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Supplemental Figure 1 — Deletion of CRTC makes flies more susceptible to stress-induced heart failure and causes
cardiac dysfunction.

(A) Heart Failure assay showing the percent of hearts still beating following a 30 sec electrical pacing stress test.
Approximately 60% of hearts in wt flies (w1118, N=107) were not beating 60s after electrical pacing (6HZ for 30s);
all but ~20% resumed beating by 120s post stress. Roughly 80% of hearts in CRTC mutants (N=124) were not beating
60s post pacing stress and more than 60% were still not beating at 120s. Significance determined by Multiple Mann-
Whitney tests.

(B) RT-gPCR of isolated fly hearts validates CRTC mutant, KD and OE fly lines. 3 biological replicates for each
condition done in triplicate.

(C) HCR for CRTC shows CRTC mRNA expression in cardiac tube, nuclei and somatic muscle (red arrowhead) in
controls.

(D) CRTC mRNA expression is dramatically reduced in cardiac tube, nuclei, fat body, and somatic muscle in CRTC
mutants.

(E) CRTC expression is significantly reduced in CRTC KD hearts compared to controls, but expression in somatic
muscle (red arrowheads) is maintained.

(F) CRTC mRNA expression is significantly increased in CRTC OE hearts compared to controls, but expression in
somatic muscle (red arrowheads) remains similar to that of controls.

(G) Left - End systolic diameter was reduced in both CRTC hetero and homozygous mutants compared to controls.
Right - End systolic diameter was also reduced in CREB heterozygous mutants compared to controls.

(H) Left — Stroke volume was reduced in both CRTC hetero and homozygous mutants compared to controls. Right
— Stroke volume was also reduced in CREB heterozygous mutants compared to controls. Significance was
determined by 1-way ANOVA for Wtl and CRTC mutants with Sidak’s multiple comparison post hoc test. and
unpaired student t-test for Wt2 and CREB mutant. (All data points, Max, Min and Median with p values are shown.)

(1) End diastolic diameters, (J) end systolic diameters, and (K) fractional shortening were all reduced in hearts from
1 week old CRTC mutant male flies compared to Wt controls. (L) Unlike females, heart period was unaffected by
CRTC loss in males but (M) cardiac output was still significantly reduced. Significance was determined by 1-way
ANOVA for Wt1 and CRTC mutants with Sidak’s multiple comparison post hoc test. and unpaired student t-test for
Wit2 and CREB mutant. (All data points, Max, Min and median with p values are shown.)

(N) Anti-CRTC staining of wt heart (top) shows a lattice like pattern over the longitudinal fibers and is present in
fat bodies. A heart from a CRTC null mutant (middle) shows background staining. The negative control (bottom)
was stained only with the secondary antibody.

(O) Anti-Flag staining (white) of hearts from a CRTC Flag-tagged transgenic line confirmed the banded pattern for
CRTC localization in non-myocardial, ventral longitudinal fibers (left). Optical section through a chamber of the fly
heart tube stained with anti-Flag (right) confirmed the myocardial expression. Higher magnification of the region in
the box shows a loose banding pattern (arrowheads) similar to that seen with the CRTC antibody. Scale bars are 20
wm.
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Supplemental Figure 2 — Quantification of Myofibrillar Disorganization.

(A) Z stack image of one heart chamber from a horizontally oriented heart (anterior — posterior). (B-B’) ROls of
myofibrils from individual myocardial cells were analyzed using the Directionality Plugin in FlJI (see Methods).
(C) Example Z stack from a myocardial cell in a w*'*® wildtype control heart stained with phalloidin for F-actin (all
scale bars are 50 pixels/13 microns). (C') Orientation map from the Direction function in FlJI showing correctly
identified vertically oriented myofibrils (orange and red). Additional detected elements labeled as horizontally
oriented (purple, blues, and greens) are due to the regular arrangement of the unstained (dark) myosin bands.
(C”) The myosin bands in (C) have been filed with the same color gray as the adjacent actin bands. (C'”) The
Orientation map based on the image in C” shows fewer incorrectly detected horizontal myofibrils (more red, less
blue and green).

(D) Color wheel showing the orientation in degrees for the differently colored elements in the orientation maps.
(E) Example of a Zstack from a myocardial cell in a CRTC mutant heart.

(E’) Orientation map based on (E) shows correctly identified horizontal myofibrils (Blues, greens).

(F) Example of a Zstack from a myocardial cell in a CRTC cardiac KD heart.

(F") Orientation map based on (F) shows correctly identified horizontal myofibrils (Purples, blues, greens).

(G) Example of a Zstack from a myocardial cell in a Creb heterozygote heart.

