

Supplementary Materials for

A phage tail–like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria

Talia Backman et al.

Corresponding authors: Hernán A. Burbano, h.burbano@ucl.ac.uk; Talia L. Karasov, t.karasov@utah.edu

Science **384**, eado0713 (2024) DOI: 10.1126/science.ado0713

The PDF file includes:

Figs. S1 to S12 Tables S1 to S5

Other Supplementary Material for this manuscript includes the following:

MDAR Reproducibility Checklist

Figure S1. The two modern and three historic collection sites in Southwestern Germany.

Figure S2. TEM images of p25.A12 contracted tailocins (left column), uncontracted tailocins (center column), and phage-like hollow tubes (right column). In the central column, the baseplate end of the tailocin faces left. The hollow tubes had highly variable lengths, average 404 (\pm 153) nm (n = 14). Scale bar, 100 nm.

Figure S3 The tail fiber assembly gene and hypothetical tail fiber are evolving quicker than the rest of the bacterial genome. The distribution of A. nucleotide diversity (π) and B. Tajima's D (D) for all core genes in the 1,399 ATUE5 genomes. The TFA and HTF genes (red arrows) have significantly higher π and D compared to the rest of the core genes.

Figure S4. Associations between Tail Fiber Assembly (TFA) and Hypothetical Tail Fiber (HTF) haplotypes are significant. A. Maximum likelihood concatenated core genome phylogeny of 1,399 pathogenic pseudomonads that co-occur in the *Arabidopsis thaliana* phyllosphere with the HTF and TFA haplotypes plotted in the inner and outer rings. B-C. Each box plot represents a distribution of 1000 Chi-square test p-values drawn from random draws of pairs between TFA and HTF haplotypes and data sets for which HTF values were randomly permuted. Associations were tested between the two protein haplotypes (A) and between HTF haplotypes and TFA gene lengths (B).

Figure S5. The tail fiber assembly gene was successfully knocked out and the knockout strain loses killing ability. A known sensitive strain to the tailocin (p25.C2) was grown and the OD_{600} was measured for 20 hours. Treatments included p25.A12 WT purified tailocin, p25.A12 mutant purified tailocin, and a buffer control. Each treatment was done in two independent replicates. Each dot represents the average OD_{600} with a trendline for each treatment.

Figure S6. A. Tailocins are preferentially used for intra-lineage killing. Soft agar cultures of the *Pseudomonas* strains (rows) were challenged with viral particles extracted from cultures of two strains, p5.H11 and p7.G11 (from the 1830bp hypothetical tail fiber length haplotype, columns), in 3 technical replicates and 1 biological replicate. The phylogeny includes 83 *Pseudomonas* representative strains and are displayed according to their phylogenetic placement. Vertical lines indicate strains that belong to ATUE5 (colored in green) and other OTUs (colored in black). **B-C**. The proportion of tester strains sensitive or resistant to p5.H11's tailocin (B) and p7.G11's tailocin (C). Lethality significantly correlated with the tester strain's hypothetical tail fiber length haplotype (Fisher's Exact test, $p = 10^{-4}$ (B), $p = 10^{-3}$ (C).

Figure S7. Growth of mutant and wild type p25.A12 *in planta*. Plants were infected in 24 technical replicates of a buffer control, mutant p25.A12, or wild type p25.A12 and luciferase was measured. ANOVA test, p-value 0.9.

Figure S8. *In vitro* coinfections of p25.A12 (competitor) and p25.C2 (target, known to be sensitive to p25.A12). p25.A12 mutant competed with p25.C2 as well as p25.C2 grown alone were used as controls. Different ratios of competitor and constant amounts of target strain were used. p25.C2 grown alone as the control. The three highest values for each treatment was used and the average luciferase value was calculated for each condition. ANOVA test, P-values are shown as p < 0.001 ***, p < 0.01 **, or p < 0.05 *.

Figure S9. Seven historical samples cover at least 60% of the *Pseudomonas* **genome.** The height of the bars represents the proportion of the *Pseudomonas* sp. reference genome covered with at least one read after Mapping Quality filter value of 30. The horizontal dotted line depicts a threshold of 0.6.

