YMTHE, Volume 32

Supplemental Information

Overcoming effector T cell exhaustion in ovarian cancer ascites with a novel ad-

enovirus encoding for a MUC1 bispecific antibody engager and IL-2 cytokine

Saru Basnet, Mirte Van der Heijden, Dafne C.A. Quixabeira, Elise Jirovec, Susanna A.M. Grönberg-Vähä-Koskela, James H.A. Clubb, Anna Kanerva, Santeri Pakola, Lyna Haybout, Victor Arias, Otto Hemminki, Tatiana Kudling, Sadia Zafar, Victor Cervera-Carrascon, Joao M. Santos, and Akseli Hemminki

Experiment	Antibodies	Manufacturer
T cell activation assay (in vitro) and immunological analysis of tumor (in vivo)	FITC anti-human CD3 (clone OKT3) AF-700 anti- human CD4 (clone A161A1) BV-421 anti- human CD8 (clone SK1) PE-Cy [™] 7 anti- human CD69 (clone FN50) PE-Cy [™] 5 anti- human CD25 (clone M- A251)	Biolegend, California, USA
	PE-CF594 anti-human CD127 (clone HIL- 7R-M21)	BD Sciences, New Jersey, USA
	APC anti-human Tbet (clone 4B10) PE anti-human EOMES (clone X4-83)	Biolegend, California, USA BD Sciences, New Jersey, USA
Expression of cell surface MUC1 antigen	APC anti-human MUC1 (clone 16A)	Biolegend, California, USA
Profiling of NK and NK-T like cells	BV-605 anti-human CD56 (HCD56)	Biolegend, California, USA
Activation of γδ T cell	PE anti-human TCR-γδ (clone 11F2) FITC anti-human Vδ1 (clone REA173) APC anti-human Vδ2 (clone REA771) AF-700 Perforin (clone B-D48)	Miltenyi, Bergisch Gladbach, Germany
	BV421 GranzymeB (clone GB11) BV650 Interferon gamma (clone 4S.B3)	BD Sciences, New Jersey, USA Biolegend, California, USA
T cell exhaustion panel	FITC anti-human CD3 (clone OKT3) AF-700 anti-human CD4 (clone A161A1)	BioLegend, California, USA
	BV-510 anti-human CD8 (clone SK1) PE anti-human TIM-3 (clone A18087E)	BD Sciences, New Jersey, USA BioLegend California USA
	BV-605 anti-human TIGIT (clone A15153G)	
	PE anti-human TIM-3 (clone A18087E) BV-605 anti-human TIGIT (clone A15153G)	
	PE-Cy ^{™5} anti-human LAG-3 (clone 11C3C65)	
	PE-Cy7 anti-human BTLA (clone MIH26)	
	APC anti-human C1LA-4 (clone BN13) PE-CF594 anti-human PD-1 (clone NAT105)	
	PE anti-human TOX (clone TXRX10) BV-421 anti-human TCF-1 (clone S33-966)	Invitrogen, Massachusetts, USA BD Sciences, New Jersey, USA

|--|

Figure S1. Oncolytic activity of TILT-322 *in vitro.* **(A)** Quantification of E1A gene copy number as a measure of virus replication in TILT-322 infected A549 cells supernatant. **(B-F)** Relative cell viability of human cancer cells followed by the infection of Ad5/3-E2F-d24, Ad5/3-E2F-d24-hIL2, and TILT-322 virus different concentration of virus ranging from 10, 100 or 1000 VP/ cell. Cells were incubated with the viruses for 3 days (A549, PDX-OvCa, and MDAMB-231), 5 days (PC3MM2), or 7 days (T47D) before determining cell viability. The untreated control group is indicated by the dashed line.

All experiments were run in quadruplet, and the resulting data are presented as mean \pm SEM. One-way ANOVA with Tukey's post hoc test was used to compare more than two groups in the activation assay. Statistical significance is represented as *p < 0.05, ***p

< 0.001, ****p < 0.0001 and ns = non-significant.

Figure S2. TILT-322 mediated tumor cell killing and T cell activation *in vitro*. Real-time iCELLigence-based cytotoxicity assay showing the killing of MUC1positive (A) A549 and (B) T47D tumor cells in the presence of virus and T cells at E:T ratio of 1 for up to 120 hours. (C-E) Evident of faster tumor cell killing by TILT-322 in the presence of unstimulated human CD3+ cells at E:T ratio of 5 and 1 pfu/cell virus concentration 48 hours post-infection. (F-G) Percentage of activated CD69+ and (H-I) CD25+ lymphocytes in TILT-322 treated tumors. All experiments were run in quadruplet, and the resulting data are presented as mean ± SEM. Welch's t-test was used to determine statistical significance in the iCELLigence assay and one-way ANOVA with Tukey's post hoc test was used to compare more than two groups in the activation assay. Statistical significance is represented as *p < 0.05, ***p < 0.001, ****p < 0.0001 and ns = non-significant. Statistical significance in xCELLigence assay is represented as *p = 0.0282, and **p = 0.0057.

Figure S3. Detection of MUC1, T cells, and other cells followed by TILT-322 infection in ascites samples. (A-D) Detection of reduced proportion of MUC1 antigen in ascites cells and (E-H) Total percentage of CD3+ T cell detected in ascites samples (I-L) Total percentage of CD3+CD56+ cells and (M-P) CD3-CD56+ NK cells followed detected in four ascites samples infected with TILT-322 virus. The resulting data are presented as mean \pm SEM of quadruplet. One-way ANOVA with Tukey's post hoc test was used to run the statistical significance and the result is represented as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

Figure S4. TILT-322 mediated activation of γδT cell.

