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Supplementary Information

Supplement I: Definitions

Graph analysis In our study we investigated modulations of the functional network related
to different medications. Functional connectivity (FC) between two brain regions i and j was
thereby computed as the Pearson correlation coefficient rij between the averaged BOLD signals
of these regions. When computing these correlation values between all N regions, a FC network
can then be characterized by an adjacency matrix A ∈ RN×N , whereby one entry aij of this
matrix describes the FC strength between brain region i and j. Based on this network the degree
di of a brain region i in the network can then be defined as:

di =

N∑
j=1

aij (1)

The edge density ρA of a whole network can be described as the ratio of all possible connections
to connections that are actually present:

ρA =

∑
j aij

N(N − 1)
(2)

The shortest path length dij between node i and node j in a network can be defined as the
minimum number of edges traversed in an optimal path between those nodes. Based on this
definition, the connection efficiency Eij between two nodes i and j can be derived [10]:

Eij =
1

dij
(3)

Further the global efficiency of a network can then be computed as the average efficiency be-
tween all pairs of nodes:

Eglobal =

∑
j ̸=iEij

N(N − 1)
(4)

Thereby global efficiency characterizes the inter-connectedness of nodes in a graph, and presents
a measure of integration or ability of parallel information transfer [1]. Futher the local efficiency
of a node i is based on the following definition:
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Elocal,i =

∑
j ̸=k∈Gi

Ejk

di(di − 1)
(5)

where Gi is the sub-graph of node i, and di its degree. The local efficiency of a network can
then be computed as the average node local efficiency:

Elocal =

∑
iElocal,i

N
(6)

Local efficiency characterizes the inter-connectedness of each sub-graph and represent a mea-
sure of segregation or fault tolerance, indicating how efficient the communication in a network
remains in absence of a node i [1]. The centrality of a node i in a graph G can be described by
betweenness centrality, defined as the sum of the fraction of shortest paths between two nodes j
and k that pass through node i:

cB(i) =
∑
j,k∈G

σ(j, k|i)
σ(j, k)

(7)

where σ(j, k) is the number shortest paths between j and k, and σ(j, k|i) the number of shortest
paths passing through node i (other than j, k). Finally the rich-club coefficient of a network can
be used to characterize the inter-connectedness of nodes with a high degree:

Φ(k) =
2E>k

N>k(N>k − 1)
(8)

with E>k representing the number of edges of nodes with a degree larger than k and N>k the
number of nodes with a degree larger than k [9]. If for large values of k the rich-club coefficient
is close to 1, it means that high-degree nodes are well interconnected.

Regional homogenity Besides studying FC between brain regions within the whole network,
we investigated local connectivity, as defined by regional homogenity (ReHo) measures. Thereby
ReHo characterizes the synchronicity of the BOLD signal within a local neighbourhood of vox-
els or vertices [13]. In a neighbourhood containing in total N vertices, we computed a ReHo
measure as the average Pearson correlation coefficient rij between all pairs timecourses i and j:

ReHo =

∑
i ̸=j rij

N(N − 1)
(9)

Low frequency fluctuations To analyze changes in spectral characteristics of the BOLD sig-
nal, we studied alterations in fractional amplitude of low frequency fluctuation (fALFF) values
across the cortex [14]. For each voxel or vertex i fALFF can be computed as the ratio of the
power of the BOLD signal Si(t), after being filtered with a bandpass filter h(t), to the power of
the unfiltered signal Si(t):

fALFF =

√∑
t(h(t) ∗ Si(t))2∑

t Si(t)2
(10)

Here ∗ denotes the convolution operation and t the temporal index. In our study we focused
on the very low frequency range 0.01Hz − 0.05Hz, which has shown to be characteristic for
sedation effects observed in resting-state fMRI [6, 7, 4].
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Constrained independent component analysis To make independent component analysis
ICA suitable for applications like multi-subject fMRI studies, an extension denoted as con-
strained ICA (cICA) has been proposed by Lu and Rajapakse [8]. Like in classical ICA, the
basic goal is to estimate a set of N source components y ∈ RN from the observed data x ∈ RK

by estimating a demixing/weight matrix W ∈ RN×K :

y = Wx (11)

In our study the data is represented by the time-varying BOLD signal x = (x1(t), . . . , xK(t))T

in all K voxels/vertices observed at different timesteps t. Statistically independent components
y can be reconstructed by maximizing negentropy, which can be approximated by [2]:

J(y) = ρ[E{G(y)} − E{G(ν)}]2 (12)

where ρ denotes a positive constant, E{·} represents the expectation value and ν is a Gaus-
sian random variable with zero mean and unit variance. Further G(·) can be any non-quadratic
function which can be practically selected as [3]:

G(y) =
log cosh(a1y)

a1
(13)

with 1 ≤ a1 ≤ 2. Besides maximizing an approximation of negentropy J(y), cICA includes
the similarity to a given reference component rn(t) as constraint into the optimization [8]. This
additional constraint can be formulated as g(w) = ρ − ϵ(y, r) ≤ 0, where ρ denotes a pre-
defined similarity threshold parameter, and ϵ(·) a function that measures the closeness of the
estimated source component y to a reference r. In our study we selected the correlation between
y and r as similarity measure ϵ(y, r) = E[y, r]. Based on these definitions, the augmented
Lagrangian function L(W, µ) for estimating N source components yn, given N references rn
can be defined as [8]:

L(W,µ) =
N∑

n=1

(
J(yn) +

max2{0, µn + γngn(wn)} − µ2
n

2γn

)
(14)

with µ = (µ1, . . . , µN )T denoting a set of Lagrangian multipliers, and γ = (γ1, . . . , γN )T

representing positive learning parameters for the penalty term. The Lagrangian function can
then be maximised by simply using a gradient-based learning update rule:

Wi = Wi−1 + η
∂L(W)

∂W
(15)

where the update step at iteration i is controlled by the learning rate η. During the optimization
the weights W can be normalized and decorrelated to prevent them from constantly growing
and avoid that different weights wn estimate the same independent component [5].

As reference components we incorporated the 9 high-resolution cortical template resting-
state networks defined by Tahedl et al. [11]. This allowed us to estimate 9 corresponding
resting-state networks per subject and per session. Prior to ICA we reduced the 1320 BOLD
activity maps collected during one fMRI session to 30 activity maps using principal component
analysis (PCA). We selected a moderate similarity threshold of ρ = 0.3 to obtain consistent but
session specific resting-state networks. During training we set the learning rate to η = 0.1 and
penalty term update parameter to γ = 11.

1https://github.com/simonvino/constrained_ICA
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Supplement II: Supplementary figures and tables

Table S1: The table shows demographics of study participants.

metric BMI [kg/m2] age [years]
mean 24.3 27.2
std 3.1 6.84
min 20.0 20
max 32.13 50

education [participants]
main school (9 years) 1

secondary school (10 years) 2
high school (12 years) 33

residential environment [participants]
urban 28

outskirts 6
rural 2

Table S2: The table shows p-values and effect sizes (Cohen’s d) from the comparison of side
effects related to treatment with alprazolam (alp), etifoxine (eti) or placebo (pla). All differences
that remain significant after correcting for multiple comparisons are marked in bold font.

item
p-values effect sizes

pla / alp alp / eti pla / eti pla / alp alp / eti pla / eti
Fatigue 2.1e-06 3.4e-07 0.8171 -1.2273 1.2507 -0.0419

Sleepiness 9.3e-06 6.2e-06 1.0000 -1.0413 1.1040 -0.0000
Concentration problems 0.0004 0.0012 0.5318 -0.9162 0.8545 -0.1145

Dizziness 0.0036 0.0007 0.8827 -0.6978 0.7309 0.0268
Confusion 0.0404 0.0042 0.3327 -0.4705 0.6334 0.2386

Inner restlessness 0.2011 0.7246 0.2921 0.2735 -0.0664 0.2297
Headaches 0.9243 0.3648 0.2537 -0.0209 -0.2078 -0.2455

Sleeplessness 0.2477 0.2486 0.7580 -0.2742 0.2462 -0.0659
Vertigo 0.0165 0.0345 0.4528 -0.6041 0.5179 -0.1832

Libido change 0.6439 0.3513 0.6982 -0.1125 0.2278 0.0937
Poor appetite 0.3597 0.2830 0.1674 0.1735 0.2266 0.3303

Increased appetite 0.2474 0.3142 0.7407 -0.1977 0.2441 0.0765
Nervousness 0.0987 0.0244 0.8230 0.4121 -0.4224 0.0550
Constipation 0.3242 0.0553 0.0472 0.2357 -0.4673 -0.4149

Nausea 0.5528 1.0000 0.6329 0.1202 0.0000 0.1163
Tantrums 0.6439 0.1687 0.1834 -0.1125 0.3313 0.3199

Skin reactions 0.3242 0.1834 0.7440 0.2357 -0.3199 -0.0791
Hallucinations - - - - - -
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Figure S1: CONSORT flow diagram. Treatment with alprazolam (A), etifoxine (E), or placebo
(P) started 5 days before a respective session. Counterbalanced order of treatments: AEP (n =
5), APE (n = 6), EAP (n = 6), EPA (n = 5), PAE (n = 6), PEA (n = 6).