(G’) Orientation map based on (G), with myosin “fill in”, shows correctly identified horizontal myofibrils (Yellows,
blues, greens).

(H) Directionality of identified structures was analyzed in Image J and results were binned according to their
orientation (from -90° to +90°, in 20° bins). The mean amount is plotted for each bin. Both w8 and tin-Gal4
controls as well as CRTC OE hearts showed peaks at -90° and +90° (both vertical orientations), whereas hearts
from CRTC null mutants, cardiac CRTC KD, and Creb heterozygotes had peaks around 0° (more horizontal
orientations).

(1) Example of a Zstack from a myocardial cell in a tmn cardiac OE heart.

(I') Orientation map based on (I) showing correctly identified vertical myofibrils.

(J) Example of a Zstack from a myocardial cell in a tmn cardiac KD heart. (J’) Orientation map based on (J) showing
correctly identified horizontal myofibrils.

(K) Plots of directionality for tin-Gal4 outcrossed controls as well as tmn OE hearts showed peaks at -90° and +90°
(vertical orientations), whereas hearts from cardiac tmn KD hearts had a peak around 30° (more horizontal
orientation).

(L) “Direction” reports the orientation (in degrees) for the center of the highest peak in each sample based on a
gaussian fit. The absolute values of “Direction” for each heart were averaged and plotted; significance was
determined by one way ANOVA and Tukey’s multiple comparisons post hoc test, p values are shown
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Supplemental Figure 3 - Systemic CRTC KO did not affect cardiac development.

(A-C) Stage 17 wt and (D-F) CRTC mutant embryos were examined for cardiac development.

(A, D) Wildtype and CRTC mutant embryos were stained with antibodies against Neuromancer (Nmr) which labeled
cardioblast nuclei (red), and dystroglycan (Dg) which labels the basal domain of epithelial cells (blue). (B,E) Anti-
Zfh1 (green) labeled the nuclei of pericardial cells and anti-dMEF2 (purple) stained all muscle nuclei. (C,F) Anti-Svp
labels a subset of cardiac cells that will form the ostia (inflow tract).
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Supplemental Figure 4 — CRTC cardiac phenotype was not recapitulated by CRTC KD in nephrocytes, neurons, or
fat body.

(A) End Systolic Diameter was decreased in cardiac-specific KD of CRTC using tinCA4-Gal4 driver and increased in
cardiac-specific CRTC OE. (B) Stroke volume was reduced by cardiac-specific CRTC KD and unchanged in cardiac OE
hearts. (C) Diastolic Interval was decreased in cardiac-specific CRTC KD and increased in cardiac specific CRTC OE,
using the Dot-Gal4 driver. (D) End Diastolic Diameter (EDD) was increased by nephrocyte-specific KD of CRTC. (E)
Fractional Shortening was decreased by nephrocyte-specific CRTC KD. (F) Heart Period was increased by
nephrocyte-specific KD of CRTC. (G) EDD, (H) fractional shortening, and (l) heart period were unaffected by neuronal
KD or OE of CRTC, using the elav-Gal4 driver. (J) EDD, (K) fractional shortening, and (L) heart period were unaffected
by fat body-specific CRTC KD or OE. Plots show Max, Min and Median, significance was determined using a one-way
ANOVA with Tukey’s multiple comparisons post hoc test, p values shown.
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Supplemental Figure 5 - CRTC affects somatic muscle function but cardiac KD of NFAT had little effect on heart
function.

(A) End Diastolic Diameters were unchanged in response to cardiac NFAT KD with tinCA4-Gal4.

(B) End Systolic Diameters in hearts from flies with cardiac NFAT KD were unchanged. Combined loss of function of
CRTC and NFAT had no significant effects. Plots show all data points, Max, Min and Median; significance was
determined using a one-way ANOVA with Tukey’s multiple comparisons post hoc test.

(C-F) Climbing assay results; flies were assayed at 1 and 3 weeks.

(C) Female control flies (traces in blues; 1 week old n=40, 3 weeks old n=35) and CRTC systemic mutants (traces in
red/orange; 1 week old n=40, 3 weeks old n=27) were assayed and the percent of flies above the 2 cm mark in the
assay vial over a 10 sec interval is shown.

(D) Percent of male control flies (traces in blues; 1 week old n=40, 3 weeks old n=36) and CRTC systemic mutant
flies (traces in red/orange; 1 week old n=40, 3 weeks old n= 22) the 2 cm mark in the assay vial over a 10 sec
interval is shown.

(E) Percent of female control flies (traces in blues; 1 week old n=222, 3 weeks old n=210) and cardiac-specific CRTC
KD flies (traces in red/orange; 1 week old n=228, 3 weeks old n=210) above the 2 cm mark over a 10 sec interval is
shown.