Figure S10. Herbarium-derived reads assigned to the host plant *Arabidopsis thaliana* and to *Pseudomonas* sp. show degradation patterns typical of ancient DNA. A. The photo shows a representative *A. thaliana* herbarium specimen (sample HB0729) sampled in the Tübingen herbarium and is part of the collection dataset previously reported in (67). B. Cytosine-to-Thymine (C-to-T) substitutions at the 5' end of reads mapped to the *Pseudomonas* viridiflava reference genome. Only samples that covered more than 60% of the *P. viridiflava* genome were included in the analysis. The thick lines indicate samples included in the phylogenetic analyses. C. The bars indicate the proportion of reads assigned to *A. thaliana* or to *Pseudomonas* sp. D. The scatter plot displays the relationship between the proportion of C-to-T substitutions at the first base of the 5' end between reads assigned to A. thaliana or to *Pseudomonas* sp. The red dotted line represents a linear model.

Figure S11. Historical Arabidopsis thaliana herbarium specimens are dominated by a single *Pseudomonas* sp. strain. The plots show the folded homozygosity support for each position along the *Pseudomonas viridiflava* genome with a coverage greater than 1x. A value of zero indicates that all reads support the same nucleotide (total homozygosity), where a value of 0.5 indicates maximum heterozygosity with only half of the reads supporting a particular nucleotide. Each row shows the folded homozygosity support for each sample. The left column shows all bins, whereas the bar indicating total homozygosity was removed in the right column.

Figure S12. A. Neighbor-Joining tree of the tail fiber assembly gene translated sequence. Historical samples (HB) are placed in the context of the most common haplotypes. **B.** Bayesian tip-date calibrated phylogeny representing the evolutionary relationship between historical and modern *Pseudomonas* sp. strains. The tips and branches are colored based on the tail fiber assembly gene haplotype. Historical samples are shown with stars. The node bars represent the 95% Highest Posterior Density Intervals of the estimated time and the nodes marked with red dots represent those with posterior probability of 1.

Table S1. Untargeted data dependent LC/MS/MS Proteomics data for p25.A12 WT and p25.A12 \triangle TFA tailocin partially purified extracts.

Commits.	A	Description	MWILD-1	#	C	# Dentides	# Unique	# DCM		
Sample	Accession	Description	MW [KDa]	# AAS	Coverage [%]	# Peptides	Peptides	# PSMS		
	JNHLCIDM_0	Phage tail								
p25.A12 WT	0762	sheath protein	53.2	498	77	27	27	109		
	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
		MAISFNNIPS								
		DVRVPLFYA								
	JNHLCIDM_0	EMDNSAANS	1xMet-loss							
	0762	ASAGMR	[N-Term]	1	1	3515.66821	1172.56287	3	1.66	4.67
		RLIVAQVND								
		DVTGPEIGSL								
	JNHLCIDM_0	VLVPSVALA								
	0762	к		2	1	2973.6983	991.90564	3	1.37	4.62
		NDQHITIQAV								
		EMAAPQPV								
	JNHLCIDM_0	WLQAAALA								
	0762	AR		3	0	3013.56763	1005.19531	3	1.24	4.39
		NAYGQADNS	l							
	JNHLCIDM_0	YLDSETMHQ								
	0762	SAFIIR		12	0	2731.24167	911.08704	3	1.79	3.99
		ADPTGEVWC								
	JNHLCIDM_0	LPLLNTEGA	1xCarbamidom							
	0762	К	ethyl [C9]	7	0	2071.01647	1036.01257	2	0.68	3.74
		VQATVVNGA								
	JNHLCIDM_0	TAAQAANAL								
	0762	SVK		5	0	1984.08218	992.54694	2	2.23	3.45
	JNHLCIDM_0	YGIATAYYEG								
	0762	GYVR		7	0	1582.75363	791.88129	2	1.05	3.38
		LIVAQVNDD								
	JNHLCIDM_0	VTGPEIGSLV								
	0762	LVPSVALAK		3	0	2817.59719	939.87231	3	1.85	3.12
	JNHLCIDM_0	NLGGQGSML								
	0762	AAMYETWR		3	0	1884.87311	942.94202	2	1.93	3.04

