## **Supporting Information**

## Enhanced photocatalytic properties and photoinduced crystallization of TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub> inverse opals fabricated by atomic layer deposition

Carina Hedrich,<sup>1,‡</sup> Nithin T. James,<sup>2,‡</sup> Laura G. Maragno,<sup>2</sup> Valéria de Lima,<sup>3</sup> Sergio Yesid Gómez González,<sup>3</sup> Robert H. Blick,<sup>1</sup> Robert Zierold,<sup>1,\*</sup> and Kaline P. Furlan.<sup>2,\*</sup>

<sup>1</sup> Center for Hybrid Nanostructures, Universität Hamburg, 22761 Hamburg, Germany.

- <sup>2</sup> Hamburg University of Technology (TUHH), Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073 Hamburg, Germany.
- <sup>3</sup> Federal University of Santa Catarina (UFSC), Department of Chemical and Food Engineering (EQA), 88040-970 Florianópolis, SC, Brazil

\* Corresponding Authors: kaline.furlan@tuhh.de, rzierold@physnet.uni-hamburg.de



**Figure S1.** SEM micrographs of TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub> IOs and TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub> multilayer IOs fabricated with different layer thicknesses and template sizes.

![](_page_2_Figure_0.jpeg)

**Figure S2.** Optical properties of all prepared IOs measured in aqueous environment. The samples were prepared with PS particle template sizes of (a) 150 nm and (b) 252 nm.

![](_page_2_Figure_2.jpeg)

**Figure S3.** Individual photocatalytic activities of three consecutive measurements for  $TiO_2$  IOs and  $TiO_2$ -Fe<sub>2</sub>O<sub>3</sub> bilayer IOs. Different  $TiO_2$  and Fe<sub>2</sub>O<sub>3</sub> thicknesses were tested for template sizes of (a) 150 nm and (b) 252 nm. The

![](_page_3_Figure_0.jpeg)

**Figure S4.** Dye concentration decrease during three consecutive photocatalysis measurements for  $TiO_2 IOs$  and  $TiO_2$ -Fe<sub>2</sub>O<sub>3</sub> bilayer IOs. The data represents the MB degradation by (a) 16 nm  $TiO_2$  IOs, (b) 16 nm  $TiO_2$ -10 pulses Fe<sub>2</sub>O<sub>3</sub>, (c) 16 nm  $TiO_2$ -2 nm Fe<sub>2</sub>O<sub>3</sub>, (d) 16 nm  $TiO_2$ -4 nm Fe<sub>2</sub>O<sub>3</sub>, and (e) 20 nm  $TiO_2$ -2 nm Fe<sub>2</sub>O<sub>3</sub>.

![](_page_4_Figure_0.jpeg)

**Figure S5.** Assessment of the photocatalytic activities with MB solution containing 100 mM IPA as hole scavenger. Both, the 16 nm  $TiO_2$ –2 nm  $Fe_2O_3$  bilayer IO and the 16 nm  $TiO_2$ –4 nm  $Fe_2O_3$ —2 nm  $TiO_2$  trilayer IO demonstrate significant reduction of their photocatalytic activity compared to standard conditions. Each sample was measured three times with IPA containing solution.

![](_page_4_Figure_2.jpeg)

**Figure S6**. Photocatalytic activities under standard illumination conditions without a filter, with a 400 nm longpass (LP) filter, and with a 425 nm shortpass (SP) filter, respectively. (a) Activities of the 16 nm  $TiO_2$ -4 nm  $Fe_2O_3$  bilayer IO normalized to the illumination without filter. The sample was measured once with each illumination spectra. (b) Optical illumination spectra of the light source with and without filters.