(F) Percent of male control flies (traces in blues; 1 week old n=201, 3 weeks old n= 186) and cardiac-specific CRTC
KD flies (traces in red/orange; 1 week old n=234, 3 weeks old n=219) above the 2 cm mark over a 10 sec interval is
shown.

(G) CRTC expression in isolated adult (10-month-old) zebrafish hearts, normalized to elongation factor eFla,
showed significant expression of CRTC 3 compared to CRTC 1 & 2. Data points represent 2 biological samples, 8
hearts per sample done in triplicate.

(H) Schematic representation of binding locus for the CRTC3 morpholino.
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Supplemental Figure 6 — Cardiac CRTC KD and OE concertedly regulate metabolism in the heart.

(A, left) Volcano plot of genes differentially regulated in hearts with cardiac-specific CRTC KD.
(A, right) Differentially regulated genes fall into GO categories primarily related to cell metabolism.
(B, left) Volcano plot of genes differentially regulated in hearts with cardiac-specific CRTC OE.
(B, right) Differentially regulated genes fall into GO categories primarily related to cell metabolism.

(C) Cardiomyopathy markers that were upregulated in response to cardiac CRTC OE. CRTC is shown as a reference
and to validate the heart-specific over expression. DIOPT Score indicates similarity between fly and human gene
(scores are 1-16, 16 indicates high homology).
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Supplemental Figure 7- Identification of conserved TFBS

(A) Workflow for the identification of conserved TFBS.

(B) Fly genes with CREB binding sites conserved between Drosophila melanogaster and Drosophila persimilis

(C) Contingency table for genes with CREB TFBS and differential expression after CRTC KD -or- OE. Hypergeometric
test for enrichment analysis using the values from the contingency table indicates that genes with CREB TFBS are
more likely found to be overexpressed than genes without.

(D) CRTC Contra-regulated cardiac genes with conserved CREB binding sites.



Relative mRNA Expression

Trascript Gene | Chrom. Start Stop Strand | Lenght VCM | ACM | VCM | ACM
1 1 2 2
NM_001098482 | CRTC1 19 |18683615 | 18782334 + 6992 | 0.230 | 0.181 | 0.103 | 0.231
NM_015321 | CRTC1 19 | 18683615 | 18782334 + 6944 | 0.480 | 0.595 | 0.615 | 0.643
NM_181715 | CRTC2 1 1.54E+08 | 1.54E+08 - 2678 | 1.788 | 1.677 | 1.548 | 1.574
NM_001042574 | CRTC3 15 | 90529886 | 90645346 + 5248 | 1.829 | 1.425 | 1.838 | 1.574
NM_022769 | CRTC3 15 |90529886 | 90645346 + 5251 | 2.519 | 2.477 | 2.082 | 1.572
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Supplemental Figure 8 — CRTC 2 & 3 affect cardiac function in hiPSC-Cardiomyocytes (hiPSC-CM).

(A) Relative gene expression in ventricular- like (VCM1) and atrial-like cardiomyocytes (ACM1) at day 12 (early
cardiac progenitors) and at day 25 (VCM-2 and ACM-2).

(B-D) Relative mRNA expression shows that siRNA against CRTC1,2&3 efficiently KD the specific isoform in hIPSC-
CMs.

(E) K-S distance plot of APDys versus K-S distance shows significant increases in APD75 with KD of either CRTC2 or
CRTC3 but not KD of CRTCI.

(F) Action Potential Duration (APD) was significantly increased with siRNA-mediated KD of CRTC 3 and CRTC 2 at
50% repolarization and at (G) 90% repolarization. siRNA-mediated KD of CRTC1 had no effect on APD. (APD50 siCtrl
n=1382, siCRTC1 n=1527, siCRTC2 n=1498, siCRTC3 n=1390; APD90 siCtrl n=1333, siCRTC1 n=1466, siCRTC2
n=1421, siCRTC3 n=1299).

(H) CRTC3 KD and CRTC2 both caused significant increases in peak decay times (siCtrl n=1339, siCRTC1 n=1456,
SiCRTC2 n=1436, siCRTC3 n=1329). Significance determined by unpaired t-test, *p<0.05, **p<0.01, ****P<0.0001.

(1) Cardiomyocytes size did not change in response to CRTC and Srl KD. (siCtrl n=4, siCRTC1 n=6, siCRTC1+2 n=3,
SICRTC1++3 n=5, siCRTC1+3 n=3, siCRTC2 n=2, siCRTC2+3 n=3, siCRTC3 n=3, siPLN n=4, siSRL n=4, Krustal-Wallis
test)
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