Table S1. gRNA and primer sequences used in this study.

Name	Sequence (5'→3')	Application
Zbtb24-gRNA1	CCGGAGGGCCGTACAGACTTTTG	loxp1 insertion
Zbtb24-gRNA2	CCAGCCTCACGTAGACACTTTAT	loxp2 insertion
Zbtb24-screen F2	TAACGGACCGGAGGGCGTCG	ES clone selection
Zbtb24-screen R3	TCAAGTGATAAAGTGTCTACGTGAGGTGCTA	ES clone selection
Zbtb24-WT Fw	CCATCTTGTAAATATCTTCTGGGTGTCT (in WT allele)	Genotyping (Zbtb24)
Zbtb24-WT Rv	GATAAAGTGTCTACGTGAGGCTGGG (in WT allele)	Genotyping (Zbtb24)
Zbtb24-CKO Rv	GTGTCTACGTGAGGTGCTATAACTTCG (in loxp allele)	Genotyping (Zbtb24)
<i>Cd19-Cre-</i> M Fw	GCGGTCTGGCAGTAAAAACTATC (in Cre allele)	Genotyping (Cd19-Cre)
Cd19-Cre-M Rv	GTGAAACAGCATTGCTGTCACTT (in Cre allele)	Genotyping (Cd19-Cre)
Cd19-Cre-W Fw	CCTCTCCCTGTCTCCTTCCT (in WT allele)	Genotyping (Cd19-Cre)
Cd19-Cre-W Rv	TGGTCTGAGACATTGACAATCA (in WT allele)	Genotyping (Cd19-Cre)
mZBTB24 Fw	CCTTGTGGGCAGCTTATGGT	RT-qPCR (ZBTB24)
mZBTB24 Rv	CAAGGCTTTATGGGCTCGGA	RT-qPCR (ZBTB24)
mCPOX Fw	GAGGAAGCTGACGGTAACACA	RT-qPCR (CPOX)
mCPOX Rv	CCCGCGGTGAACTATAAAGA	RT-qPCR (CPOX)
mALAD Fw	GCCTCCTGAGTGAAAATGGA	RT-qPCR (ALAD)
mALAD Rv	CAGAGACCCTGTTGCCAAGT	RT-qPCR (ALAD)
mGAPDH Fw	AACTTTGGCATTGTGGAAGG	RT-qPCR (GAPDH)
mGAPDH Rv	GGATGCAGGGATGATGTTCT	RT-qPCR (GAPDH)

Figure S1. Little impact of *Zbtb24*-deficiency on the phenotype of B cells in the periphery of mice. Cells from the spleens (SPL), peritoneal cavities (PeC), mesenteric lymph nodes (MLN) and Peyer's patches (PP) of mice (female, 8-10 weeks old) were stained with antibodies against the indicated surface molecules before flow cytometry analyses. **A&B**, representative pictures/bar graphs showing the gating strategies/percentages of B2 (CD19⁺B220^{high} in SPL or CD19⁺B220^{high}CD23⁺ in PeC, respectively), B1 (CD19⁺B220^{low} in SPL or CD19⁺B220^{low}CD23⁻ in PeC, respectively), B1a/b (CD5⁺/CD5⁻, respectively, within gated B1), follicular (FOB)/marginzal zone (MZB) (CD23^{high}CD21^{low}/CD23^{low}CD21^{high}, repectively, within gated B2) in the SPL (A) or PeC (B) of *Cd19^{Cre/+}* and *Zbtb24^{B-CKO}* mice. The absolute cell numbers are also shown in the far-right panel of **A**. **C**, representative pseudo-plots/bar graphs showing the gating strategies/percentages of germinal center B (GCB, CD95^{high}CD38^{low}) within gated CD19⁺ B cells in the SPL, MLN and PP of *Cd19^{Cre/+} & Zbtb24^{B-CKO}* mice. Each symbol represents a single mouse of the indicated genotype. The absolute numbers of indicated B-cell subsets did not differ significantly in the PeC, MLN and PP of the two groups of mice (data not shown). AU, arbitrary units. Pooled data from two-independent experiments were shown in **A&B**.