Figure S2: Relationship between functional connectivity edge density, global efficiency and
local efficiency and self-reported side-effects of the participants. All graph measures were com-
puted for a moderate thereshold of σ = 0.6 and Pearson correlation values r are shown above
the respective graphs. Subjects which report stronger side-effects demonstrate a not significant
(ns) but relatively consistent tendency of reduced connectivity edge-density, global efficiency
and local efficiency.
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Figure S3: Comparison of rs-fMRI measures between alprazolam and baseline. The first row
(A) shows that FC degree was significantly lower after administering alprazolam compared to
the baseline condition. The second row (B) depicts several regions in which local connectivity,
as defined by ReHo, was lower after administering alprazolam compared to baseline, except for
one region in superior/medial aspects of somato-motor cortex. The third row (C) shows that low
frequency amplitudes, as derived from fALFF, which were higher after administering alprazo-
lam compared to the baseline condition. The fourth row (D) illustrate alterations in ICA based
resting-state networks, which display considerable higher connectivity after the administration
of alprazolam in the temporal, occipital and right somatosensory cortex. Yellow and blue depict
t-values (from blue, alprazolam < baseline, to yellow, alprazolam > baseline).
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Figure S4: Comparison of ReHo of the alprazolam condition with the placebo (A), etifox-
ine (B) and baseline (C) condition, based on a small 2 vertices neighbourhood radius (≈
2.6mm). Similar to ReHo computed with a 4 vertices radius, it was mainly lower after ad-
ministering alprazolam compared to placebo, etifoxine and baseline, but increased in the supe-
rior/medial aspects of somato-motor cortex. Colors depict t-values (blue indicating alprazolam
< placebo/etifoxine/baseline).
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Figure S5: Comparison of ROI efficiency of the alprazolam condition with the placebo (A), eti-
foxine (B) and baseline (C) condition. It can observed that ROI efficiency within the functional
network is significantly lowered after administration of alprazolam in comparison to all other
conditions. Colors depict t-values (blue indicating alprazolam < placebo/etifoxine/baseline).

Figure S6: Regions with a significantly increased betweenness centrality in the alprazolam con-
dition in comparison to etifoxine. Colors depict t-values (yellow indicating alprazolam > eti-
foxine).
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Figure S7: Comparison of fALFF values between etifoxine and baseline. Low frequency ampli-
tudes were higher after administering etifoxine compared to the baseline condition in the anterior
cingulate cortex. Yellow colors depict t-values.

Figure S8: Comparison of rs-fMRI measures between alprazolam and placebo, including an
overlay of 7 resting-state fMRI networks defined by Yeo et al. [12].
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Figure S9: Comparison of rs-fMRI measures between alprazolam and etifoxine, including an
overlay of 7 resting-state fMRI networks defined by Yeo et al. [12].

10



Figure S10: Comparison of rs-fMRI measures between alprazolam and baseline, including an
overlay of 7 resting-state fMRI networks defined by Yeo et al. [12].
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Figure S11: All t-values of rs-fMRI measures from the comparison between alprazolam and
placebo. The first row (A) shows that FC degree was in general lower after administering al-
prazolam compared to placebo. The second row (B) shows that ReHo was mostly lower after
administering alprazolam compared to placebo, but higher in superior/medial aspects of somato-
motor, parieto-occipital and superior temporal cortex. The third row (C) shows that fALFF val-
ues were in general higher after administering alprazolam compared to placebo. The last three
rows (D) illustrate that ICA based resting-state networks display higher activity coherence after
the administration of alprazolam in the temporal, occipital and right primary somatosensory cor-
tex. Yellow and blue depict t-values (from blue, alprazolam < placebo, to yellow, alprazolam >
placebo). White/black outlines mark regions that significantly differ between conditions. Green
outlines mark regions of average resting-state networks with |z| > 2.
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Figure S12: All t-values of rs-fMRI measures from the comparison between alprazolam and eti-
foxine. The first row (A) shows that FC degree was in general lower after administering alprazo-
lam compared to the etifoxine condition. The second row (B) illustrates that ReHo was mostly
lower after administering alprazolam compared to etifoxine, but higher in superior/medial as-
pects of somato-motor, parieto-occipital and superior temporal cortex. The third row (C) shows
that fALFF values were higher after administering alprazolam compared to the etifoxine con-
dition. The last three rows (D) illustrate that ICA based resting-state networks display higher
activity coherence after the administration of alprazolam mainly in the temporal, occipital and
right primary somatosensory cortex. Yellow and blue depict t-values (from blue, alprazolam <
etifoxine, to yellow, alprazolam > etifoxine). White/black outlines mark regions that signifi-
cantly differ between conditions. Green outlines mark regions of average resting-state networks
with |z| > 2.
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Figure S13: All t-values of rs-fMRI measures from the comparison between alprazolam and
baseline. The first row (A) shows that FC degree was in general lower after administering
alprazolam compared to baseline. The second row (B) shows that ReHo was mostly lower after
administering alprazolam compared to baseline, but higher in superior/medial aspects of somato-
motor, parieto-occipital and superior temporal cortex. The third row (C) illustrates that fALFF
values were higher after administering alprazolam compared to the baseline condition. The
last three rows (D) show that ICA based resting-state networks display higher activity coherence
after the administration of alprazolam in the temporal, occipital and right primary somatosensory
cortex. Yellow and blue depict t-values (from blue, alprazolam < baseline, to yellow, alprazolam
> baseline). White/black outlines mark regions that significantly differ between conditions.
Green outlines mark regions of average resting-state networks with |z| > 2.
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