JNHLCIDM_0	SVVDAGVLT	1xCarbamidom							
0762	LSCK	ethyl [C12]	4	0	1348.71408	674.86176	2	1.6	3.04
	LEEEGHVEN								
JNHLCIDM_0	AEVFAQHLIV								
0762	ER		5	0	2448.21538	816.74542	3	2.59	2.91
	TAVFISADAS								
JNHLCIDM_0	RPTQSGTMP								
0762	GLDPAPASQR		6	0	2929.44724	977.15558	3	1.69	2.81
JNHLCIDM_0	FGAGQPIITP								
0762	STIR		4	0	1457.81109	729.40985	2	0.92	2.73
JNHLCIDM_0	RGTVGTLVA								
0762	AGQLR		9	1	1398.81757	699.91278	2	0.51	2.46
JNHLCIDM_0	FTLTERESLL								
0762	R		2	1	1364.75324	682.88141	2	1.69	2.33
JNHLCIDM_0									
0762	GELIAQYAR		1	0	1020.54727	510.77844	2	2.29	2.27
 JNHLCIDM_0									
0762	INATPDLPVR		2	0	1095.61568	548.31262	2	2.08	2.06
 JNHLCIDM_0	GTVGTLVAA								
0762	GQLR		2	0	1242.71646	621.86285	2	1.59	1.98
 JNHLCIDM 0									
0762	RLQGVITSK		2	1	1001.6102	501.30865	2	-0.17	1.82
 JNHLCIDM 0									
0762	VFALLNQFR		10	0	1107.63094	554.31921	2	0.19	1.8
	MAIGENNIDE	1-24-1							
JNHLCIDM_0	DVD	DI Tormal	2	0	1222 60064	666 84001	2	1.44	1.70
 0702	DVK	[IN-Term]		0	1332.09004	000.84991	2	1.44	1.79
	FGAGQPIITP								
JNHLCIDM_0	STIRGELIAQ		_				_		
0762	YAR		3	1	2459.34052	820.45215	3	0.56	1.34
	VPLFYAEMD								
JNHLCIDM_0	NSAANSASA								
0762	GMR		2	0	2201.99541	734.67078	3	1.07	1.27
	NDQHITIQAV								
	EMAAPQPV								
JNHLCIDM_0	WLQAAALA	1xOxidation							
0762	AR	[M12]	1	0	3029.56255	1010.52716	3	1.45	1.24
JNHLCIDM_0	QLYGHVYSA								
0762	К		3	0	1165.60003	583.30603	2	4.08	1.23
JNHLCIDM_0	VNVMFPPDY								
0762	INGLR		4	0	1634.83592	817.92236	2	0.93	1.14

	JNHLCIDM_0 0762	AGATVTVAG AATETGLLN LYVGGVR		2	0	2361.27725	787.76465	3	0.91	1.11
	JNHLCIDM_0 0762	DGNDPSRVN VMFPPDYIN GLR		1	1	2376.1401	792.72034	3	2.67	0.86
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	# Unique Peptides	# PSMs		
p25.A12 WT	JNHLCIDM_0 0761	Phage tail tube protein	12.5	115	68	7	7	24		
	Master Protein Accessions	Sequence	Modifications	# PSMs	# Missed Cleavages	Theo. MH+ [Da]	Observed m/z [Da]	Charge	λM [ppm]	XCorr
	JNHLCIDM_0 0761			6	0	1987.01647	994.01355	2	1.69	4.37
	JNHLCIDM_0 0761	TYVLSGAYL VEEPTSK		5	0	1756.90036	878.95569	2	2.13	3.02
	JNHLCIDM_0 0761			1	1	1967.87297	984.44226	2	2.17	2.89
	JNHLCIDM_0 0761	AVHTPDMPL K		2	0	1108.58194	554.79468	2	0.12	2.53
	JNHLCIDM_0 0761	VDGTQLTISG GGEAPLMNV K	1xOxidation [M17]	1	0	2003.01138	668.34283	3	1.28	2.33
	JNHLCIDM_0 0761	ADDGTIDLR		2	0	975.47416	488.24094	2	0.44	2.27
	JNHLCIDM_0 0761	RDTVVPGYF KEVDK		1	2	1652.86425	551.62689	3	1.14	1.7
	JNHLCIDM_0 0761	RDTVVPGYF K		1	1	1181.63133	394.54852	3	-0.27	1.48
	JNHLCIDM_0 0761	AVHTPDMPL K	1xOxidation [M7]	5	0	1124.57686	375.53104	3	1.51	1.4
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	# Unique Peptides	# PSMs		
p25.A12 WT	JNHLCIDM_0 0046	hypothetical protein JNHLCIDM_0 0046	48.5	460	52	17	17	28		
	Master Protein Accessions	Sequence	Modifications	# PSMs	# Missed Cleavages	Theo. MH+ [Da]	Observed m/z [Da]	Charge	λM [ppm]	XCorr