| Sample                                                  | Fabrication                            | Organic pollutant                         | Illumination       | Photocatalytic              | reference  |
|---------------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------|-----------------------------|------------|
|                                                         | method                                 |                                           |                    | activity k                  |            |
| Fe <sub>2</sub> O <sub>3</sub> -coated TiO <sub>2</sub> | Coating by ALD                         | Methyl orange                             | 300 W Xe lamp      | 97.4 % removal              | 22         |
| powder                                                  |                                        | 4 mg/L                                    | with 420 nm        | after 1.5 h                 |            |
|                                                         |                                        |                                           | shortpass filter   |                             |            |
| $Fe_2O_3$ -coated $TiO_2$                               | Hydrothermal                           | Rhodamine B                               | 8 W daylight white | 52 % removal                | 23         |
| nanocrystals                                            | method                                 | 50 $\mu$ M, H <sub>2</sub> O <sub>2</sub> | LED                | after 1 h                   |            |
| Fe <sub>2</sub> O <sub>3</sub> -coated TiO <sub>2</sub> | ALD                                    | PEC                                       | 150 W Xe lamp      |                             | 26         |
| nanoporous                                              |                                        | characterization                          |                    |                             |            |
| structures                                              |                                        |                                           |                    |                             |            |
| Fe <sub>2</sub> O <sub>3</sub> -coated TiO <sub>2</sub> | Hydrothermal                           | Orange II 20 mg/L                         | 500 W Xe lamp      | 54 % removal                | 28         |
| microrod powder                                         | method                                 |                                           | with 420 nm        | after 3 h                   |            |
|                                                         |                                        |                                           | shortpass filter   |                             |            |
| $Fe_2O_3$ -coated $TiO_2$                               | $TiO_2$ IO by ALD,                     | PEC                                       | 300 W Xe lamp      |                             | 33         |
| Ю                                                       | Fe <sub>2</sub> O <sub>3</sub> coating | characterization                          |                    |                             |            |
|                                                         | hydrothermal                           |                                           |                    |                             |            |
|                                                         | method                                 |                                           |                    |                             |            |
| Fe <sub>2</sub> O <sub>3</sub> -decorated               | TiO <sub>2</sub> IO by sol-gel         | salicylic acid                            | 150 W Xe lamp      | ~0.9 h <sup>-1</sup> , 75 % | 34         |
| TiO <sub>2</sub> IO                                     | method, $Fe_2O_3$                      |                                           |                    | removal after 1.5 h         |            |
|                                                         | decoration by                          |                                           |                    |                             |            |
|                                                         | chemisorption                          |                                           |                    |                             |            |
|                                                         | calcination cycles                     |                                           |                    |                             |            |
| $TiO_2$ - $Fe_2O_3$                                     | ALD                                    | Methylene blue                            | 150 W halogen      | 1.38 h <sup>-1</sup> ; 65 % | This study |
| multilayer IOs                                          |                                        | 2.5 mg/L                                  | lamp               | removal after 1 h           |            |

Table S1. Comparison of the reaction conditions and photocatalytic performances of  $Fe_2O_3$ -functionalized  $TiO_2$  nanostructures.

![](_page_6_Figure_0.jpeg)

**Figure S7.** The individual activities during seven consecutive measurements of 150 nm template size 16 nm  $TiO_2$ –2 nm  $Fe_2O_3$ –2 nm  $TiO_2$  and 16 nm  $TiO_2$ –4 nm  $Fe_2O_3$ –2 nm  $TiO_2$  multilayer IOs show the same behavior as the 252 nm template size, namely increase during the first four measurements, slight decline in the following two measurements, and stable performance afterwards.

![](_page_6_Figure_2.jpeg)

**Figure S8.** MB concentration decrease during seven consecutive measurements of (a) 16 nm  $TiO_2-2$  nm  $Fe_2O_3-2$  nm  $TiO_2$  and (b) 16 nm  $TiO_2-4$  nm  $Fe_2O_3-2$  nm  $TiO_2$  multilayer IOs.

![](_page_7_Figure_0.jpeg)

**Figure S9.** XRD pattern of a  $TiO_2$ -Fe<sub>2</sub>O<sub>3</sub> multilayer IO composed of 16 nm  $TiO_2$ , 4 nm Fe<sub>2</sub>O<sub>3</sub>, and 2 nm  $TiO_2$ . The sample was kept in the reaction solution for 17 h in darkness and does not show peaks indicating crystalline  $TiO_2$  phases.