Figure S2. No effect of *Zbtb24*-deficiency on the phenotype and number of GCB cells after TD-Ag immunization. Splenic cells in mice were stained with antibodies against CD19/CD95/CD38 & BCL6 (intracellular) or CD19/CD138 plus 7-AAD to visualize the percents/phenotypes of GCB or PC cells in mice depicted in Figure 2A-C on D14 post NP₁₉-OVA/IFA immunization (**A&B**) or on D11 post i.p. immunization with sheep red blood cells (SRBC, 1x10⁹ cells/200 µl PBS/mouse, female, 8 weeks of age) (**C&D**). A, representative histograms (*upper panel*) or zebra-plots (*lower panel*) showing the percentages of BCL6⁺ cells in gated CD19⁺CD95^{high}CD38^{low} GCB cells (*upper panel*) or total CD19⁺ B cells (*lower panel*) in control $Cd19^{Cre/+}$ and Zbtb24^{B-CKO} mice. B, bar graphs showing the percentages of BCL6⁺ cells/MFI of BCL6 in gated CD19⁺CD95^{high}CD38^{low} GCB and CD19^{low}CD138^{high} PC cells in spleens of mice on D11 post immunization. D, mRNA levels of ZBTB24 in FACS-purified CD19⁺CD95^{high}CD38^{low} GCB and CD19⁺CD95⁻CD38⁺ non-GCB cells from spleens of immunized mice. Each symbol represents a single mouse of the indicated genotype, and numbers below horizon lines indicate *P* values determined by student *t*-test.

Figure S3. Deficiency of *Zbtb24* in B cells has no impact on the long-term antibody responses in mice after NP₁₉-OVA/alum immunization. Mice (female, 8 weeks of age) were i.p. immunized with alum-precipitated NP₁₉-OVA (NP-OVA/alum, 100 µg/100 µl/mouse) on D0, and rechallenged with NP₁₉-OVA in PBS (50 µg/100 µl/mouse) on D70. **A**, a schematic diagram depicting the experimental setup. **B&C**, bar graphs showing the optical density (OD) values of NP-specific antibody subtypes against coated NP₂₅-BSA (NP₂₅, **B**) or NP₂-BSA (NP₂, **C**) in diluted sera of *Zbtb24^{loxp/loxp}* (*Cont*), *Cd19^{Cre/+}* and *Zbtb24^{B-CKO}* mice on indicated days. **D**, bar graphs showing the ratios of relatively high-affinity (NP₂) to low-affinity (NP₂₅) NP-specific IgG1 & IgG2c in *Cd19^{Cre/+}* and *Zbtb24^{B-CKO}* mice on D70 & D84. Each dot represents a single mouse of the indicated genotype and numbers below horizonal lines indicate *P* values determined by Mann-Whitney test. UT, untested.

Figure S4. Reduced total antibody-producing ability of *Zbtb24^{B-CKO}* **splenic B cells after adoptive transfer.** Total CD19⁺ B cells, enriched from *Zbtb24^{B-CKO}* or control *Cd19^{Cre/+}* mice (male, 8 weeks of age) by magnetic beads, were mixed with CD4⁺T cells (purified from male WT mice) at the ratio of 2:1 before being intravenously (i.v.) injected into the *Rag2^{-/-}* recipient mice (5x10⁶ B cells plus 2.5x10⁶ T cells per mouse). One day later, recipient mice were immunized with NP₁₉-OVA emulsified in IFA (NP-OVA/IFA) intraperitoneally (i.p.). Blood was taken at indicated times, and total or NP-specific antibody levels in sera were determined by ELISA. A, a schematic flow-chart of the experiment setup. **B&C**, bar graphs showing levels of total (**B**) or NP-specific (**C**) IgM/IgG or IgG1/IgG2c levels in sera of recipient mice at indicated times. **E**, bar graphs showing the percentages and absolute numbers of CD19⁺ B cells or CD19^{-/Iow}CD138⁺ plasma cells (PC) in the spleens (SPL) and bone marrows (BM) of *Cd19^{Cre/+} vs. Zbtb24^{B-CKO}* mice. Representative pseudo-plots showing the gates for each population were shown in **D**. Each dot represents a single recipient mouse, and numbers below horizontal lines indicate *P* values. AU, arbitrary units.

