Supplemental Figure Legends

Fig. S1 Bioinformatic analysis of *Hsp* mRNA from the publicly available data for mouse KI/R (GSE172042).

- A. Heatmap of 29 Hsps mRNA levels in kidneys of sham and KI/R mice.
- **B.** mRNA levels of 29 *Hsps* in sham kidneys. Note that *Hspa12a* mRNA showed the highest level among these 29 *Hsps* in normal kidneys.
- C. Effects of KI/R on mRNA levels of 29 *Hsps* in kidneys. Data are mean \pm SD, **P* < 0.05 and ***P* < 0.01 by Student's two-tailed unpaired *t* test or Mann–Whitney U test. *n* = 2-3.

Fig. S2 Effects of KI/R on expression of HSPs.

Expression of HSP32, HSP47, HSP60 and HSP70 were examined by immunoblotting in mouse kidneys following KI/R. Blots for GAPDH served as loading controls. Data are mean \pm SD, **P < 0.01 by Student's two-tailed unpaired *t*- test. *n* = 3.

Fig. S³ Identification of the isolated primary TEC.

The primary TEC that isolated from mouse kidneys were immunostained with the epithelial marker CK-18 (red). DAPI was used to counter stain nuclei. Scale bar = 50 µm.

Fig. S4 Time-effect on HSPA12A expression in primary TEC after reperfusion. The time-effect on HSPA12A expression in primary TEC at 0 h, 3 h, 6 h and 12 h after reperfusion were examined by immunoblotting. Blots for GAPDH served as loading controls. Data are mean \pm SD, ***P* < 0.01 by one-way ANOVA followed by Tukey's test. *n* = 4.

Fig. S5 HSPA12A increases nuclear abundance of c-Myc in TEC after H/R.

Nuclear fractions were prepared from H/R-treated TEC. c-Myc protein expression was examined by immunoblotting. Blots for H3 served as loading controls. Data are mean \pm SD, *P < 0.05 by Student's two-tailed unpaired *t*- test. *n* = 4.

Fig. S6 Effects of HSPA12A on c-Myc mRNA and protein levels in primary TEC upon H/R.

The following experiments were performed in primary TEC after H/R.

- A. The mRNA levels of c-Myc were analyzed by RT-PCR. *P < 0.05 and *P < 0.05by two-way ANOVA followed by Tukey's test. n = 4.
- **B.** The protein levels of c-Myc were examined by immunoblotting. Blots for GAPDH served as loading controls. Data are mean \pm SD, **P* < 0. 05 and ***P* < 0.01 by two-way ANOVA followed by Tukey's test. *n* = 4.
- **C.** Immunostaining for c-Myc and ubiquitin was performed. DAPI staining was used to indicate nuclei. Data are mean \pm SD, **P < 0.01 by Student's two-tailed unpaired *t*- test. *n* = 3.

Fig. S7 Knockdown of c-Myc in TEC after H/R.

c-Myc knockdown in TEC was confirmed by immunoblotting. **P < 0.01 by Mann–Whitney U test. n = 5/group.

Fig. S8 C646 reverses the HSPA12A-increased c-Myc nuclear abundance in TEC.

Nuclear fractions were prepared from H/R-treated TEC in the presence or absence of C646. c-Myc protein in nuclear fraction was examined by immunoblotting. Blots for H3 served as loading controls. Data are mean \pm SD, ***P* < 0.01 by one-way ANOVA followed by Tukey's test. *n* = 4.

Fig. S9 Effects of HSPA12A on expression of glycolysis-related genes in primary TEC.

- A. ATP production rate was analyzed by the seahorse assay in primary TEC following H/R. Data are mean \pm SD, **P* < 0.05 by Student's two-tailed unpaired *t* test *n* = 4.
- **B.** Expression of the indicated genes were examined by immunoblotting in primary TEC following H/R. Blots for GAPDH served as loading controls. Data are mean \pm SD, ***P* < 0.01 by two-way ANOVA followed by Tukey's test. *n* = 3.

Fig. S10 Effects of HSPA12A on expression of glycolysis-related genes in mouse kidneys following KI/R.

A. Lactate contents were analyzed in serum of mice following KI/R. Data are mean \pm SD, ***P* < 0.01 by Mann–Whitney U test. *n* = 5.

B. Protein expressions of glycolysis-related genes were determined by immunoblotting in KI/R kidneys of mice. Data are mean \pm SD, ***P* < 0.01 by Student's two-tailed unpaired *t*- test. *n* = 5 for GLUT1 groups and *n* = 6 for the other groups.