The graph shows the percentage of (A-D) $\gamma\delta$ T cells and (E-H) Percentage of activated CD69+ cells among the V δ 1+ and V δ 2+ subsets. (I-L) Interferon-gamma positive $\gamma\delta$ T cells in all three tested ascites samples infected by TILT-322. The resulting data are presented as mean ± SEM of quadruplet. One-way ANOVA with Tukey's post hoc test was used to run the statistical significance is represented as ***p < 0.001, ****p < 0.0001 and, ns = non-significant.

Figure S5. T cell exhaustion at the transcriptional level followed by the TILT-

322 treatment. The graph shows the percentage of (A-B) TOX+ cells and (C-D) TCF-1+ cells on CD4+ and CD8+ T cells followed by TILT-322 treatment in four different ascites samples. The resulting data are presented as mean \pm SEM of quadruplet. One-way ANOVA with Tukey's post hoc test was used to run the statistical significance is represented as ***p < 0.001, ****p < 0.0001 and, ns = non-significant.

322 infection of ovarian ascites samples led to downregulation of 14 and upregulation of 5 differentially expressed genes in ascites samples.

Figure S7. Schedule for the treatment of TILT-322 *in vivo* experiment and immunological analysis of animal tumor samples. (A) Schematic representation of TILT-322 animal experiment with dosage information. (B) Total percentage of MUC-1 positive cells detected in TILT-322 virus-treated tumors with intratumoral and (C) intravenous delivery. Total percentage of (D-E) CD127+ cells, (F-G) T-bet+ cells, (H-I) EOMES+ cells on CD4+ or CD8+ T cells in *in vivo* tumor samples followed by the local delivery of TILT-322. When the TILT-322 was given systemically, the total percentage of (J-K) CD127+ cells, (L-M) T-bet+ cells, (N-O) EOMES+ cells on CD4+ or CD8+ T cells in *in vivo* tumor samples is shown. The resulting data are presented as mean \pm SEM of quadruplet. One-way ANOVA with Tukey's post hoc test was used to run the statistical significance is represented as ***p < 0.001, ****p < 0.0001, and, ns = non-significant.

Figure S8. Flow gating strategy used to access activated CD69 and CD25 T cells *in vitro*. Gating is done from lymphocytes \rightarrow CD3 \rightarrow CD4 \rightarrow CD69+/CD25+ or CD3 \rightarrow CD8 \rightarrow CD69+/CD25+.

Figure S9. Flow gating strategy used to access activated CD69 and CD25 T cell *ex vivo*. Gating is done from lymphocytes \rightarrow CD3+ \rightarrow CD4+ \rightarrow CD69+/CD25+ or \rightarrow CD3+ \rightarrow CD8+ \rightarrow CD69+/CD25+.

Figure S10. Flow Gating Strategy used to access granzymeB and interferon-gamma positive cells in TILT-322 infected ascites samples. Gating is done from lymphocytes \rightarrow CD3+ \rightarrow CD4+ \rightarrow GranzymeB+/Interferon-y+ or \rightarrow CD3+ \rightarrow CD8+ \rightarrow GranzymeB+/Interferon-y+.

Figure S11. Flow Gating Strategy used to access MUC1+ cells out of all ascites cells. Gating is done from all cells \rightarrow MUC1. MUC1 Fluorescence Minus One Control and unstained sample control were used to set the gating thresholds.

Figure S12. Flow gating strategy used to access NK and NK-T cells in TILT-322 infected ascites samples. Gating is done from lymphocytes \rightarrow CD3+ cells \rightarrow CD3+CD56+ cells or lymphocytes \rightarrow CD3- cells \rightarrow CD3-CD56+ cells. All required Fluorescence Minus One Control and unstained sample control was used to set the gating thresholds.

Figure S13. Flow gating strategy used to access TCR gamma delta T cell activation in TILT-322 treated ascites samples *ex vivo*. Gating is done from lymphocytes \rightarrow CD3+ cells \rightarrow TCRyd+ cells \rightarrow CD69+ cells/ granzymeB+/ Perforin+ cells. All required Fluorescence Minus One Control and unstained sample control was used to set the gating thresholds.

Figure S14. Flow gating strategy used to access Vd1/Vd2 gamma delta T cell subset activation. Gating is done from lymphocytes \rightarrow CD3+ cells \rightarrow TCRyd+ cells \rightarrow Vd1+cells \rightarrow CD69+ or lymphocytes \rightarrow CD3+ cells \rightarrow TCRyd+ cells \rightarrow Vd2+cells \rightarrow CD69+ cells. All required Fluorescence Minus One Control and unstained sample control was used to set the gating thresholds.

Figure S15. Flow gating strategy used to examine T cell exhaustion in ovarian ascites followed by the TILT-322 treatment. Gating is done from CD3+ cells \rightarrow CD4+ \rightarrow BTLA/CTLA-4/LAG-3/PD-1/TIGIT/TIM-3. A similar gating is done to access the expression on CD8+ T cells (CD3+ cells \rightarrow CD8+ \rightarrow BTLA/CTLA-4/LAG-3/PD-1/TIGIT/TIM-3). All required Fluorescence Minus One Control and unstained sample control was used to set the gating thresholds.