∼ Uniform[Zmin,Zmax], m = 1, . . . ,M

ω∗,p
n |g1:3, Cn, h, b

1:M , X̄1:M , Ȳ 1:M , Z̄1:M ∼ Normal
(
µ+ ξup

n, υ + fξ2up
n

)
, n = 1, . . . , N, p = 1, . . . , P

which yields estimates for g1 and g2. The estimation relies on the marginal posterior p(g1, g2|ω∗,1:P
1:N ) which

can be evaluated through Markov chain Monte Carlo sampling similar to the scheme we described in ap-
pendix D.10.
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