Figure S5. Grossly intact CSR ability of *Zbtb24^{B-CKO}* **B cells.** Splenic B cells (2 x 10⁵ cells/well) from *Cd19^{Cre/+}* or *Zbtb24^{B-CKO}* mice were stimulated with LPS (10 µg/ml) in the absence/presence of IL-4 (25 ng/ml) or TGF- β (1 ng/ml) plus BAFF (10 ng/ml) in 96 U-bottom plates. On day 4, cells were collected and expressions of surface IgM/IgG2b/IgG3 & IgG1 were analyzed by flow cytometry. **A&C**, representative pseudo-plots and bar graphs showing the surface IgM/IgG1 on B cells before (**A**) and after culture with LPS plus IL-4 (L4, **C**). **B&D**, representative pseudo-plots/bar graphs showing the surface IgG2b/IgG3 on B cells before (**B**) and after culture with LPS without (*upper panel* in **D**)/with TGF- β & BAFF (LTB, *lower panel* in **D**). Each symbol represents a single mouse of the indicated genotype (female, 10 weeks of age), and numbers below horizontal lines indicate *P* values. MFI, mean fluorescence intensity.

Figure S6. Little effect of *Zbtb24*-deficiency in hematopoietic cells on humoral responses against TD-Ags in mice. A&C, bar graphs showing levels of total IgM, IgG1, IgG2b, IgG2c and IgG3 in sera of naive *Zbtb24*^{loxp/loxp} vs. *Zbtb24*^{T-CKO} (*Cd4*^{Cre/+}*Zbtb24*^{loxp/loxp}) mice (A, female, 10-12 weeks old) or naive *Zbtb24*^{loxp/loxp} vs. *Zbtb24*^{HSC-CKO} (*Vav1*^{Cre/+}*Zbtb24*^{loxp/loxp}) mice (C, male, 8-10 weeks old). Deletion of *Zbtb24* in the hematopoietic system does not significantly impact the phenotypes and numbers of T and B cells in the peripheral lymph organs of mice (data not shown). B, D&E, bar graphs showing the optical density (OD) values of NP-specific antibody subtypes against coated NP₂₅-BSA (NP₂₅) in diluted sera of *Zbtb24*^{loxp/loxp} vs. *Zbtb24*^{HSC-CKO} (B, male, 8-10 weeks old) or *Zbtb24*^{loxp/loxp} vs. *Zbtb24*^{HSC-CKO} mice (D&E) on indicated days after i.p. immunizations with NP₁₉-OVA emulsified in IFA (B, 1:1, 30 µg/100 µl mouse), alum-precipitated NP₂₅-CGG (D, 25 µg/100 µl/mouse, 8-10 weeks old males) or NP-Ficoll (E, 10 µg/100 µl/mouse, 8-week old males) on D0. Each dot represents a single mouse of the indicated genotype. Data were pooled from two independent experiments. Numbers below horizonal lines indicate *P* values determined by Mann-Whitney test, and numbers in brackets below the X-axis denote the dilution factor for each antibody subtype. NT, not tested.

Figure S7. Comparable numbers of NP⁺ B cells in *Cd19^{Cre/+}* & *Zbtb24^{B-CKO}* mice on D35 after NP-Ficoll immunization. Peritoneal and splenic cells in NP-Ficoll immunized mice (depicted in Figure 3A-E) were stained with antibodies against B220/CD19/CD5/CD21/CD23 in combination with 7-AAD and NP-FITC. A&B, representative flow cytometry plots showing the gating strategies to identify NP⁺ cells within gated B2/B1, B1a/B1b & follicular (FOB)/marginal zone (MZB) B cells in peritoneal cavities (A) and spleens (B). Gates for NP⁺ cells within B2 (B2-NP⁺), B1b (B1b-NP⁺), B1a (B1a-NP⁺), FOB (FOB-NP⁺) & MZB (MZB-NP⁺) were set based on the FMO (fluorescence minus one/FITC-channel) samples. C&D, bar graphs showing the percentages/absolute numbers of NP⁺ cells within indicated B-cell subsets in peritoneal cavities (PeC, C) and spleens (SPL, D) of *Cd19^{Cre/+}* & *Zbtb24^{B-CKO}* mice. Each dot represents a single mouse of the indicated genotype, and numbers below horizonal lines indicate *P* values.

