Supplementary Information

Supplementary Tables:

Supplementary Table 1. Comparison of Model Performances between VIT, DenseNet, ResNet50 and ResNet18 based on the consistency index evaluation criterion. The table below shows the mean and the 95% confidence interval for the training set, internal test set, and external test set.

Supplementary Table 2. Comparison of Model Performances between VIT, DenseNet, ResNet50 and ResNet18 based on the training time, memory usage and floating-point operations per second (flops).

Supplementary Table 3. Preprocessing for the original DICOM images

Supplementary Table 4. The mean and 95% confidence intervals of the consistency index on the split datasets

Supplementary Figures:

Supplementary Figure1. The consistency index interval plot

Supplementary Figure2. Illustrative examples clarifying the largest tumor segmentation process

Supplementary Figure3. The interval plot based on the mean and 95% confidence intervals of the consistency index on the split datasets

Supplementary Tables

ResNet50

ResNet18

based on the consistency index evaluation criterion. The table below shows the mean and the 95% confidence					
interval for the training set, internal test set, and external test set.					
METHOD	Training set	Internal test set	External test set		
VIT	0.830(0.771, 0.888)	0.651(0.621, 0.680)	0.537(0.483, 0.591)		
DenseNet	0.871(0.847, 0.896)	0.662(0.637, 0.687)	0.570(0.538, 0.602)		

0.676(0.627, 0.725)

0.677(0.630, 0.725)

0.548(0.496, 0.600)

0.564(0.484, 0.643)

Supplementary Table 1 Comparison of Model Performances between VIT, DenseNet, ResNet50 and ResNet18 based on the consistency index evaluation criterion. The table below shows the mean and the 95% confidence

Supplementary Table 2 Comparison of Model Performances between VIT, DenseNet, ResNet50 and ResNet18

ł	based on t	ne training t	ime, memory	y usage and	floating-point	operations p	per second	(flops)).
---	------------	---------------	-------------	-------------	----------------	--------------	------------	---------	----

0.884(0.852, 0.916)

0.863(0.821, 0.906)

METHOD	Params(M)	Flops(GFlops)	Training time(s)
VIT	85.6	16.86	4.22
DenseNet	6.95	2.89	2.60
ResNet50	23.5	4.13	2.23
ResNet18	11.2	1.8	0.77

Supplementary Table	3 Preprocessing for	or the original D	ICOM images
Supprementary ruore	5 Treprocessing it	or the original D	recont mages

Algorithm : Windowing Technique for Grayscale						
Input: C	Input: CT image, window level WL, window width WW					
Output: CT image with windowing technique applied new_image						
Algorithm steps:						
1.	1. Calculate the minimum HU value: $minHU \leftarrow WL-0.5*WW$					
2.	Window leveling:	$new_image \leftarrow (image-minHU)/WW$				
3.	Window clipping:	$new_image[new_image \le 0] = 0$				
		$new_image[new_image \le 1] = 1$				
4.	Map to the range [0,	255]: new image = new image*255				

Supplementary Table 4 The mean and 95% confidence intervals of the consistency index on the split datasets

METHOD	Training set	Internal test set	External test set
FIGO staging model	0.489(0.455, 0.524)	0.509(0.463, 0.554)	0.510(0.468, 0.553)
ResNet18 DL model	0.863(0.821, 0.906)	0.677(0.630, 0.725)	0.564(0.484, 0.643)
LightGBM model	0.921(0.882, 0.961)	0.732(0.662, 0.802)	0.589(0.533, 0.645)

Supplementary Figures

Supplementary Figure 1 The consistency index interval plot

(a)

(c)

(d)

Supplementary Figure 2 Illustrative examples clarifying the largest tumor segmentation process

Supplementary Figure 3 The interval plot based on the mean and 95% confidence intervals of the consistency index on the split datasets