	JNHLCIDM_0 0046	AAVDSTDLG NLWYSR		2	0	1667.80237	834.4057	2	1.05	2.76
	JNHLCIDM_0	IAALGLSEVG								
	0046	SYAFAR		5	0	1624.86933	812.93933	2	1.26	2.68
	JNHLCIDM_0									
	0046			1	0	2318.09487	773.37079	3	1.27	2.58
	JNHLCIDM_0					1000 00000				
	0046			1	0	1893.93009	947.46997	2	1.36	2.45
	JNHLCIDM_0							_		
	0046			1	1	2050.03121	684.01672	3	2.15	2.26
	JNHLCIDM_0	SVPGVGLVS								
	0046	GK		1	0	999.58332	500.29584	2	1.08	2.21
	JNHLCIDM_0									
	0046			3	0	1953.05524	977.0329	2	1.68	2.18
	JNHLCIDM_0									
	0046			2	0	2632.37294	878.13116	3	2.28	2.12
	JNHLCIDM_0	ANRGTTLEA								
	0046	YGITNAYTK		1	1	1943.98213	648.66626	3	1.08	1.79
	JNHLCIDM_0	AILGLAASD								
	0046	үкк		2	1	1249.71506	625.36182	2	1.03	1.78
	JNHLCIDM_0	NFNPDDKAN								
	0046	R		1	1	1190.55487	397.52283	3	-0.8	1.77
	JNHLCIDM_0									
	0046			3	0	2505.17799	1253.09766	2	4.01	1.26
	JNHLCIDM_0									
	0046			1	0	2116.95388	706.32239	3	-0.6	1.25
	JNHLCIDM_0	GTTLEAYGIT								
	0046	NAYTK		1	0	1602.80098	801.90369	2	-0.55	1.25
	JNHLCIDM_0	ESDNGVYYL								
	0046	QSR		1	0	1430.65465	715.83258	2	2.26	1.22
	JNHLCIDM_0	SGVAAGNYS								
	0046	R		1	0	981.47483	491.24109	2	0.07	1.17
	JNHLCIDM_0									
	0046	IGWSGSSLK		1	0	934.49926	467.75381	2	1.17	1.04
							# Unique			
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	Peptides	# PSMs		
p25.A12 WT	estA	estA	69.5	643	26	10	10	19		
	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr

	estA			4	0	2142.02506	1071.51807	2	1.77	3.45
	estA			4	1	2774.37037	925.46375	3	2.27	3.23
		LADSAQVLQ								
	estA	QAGAR		1	0	1427.76012	714.38489	2	1.67	2.75
	estA			2	0	2427.17866	1214.09607	2	2.56	2.17
	estA	FNEQLVSR		1	0	992.51597	496.76288	2	2.53	1.97
	estA			3	0	2833.44254	945.15436	3	2.11	1.93
	estA			1	0	3368.6692	1123.56396	3	2.42	1.93
		STALTFSDQT								
	estA	R		1	0	1226.60116	613.80511	2	1.46	1.36
	estA	LFFNDR		1	0	811.40971	406.20889	2	0.98	1.03
	ant A	GYNLTIGTSY		1	0	1244 62608	632 81762	2	0.8	0.99
	estA	ĸ		1	0	1244.02098	022.81703	2	0.8	0.88
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	# Unique Peptides	# PSMs		
		hypothetical								
		protein								
	JNHLCIDM_0	JNHLCIDM_0								
p25.A12 WT	0765	0765	12.2	112	15	1	1	1		
	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
	JNHLCIDM_0	VESAATVASE				1/27 014	662 02721	2	2.76	1.17
	0765	AAHIASK		1	0	1057.814	555.2771	3	2.76	1.17
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Pentides	# Unique Peptides	# PSMs		
		hypothetical								
		protein								
	JNHLCIDM_0	JNHLCIDM_0								
p25.A12 WT	0764	0764	21.3	196	7	1	1	1		
	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
	JNHLCIDM_0	RGQEASEQL				1404 7771 6	100.02112	2		1.12
	0764	HAIK		1	1	1494.77716	498.93112	3	1.1	1.13
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Pentides	# Unique	# PSMs		
		Chitinger			Lorenage [70]		- sprines			
p25.A12 WT	0048	I	20	181	5	1	1	1		

	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
	JNHLCIDM 0									
	- 0048	YDTGQLALR		1	0	1036.54218	518.77545	2	1.39	1.97
						# D	# Unique	# DO 1		
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	Peptides	# PSMs		
	JNHLCIDM_0	Bacteriophage								
p25.A12 WT	0049	lysis protein	18.3	169	4	1	1	1		
	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
	JNHLCIDM_0									
	0049	LATADLR		1	0	759.43593	380.22162	2	0.04	1.1
							# Unique			
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	Peptides	# PSMs		
		hypothetical								
		protein								
	JNHLCIDM 0	JNHLCIDM 0								
p25.A12 WT	0039	0039	22.3	208	4	1	1	1		
	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
	JNHLCIDM_0									
	0039	LNEFAEER		1	0	1007.47925	504.24396	2	1.38	1.05
							# Unique			
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	Peptides	# PSMs		
			. ,			1	•			
	JNHLCIDM_0	Baseplate J-like								
p25.A12 WT	0044	protein	36.9	346	3	1	1	1		
	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
	JNHLCIDM 0	TOVDLAGDA								
	0044	LR		1	0	1158.61133	579.80981	2	0.88	1.49
							# Unique			
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	Peptides	# PSMs		
p25.A12 WT	trpE	trpE	54.5	493	3	1	1	1		
	Master Protein				# Missed	Theo, MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
									arp)	
		AILPAGTLSG								
	trpE	АРК		1	0	1195.7045	598.35718	2	2.16	1.4
							# Unique			
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	Peptides	# PSMs		

		Mu-like prophage FluMu DNA								
	JNHLCIDM_0	circularization								
p25.A12 WT	0040	protein	51.9	499	2	1	1	1		
	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
	JNHLCIDM_0	AVMATVDAV								
	0040	R		1	0	1032.55064	516.77795	2	-1.95	0.64
							# Unique			
	Accession	Description	MW [kDa]	# AAs	Coverage [%]	# Peptides	Peptides	# PSMs		
	JNHLCIDM_0	Phage tail								
p25.A12△TFA	0762	sheath protein	53.2	498	56	22	22	81		
	Master Protein				# Missed	Theo. MH+	Observed m/z			
	Accessions	Sequence	Modifications	# PSMs	Cleavages	[Da]	[Da]	Charge	λM [ppm]	XCorr
		ADPTGEVWC								
	JNHLCIDM_0	LPLLNTEGA	1xCarbamidom							
	0762	К	ethyl [C9]	2	0	2071.01647	1036.01428	2	2.33	4.17
	JNHLCIDM_0	SVVDAGVLT	1xCarbamidom							
	0762	LSCK	ethyl [C12]	5	0	1348.71408	674.86176	2	1.6	2.57
	JNHLCIDM_0	FGAGQPIITP								
	0762	STIR		5	0	1457.81109	729.41052	2	1.84	2.4

Table S2: Relative mole percentage of monosaccharide residues detected by GC/MS.