Fig. S11 2-DG abolishes the HSPA12A-increaseed lactate generation and proliferation of TEC after H/R.

- A. The brief diagram of glycolysis pathway. 2-DG was used to block lactate generation.
- **B.** Lactate contents in culture medium of H/R-treated TEC were measured in the presence or absence of 2-DG. Data are mean \pm SD, **P < 0.01 by one-way ANOVA followed by Brown-Forsythe and Welch test. n = 5.
- C. Cell proliferation in H/R-treated TEC was indicated by EdU incorporation in the presence or absence of 2-DG. Data are mean \pm SD, **P < 0.01 by one-way ANOVA followed by Tukey's test. n = 3. Scale bar = 50 µm.

Fig. S12 Effect of HSPA12A on nuclear abundance of Hif1α in KI/R kidney.

A. Experimental setting of primary TEC.

B. Anti-Flag-HSPA12A immunoprecipitates prepared from H/R-treated TEC were immunoblotted with Hif1α. Input or IgG-immunoprecipitates served as positive or negative controls. Note that Hif1α was not recovered in Flag-tagged HSPA12A immunoprecipitates.

C. Experimental setting of mouse kidneys.

D. Following KI/R, nuclear fraction was prepared from kidneys for immunoblotting

against Hif1 α . Blots for LaminA/C served as loading controls. Data are mean \pm SD, **P < 0.01 by Student's two-tailed unpaired *t*- test. n = 5.

Fig. S¹³ Hif1 α inhibition diminishes the HSPA12A-induced increase of proliferation of TEC after H/R.

Cell proliferation was examined by EdU incorporation in H/R-treated $Hspa12a^{O/E}$ TEC in the presence or absence of YC-1. Data are mean \pm SD, **P < 0.01 by one-way ANOVA followed by Tukey's test. n = 3. Scale bar = 50 µm.

Supplemental Tables

Species	Gene name	Sequence (5'-3')		
Mus	Мус	Sence	CCGUACAGCCCUAUUUCAUTT	
		Antisence	AUGAAAUAGGGCUGUACGGTT	

Table S1. SiRNA sequence used in the experiments

	1		
Antibody	Source	Company	Catalog No.
Anti-HSPA12A	Rabbit	Abcam	ab200838
Anti-α-Tubulin	Mouse	ProteinTech	66031-1-Ig
Anti-GAPDH	Rabbit	Bioworld Technology	AP0063
Anti-c-Myc	Rabbit	ProteinTech	10828-1-AP
Anti-L-lactyl lysine (Klac)	Rabbit	PTM BIO	PTM-1401RM
Anti-H3	Rabbit	ProteinTech	17168-1-AP
Anti-Flag	Mouse	Sigma-Aldrich	F1804
Anti-PKM2	Rabbit	ProteinTech	60268-1-Ig
Anti-LDHA	Rabbit	Abcam	ab101562
Anti-GLUT1	Rabbit	Cell Signaling	#12939S
Anti-GLUT4	Rabbit	Abcam	ab33780
Anti-MCT4	Rabbit	ProteinTech	22787-1-AP
Anti-Hifla	Rabbit	Abcam	ab2185
Anti-Lamin A/C	Rabbit	ProteinTech	10298-1-AP
Anti-IgG	Mouse	SantaCruz	sc-2025
Anti-Cytokeratin 18	Rabbit	Abcam	ab181597
Anti-Ki-67	Rabbit	Cell Signaling	#9449

Table S2. Antibodies used in the experiments

Gene name		Primers		
Cualimb for mus	Forward	AGAGCTATCCTCATTGACTGGC		
Cyclinb1 for mus	Reverse	AACATGGCCGTTACACCGAC		
Cualind? for mus	Forward	TGAATTACCTGGACCGTTTCTTG		
Cyclind2 for mus	Reverse	AGAGTTGTCGGTGTAAATGCAC		
Deal for mus	Forward	ACACAGGTCCCACAACACAG		
Rcc1 for mus	Reverse	GCCTTCGACTGAAGTGTCCC		
C dlr for mus	Forward	ATGGCTGCCACTCGATATGAA		
Cdk4 for mus	Reverse	TGCTCCTCCATTAGGAACTCTC		
Cdo25a for mus	Forward	TCCCTGACGAGAATAAATTCCCT		
Cdc25a for mus	Reverse	TCGATGAGGTGAAAGGTGTCG		
Actin for mus	Forward	ATGACCCAAGCCGAGAAGG		
Actin for mus	Reverse	CGGCCAAGTCTTAGAGTTGTTG		

Table S3. Primers used in the experiments