Figure S8. Reduced numbers of NP⁺ B1 cells in *Zbtb24^{B-CKO}* **mice after NP-LPS immunization.** Peritoneal and splenic cells in NP-LPS immunized mice (depicted in Figure 3F-H) were stained and analyzed as described in Figure S7A&B. **A&B**, bar graphs showing the percentages (**A**) and absolute numbers (**B**) of NP⁺ cells within indicated B-cell subsets in peritoneal cavities (PeC) of mice. **C&D**, bar graphs showing the percentages (**C**) and absolute numbers (**D**) of NP⁺ cells within indicated B-cell swithin indicated B-cell compartments in spleens (SPL) of *Cd19^{Cre/+} vs. Zbtb24^{B-CKO}* mice. Each dot represents a single mouse of the indicated genotype, and numbers below horizonal lines indicate *P* values.

Figure S9. *Zbtb24*-deficiency has no impact on the differentiation and antibody-producing ability of splenic B cells *in vitro*. A&B, representative overlayed-histograms & bar graphs showing levels of surface CD11b (A) or IgM (sIgM, B) on splenic (SPL)/peritoneal (PeC) B1/B2 cells in $Cd19^{Cre/+}$ vs. $Zbtb24^{B-CKO}$ mice. Splenic and peritoneal cells were stained with antibodies against CD19/B220/CD23 & CD11b/IgM before flow cytometry analyses. C, representative contour-plots & bar graphs showing percentages of CD138⁺ PC cells in cultured splenic CD19⁺ B cells. D&E, levels of IgG (D) or IgM/IgG1/IgG3 (E) in supernatants of splenic B cells cultured in M, α IgM/CD40 (D) or LPS (E). CD19⁺ B cells were FACS-sorted from spleens of $Cd19^{Cre/+}$ & $Zbtb24^{B-CKO}$ mice, and subsequently cultured (1 x 10⁵ cells/well in 96-well plate) in medium (M), anti-IgM & anti-CD40 (α IgM/CD40, 5/5 µg/ml) or LPS (10 µg/ml). On day 4, surface expressions of CD138 on cultured B cells were analyzed by flow cytometry, and antibody levels in culture supernatants were determined by ELISA (C-E). Each symbol represents a single mouse of the indicated genotype (female, 8-10 weeks of age).

Figure S10. *Zbtb24*-deficiency does not compromise the survival, activation and proliferation of *Zbtb24*^{*B*-CKO} B cells *in vitro*. CD19⁺B220^{low}CD23⁻ B1 and CD19⁺B220^{high}CD23⁺ B2 cells were FACS-sorted from peritoneal cavities of *Cd19*^{*Cre/+} & <i>Zbtb24*^{*B*-CKO} mice, and subsequently cultured (2-5 x 10⁴ cells/well in 96-U bottom plate) in medium (M), α IgM (2 µg/ml) or LPS (0.5 µg/ml). Viabilities (based on forward/side scatter) and surface levels of CD69/CD86 were analyzed by flow cytometry (**A-C**). **A**, bar graphs showing viabilities of peritoneal B1 & B2 cells at 24 hrs. **B&C**, representative overlayed histograms (**B**) or bar graphs (**C**) showing surface expressions of CD86 & CD69 on 24-hr cultured peritoneal B1/B2 cells derived from *Cd19*^{*Cre/+} vs. Zbtb24*^{*B-CKO*} mice before (0 hr) and after 24 hr's culture. CD19⁺ B cells were purified from spleens of *Cd19*^{*Cre/+*} & *Zbtb24*^{*B-CKO*} mice, and subsequently cultured (1.5-2 x 10⁵ cells/well in 96-well plate) in medium, anti-IgM or LPS before flow cytometry analysis (**D-F**). **D**, bar graphs showing the percents of living cells (7-AAD⁻ & Annexin V⁻) before (0 hr) or after cultures in M, 1 µg/ml anti-IgM (IgM) or LPS (L) in the absence/presence of 0.2 µg/ml BAFF (indicated by a '+' in the upper-right corner) for 20 & 44 hrs. **E**, bar graphs showing the numbers of living cells (based on forward/side scatter) in different cultures on day 3. **F**, bar graphs showing the expression levels of surface CD69 (top row) and CD86 (bottom row) on gated B2 (CD19⁺B220^{high}, left column) or B1 (CD19⁺B220^{low}, right column) cells after 20 hrs' culture in medium (M), 1/10</sup></sup>