	Mole %	Mole %											
Residue/Strain	p21.F1	p21.F9	p25.A12	p25.C2									
Rha	63.4	11.1	9.6	72.3									
Man	0.1	0.2	0.1	0.1									

Gal	0.0	0.0	0.1	0.0
Glc	21.7	56.5	75.4	14.5
Нер	0.2	Tr.	0.0	0.0
Kdo	3.0	11.4	1.2	0.3
FucNAc	5.8	0.0	0.0	5.1
QuiNAc	1.1	0.0	0.6	0.8
ManNAc	0.3	1.9	0.9	0.6
GalNAc	0.3	1.1	0.7	0.3
GlcNAc	4.2	17.6	11.6	6.0
% CHO	60.6%	22.5%	31%	52%

Tr.- trace

Table S3: Historic and modern sample metadata.

* Type: (H)istoric ; (M)odern

			COLL						Pseudomonas		
			ectio					Pseudomonas	_Genome_Ave	Used_for_au	
ACCESS		ТҮР	N_YEA					_Genome_Co	rage_Depth_	thentication_	
ION_ID	ENA_ID	E*	R	COUNTRY	LOCATION	LAT	LON	verage_Prop.	MQ30	analyses	
					Mellendorf_ne						
HB0702	SRR21814520	Н	1905	DEU	ar_Buttlar	52.5470675	9.7299326	0.00701769	0.00629547	NO	NO
HB0711	SRR21814519	Н	1840	DEU	NA	NA	NA	0.0266046	0.0199101	NO	NO
HB0713	SRR21814508	Н	1826	DEU	Esslingen	48.7427584	9.3071685	0.057587	0.0515586	NO	NO
HB0715	SRR21814497	Н	1828	DEU	Esslingen	48.7427584	9.3071685	0.0634669	0.0581094	NO	NO

HB0717	SRR21814491	Н	1826	DEU	Alpirsbach	48.3456021	8.4033079	0.00664118	0.00581024	NO	NO
HB0718	SRR21814490	Н	1890	DEU	Tuebingen	48.5236164	9.0535531	0.0850372	0.0709387	NO	NO
HB0719	SRR21814489	Н	1890	DEU	Tuebingen	48.5236164	9.0535531	0.0216538	0.0139758	NO	NO
HB0722	SRR21814488	Н	1891	DEU	Altburg	48.6619431	8.6926366	0.0659517	0.0522472	NO	NO
HB0725	SRR21814487	Н	1888	DEU	Tuebingen	48.5236164	9.0535531	0.199974	0.197268	NO	NO
HB0729	SRR21814486	Н	1866	DEU	Tuebingen	48.5236164	9.0535531	0.146878	0.136151	NO	NO
HB0732	SRR21814518	Н	1932	DEU	Rastatt	49.0532906	8.5245089	0.0100316	0.0070049	NO	NO
HB0737	SRR21814517	Н	1937	DEU	Tuebingen	48.5236164	9.0535531	0.906105	8.75871	YES	YES
HB0742	SRR21814516	Н	1953	DEU	Lichtenstein	48.41996913	9.26630222	0.187988	0.162055	NO	NO
					near_Hohenhe						
HB0749	SRR21814515	Н	1849	DEU	im	48.7118	9.2113	0.161478	0.156122	NO	NO
HB0750	SRR21814514	Н	1957	DEU	Boeblingen	48.684969	9.0113444	0.012546	0.010024	NO	NO
					Eberspiel_in_t						
					he_district_of						
HB0752	SRR21814513	н	1952	DEU	_Calw	48.7415506	8.6842699	0.0150715	0.0118002	NO	NO
					District_of_Ca						
HB0754	SRR21814512	н	1951	DEU	lw	48.7153344	8.7381796	0.033677	0.028471	NO	NO
HB0756	SRR21814511	н	1951	DEU	Wendlingen	50.8021737	7.7130698	0.00412007	0.00351381	NO	NO
HB0757	SRR21814510	н	1951	DEU	Wendlingen	50.8021737	7.7130698	0.165843	0.100545	NO	NO
					Wohlmuthause		10.2135391				
HB0759	SRR21814509	Н	1893	DEU	n	50.5727241	5	0.00280539	0.00201518	NO	NO
HB0764	SRR21814507	н	1905	DEU	Mengen	48.049796	9.3316096	0.00683053	0.00540983	NO	NO
					Monastery_for						
					est_Hohenzoll						
HB0766	SRR21814506	Н	1846	DEU	ern	47.9724751	10.3005044	0.885642	7.63767	YES	YES
HB0768	SRR21814505	Н	1894	DEU	Todtnau	47.8303378	7.9452378	0.00528544	0.00427861	NO	NO
					Stuttgart_Moe						
HB0808	SRR21814504	Н	1817	DEU	hringen	48.7784485	9.1800132	0.60285	0.974844	YES	NO
HB0814	SRR21814503	Н	1882	DEU	Heidelberg	49.4093582	8.694724	0.941364	8.13508	YES	YES
					Gundelwange						
					n_near_Bonnd						
HB0817	SRR21814502	Н	1934	DEU	orf	47.8426163	8.2864051	0.00113424	0.00213973	NO	NO
					Langenau_nea						
HB0818	SRR21814501	Н	1928	DEU	r_Ulm	48.7276553	8.0150864	0.00812181	0.00744537	NO	NO
					Langenau_nea						
HB0819	SRR21814500	Н	1928	DEU	r_Ulm	48.7276553	8.0150864	0.0241737	0.0120816	NO	NO
HB0821	SRR21814499	н	1874	DEU	Winnenden	48.8754571	9.3978478	0.0443252	0.0396616	NO	NO

