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Table 1: Devices parameters. Summary of key parameters for the devices investigated in
this study: twist angle (θ), fast and slow time constant for iX PL decay (τ1 and τ2), effective
iX g-factor (g), optically-induced valley polarization in the absence of magnetic field and at
saturation (ρ0PL and ρsat.PL ), and saturation magnetic field for ρPL (Bsat.).

Device # θ,◦ τ1, µs τ2, µs g ρ0PL ρsat.PL Bsat., T

1 4 0.03 0.13 +6.0 -0.07 -0.13 3
2 1 1.0 4.4 +6.7 -0.04 -0.11 1.25
3 3 0.14 0.56 +2.5 -0.01 -0.07 0.02
4 1 0.33 2.2 +2.7 -0.03 -0.10 ≤ 0.25
5 3 0.3 1.7 +1.0 -0.01 -0.09 ≤ 1
6 1 0.8 3.0 +8.0 0.0 -0.06 0.2
7 28 n.a. n.a. n.a. n.a. n.a. n.a.
8 27 n.a. n.a. n.a. n.a. n.a. n.a.
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Figure S1: Raman spectroscopy. Raman spectra from the device, acquired at room
temperature using 2.33 eV optical excitation. Dominant peaks in the 50-500 cm−1 range
correspond to in-plane A′

1 mode at 241.9 (405.4) cm−1 and out-of-plane E ′ mode at 286.7
(384.0) cm−1 of MoSe2 (MoS2).1 The peak at 354.7 cm−1 is out-of-plane B2g mode of MoSe2,
which is Raman inactive on monolayers,2 but becomes active in few-layers and heterobilayers
due to the reduction of symmetry elements.3 Higher-frequency range shows E2g mode at from
hBN encapsulation layers at 1365 cm−1 4 and the G and 2D Raman modes from FLG gates,
at 1582 and ∼2697 cm−1,5 respectively.
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Figure S2: Photoluminescence spectroscopy of constituent monolayers. PL spectra
recorded in (left) MoSe2 and (right) MoS2 monolayer regions at 4 K. The neutral exciton
peak linewidth approaches the homogeneous limit, confirming the high optical quality.
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Figure S3: Stacking configuration identification. (a) Map of SHG intensity recorded in
Device 6 at room temperature using 1320 nm excitation, containing heterobilayer Regions 1
and 2 with the opposite stacking created using tear-and-stack method. Both regions demon-
strate similar SHG intensity, preventing reliable identification of stacking configuration. (b)
Energy splitting between σ+ and σ- polarized PL as a function of out-of-plane magnetic
field for heterobilayer Regions 1 and 2.
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Figure S4: Twist angle effects. Normalized PL spectra and polar plots of polarization-
resolved SHG signals acquired at room temperature in four devices with different rotational
alignment between the TMD layers. Three devices with close rotational alignment (θ ≤ 5◦)
show iX peak in the PL spectrum, which is not present in the PL spectrum of the strongly
misaligned device (θ ≈ 27◦).
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Figure S5: Doping dependence of iX emission. Normalized PL spectrum as a function
of electrostatic doping of the TMD heterostructure, with Vtop/ttop = Vbottom/tbottom. Here,
Vtop (Vbottom) is the gate bias applied between the top (bottom) graphene electrode and the
heterostructure, and ttop (tbottom) is the thickness of the top (bottom) hBN dielectric.
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Figure S6: Dipole size identification. (a-c) (a and b) AFM topography images of devices
1 and 2 acquired at the edges of top and bottom hBN encapsulation layers and (c and d)
cross-sections taken at the positions identified by the corresponding colour lines, showing the
thickness of the layers. (e) Change of iX emission energy under applied out-of-plane electric
field measured in Devices 1,2, and 6. The rate of change of ∼ 0.3 eV V/nm extracted from
the linear fit corresponds to the dipole size of ∼ 0.55 nm.
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Figure S7: iX lifetimes. iX PL decay acquired in Devices 1-6. Solid red lines are bi-
exponential fits to the data, time constants extracted from the fit are presented next to each
curve.
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Figure S8: iX effective g-factors. Energy splitting between σ+ and σ− polarized PL as
a function of out-of-plane magnetic field for Devices 1-6. Landé g factors extracted using
linear fitting are listed next to each plot.

8



-6 -3 0 3 6
-0.15

-0.10

-0.05

0.00

-6 -3 0 3 6
-0.15

-0.10

-0.05

0.00

-6 -3 0 3 6
-0.15

-0.10

-0.05

0.00

-6 -3 0 3 6
-0.15

-0.10

-0.05

0.00

-6 -3 0 3 6
-0.15

-0.10

-0.05

0.00

-6 -3 0 3 6
-0.15

-0.10

-0.05

0.00

B field (T)

r o
pt
.

Device 3

B field (T)

r o
pt
.

Device 1
r o

pt
.

B field (T)

Device 2

r o
pt
.

B field (T)

Device 4

r o
pt
.

B field (T)

Device 5
r o

pt
.

B field (T)

Device 6

Figure S9: Optically induced valley polarization. Changes of optically induced iX PL
valley polarization under applied magnetic field for Devices 1-6.
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