 μ g/ml anti-IgM (IgM-1/IgM-10, respectively), 0.1/1 μ g/ml LPS (LPS-0.1/LPS-1, respectively). Each symbol represents a single mouse of the indicated genotype (12-week-old males in A-C, and 8-week-old females in D-F), and numbers below horizontal lines in F indicate *P* values.

Figure S11. Dysregulated genes/signaling pathways in *Zbtb24*-deficient B1 cells. FACS-sorted peritoneal CD19⁺B220^{low}CD23⁻ B1 cells were stimulated with 0.1 µg/ml LPS in 96-U bottom plate for 24 hrs (related to Figure 6A-C). A, volcano plots showing upregulated (red) or downregulated (blue) genes in *Zbtb24^{B-CKO}* B1 cells. B, GSEA plots showing the enrichment of genes regulating pyruvate metabolism, glycolysis, mTORC1 signaling and ER stress in LPS-stimulated *Zbtb24^{B-CKO}* vs. *Cd19^{Cre/+}* B1 cells. C, heatmaps showing the z-score normalized on the raw expression counts of reported ZBTB24 target genes or those affiliated to UPR and heme metabolism in *Zbtb24*-deficient B1 cells by GSEA.

Figure S12. No effect of *Zbtb24*-deficiency on heme metabolism in stimulated splenic **B** cells. Splenic B cells, isolated from $Cd19^{Cre/+}$ or *Zbtb24^{B-CKO}* mice, were stimulated with 10 µg/ml LPS plus 10 ng/ml IL-4 & IL-5 (L/4/5) without/with additional L-AC (250 µM) or Hemin (25 µM) in 96-U bottom plate for 4 days. **A&B**, representative contour-plots (**A**) and bar graphs (**B**) showing the percentages of class-switched CD138⁻IgG1⁺ B cells (IgG1⁺) or differentiated IgG1⁻CD138⁺ PC in stimulated $Cd19^{Cre/+}$ vs. $Zbtb24^{B-CKO}$ splenic B cells on day 4. **C**, representative overlayed contour-plots showing the intracellular ROS levels (visualized by DCFH-DA) and mitochondrial mass/membrane potentials (detected by MitoTracker Orange CMTMRos) in gated CD138⁻ non-PC (black) vs. CD138⁺ PC (red) in cultured splenic B cells on day 4. **D**, line graphs showing the ROS levels (MFI of DCFH-DA, *upper panel*) and mitochondrial mass/membrane potential (MFI of MitoTracker, *lower panel*) in gated non-PC/PC cells in $Cd19^{Cre/+}$ vs. $Zbtb24^{B-CKO}$ splenic B cell cultures. Each dot in **B** represents a single mouse of the indicated genotype (male, 14 weeks of age), while results in **D** are expressed as mean \pm SEM (n=3).

Figure S13. Little impact of *Zbtb24*-depletion on the phosphorylation of CD19, AKT and ribosomal protein S6 (S6) in B cells. Beads-enriched CD19⁺ B cells were activated with anti-IgM ($10 \mu g/ml$) for 0/5/10 mins (A), or stimulated with medium (M), anti-IgM ($10 \mu g/ml$) or LPS ($1 \mu g/ml$) for 30 hrs (B) *in vitro* before analysis. A, levels of phosphorylated CD19 (p-CD19) were detected by WB. M in the far left/right lane denotes marker. B, Levels of phosphorylated AKT (p-AKT) and S6 (p-S6, an event controlled by mTORC1 activity) were analyzed by flow cytometry. Experiments were performed twice with similar results.