HB0822	SRR21814498	Н	1936	DEU	Hohentwiel	47.7617515	8.8348709	0.0109147	0.0104388	NO	NO
HB0826	SRR21814496	Н	1948	DEU	Abtsgmuend	48.8936471	10.0027636	0.473287	0.665255	NO	NO
HB0828	SRR21814495	н	1890	DEU	Schramberg	48.225478	8.3852168	0.739741	1.6142	YES	NO
HB0830	SRR21814494	н	1862	DEU	near_Beimerst etten	48.4840643	9.9836241	0.00970948	0.00894266	NO	NO
HB0840	SRR21814493	н	1851	DEU	Sulz_am_Nec kar	48.3617509	8.6314329	0.769394	1.61748	YES	NO
					Freudenstadt_i n_the_Black_						
HB0841	SRR21814492	н	1875	DEU	Forest	48.4637727	8.4111727	0.738722	1.44545	YES	NO
p12.A11	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.955211	43.2805	NA	YES
p12.A9	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.385298	2.68517	NA	NO
p12.E2	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.946364	124.361	NA	YES
p12.F2	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.941151	61.1632	NA	YES
p12.G7	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.942483	26.1727	NA	YES
p12.H7	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.703408	7.44366	NA	NO
p13.C1	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.919667	91.4711	NA	YES
p13.C7	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.915668	30.2041	NA	NO
p13.D10	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.917782	83.4618	NA	YES
p13.D5	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.373545	3.2645	NA	NO
p13.F1	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.548638	9.89508	NA	NO
p13.F3	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.930129	180.182	NA	YES
p13.F5	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.486993	7.68403	NA	NO
p20.B10	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.362051	6.0333	NA	NO
p20.D4	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.965996	26.275	NA	YES
p20.F10	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.951949	27.3486	NA	YES
p20.G9	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.951606	25.8164	NA	YES
p21.A8	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.951989	50.4423	NA	YES
p21.E3	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.912764	42.5976	NA	YES
p21.F1	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.921125	54.2176	NA	YES
p21.F9	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.951456	43.9553	NA	YES
p22.A8	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.910773	42.5346	NA	YES
p22.B5	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.908795	31.8141	NA	YES
p22.C1	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.910697	44.4703	NA	YES
p22.D1	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.93509	9.86993	NA	YES

p22.D4	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.901368	6.48617	NA	YES
p23.A3	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.922147	90.3312	NA	YES
p23.A5	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.355851	5.69028	NA	NO
p23.B4	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.353754	10.3529	NA	NO
p23.B8	NA	М	2018	DEU	Pfrondorf2	48.561087	9.109294	0.915323	25.8754	NA	YES
p24.B5	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.906998	24.3191	NA	YES
p24.H2	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.919194	36.961	NA	YES
p25.A12	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.904389	8.27369	NA	YES
p25.B2	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.99527	9.73957	NA	YES
p25.C11	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.936486	7.67613	NA	NO
p25.C2	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.999957	38.9734	NA	YES
p25.D2	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.997331	11.0366	NA	YES
p26.B7	NA	М	2018	DEU	Pfrondorf2	48.561087	9.109294	0.918811	18.5831	NA	YES
p26.C10	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.532614	7.27294	NA	NO
p26.D6	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.907977	10.1768	NA	YES
p26.E7	NA	М	2018	DEU	Pfrondorf2	48.561087	9.109294	0.915118	26.4647	NA	YES
p26.F6	NA	М	2018	DEU	Pfrondorf2	48.561087	9.109294	0.263831	1.09767	NA	NO
p27.C5	NA	М	2018	DEU	Pfrondorf2	48.561087	9.109294	0.33096	4.98267	NA	NO
p27.D6	NA	М	2018	DEU	Pfrondorf2	48.561087	9.109294	0.915116	62.9111	NA	YES
p27.F2	NA	М	2018	DEU	Pfrondorf2	48.561087	9.109294	0.908864	30.4347	NA	YES
p3.A3	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.999479	12.1995	NA	YES
p3.F12	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.999766	64.6266	NA	YES
p3.F8	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.910145	14.5013	NA	NO
p3.G11	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.405107	35.7165	NA	NO
p3.G9	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.936757	40.7657	NA	YES
p4.A6	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.999359	11.257	NA	YES
p4.A8	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.317566	8.57523	NA	NO
p4.C5	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.281958	2.19208	NA	NO
p4.D11	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.329928	7.72875	NA	NO
p4.D2	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.903089	43.5342	NA	YES
p4.E5	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.905147	9.07888	NA	YES
p4.E6	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.907851	26.4274	NA	YES
p4.H3	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.359271	11.1964	NA	NO

p5.A5	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.569164	20.9644	NA	NO
p5.C1	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.940631	83.5842	NA	YES
p5.C3	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.911686	61.8474	NA	YES
p5.D5	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.908126	47.1102	NA	YES
p5.F2	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.355109	10.8067	NA	NO
p5.H11	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.912223	24.6014	NA	YES
p6.A10	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.967914	86.1443	NA	YES
p6.B5	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.377432	8.17665	NA	NO
p6.B9	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.915641	40.9034	NA	NO
p6.D10	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.362251	6.29957	NA	NO
p6.E9	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.348102	5.45088	NA	NO
p6.F1	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.441901	14.1066	NA	NO
p6.G2	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.591204	22.8581	NA	NO
p6.G3	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.374359	12.0216	NA	NO
p7.F2	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.420044	6.6193	NA	NO
p7.G11	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.922476	63.4571	NA	YES
p8.B3	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.999766	72.1507	NA	YES
p8.B9	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.921803	46.3749	NA	YES
p8.C7	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.933317	51.4209	NA	YES
p8.D11	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.432979	9.92024	NA	NO
p8.E4	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.917628	39.6076	NA	YES
p8.G10	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.460138	12.253	NA	NO
p8.G2	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.450816	8.26752	NA	NO
p8.H7	NA	М	2018	DEU	Det-2	48.556255	9.135424	0.899835	67.821	NA	YES
p9.C4	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.946827	40.897	NA	NO
p9.H10	NA	М	2018	DEU	Eyach	48.446111	8.781611	0.469617	11.8808	NA	NO
BAV2572	NA	М	2013	USA	Virgina	NA	NA	NA	NA	NA	NO
					Steinberg-Dör						
CDRTc14	NA	М	2013	AUT	fl	47.4N	16.47E	NA	NA	NA	NO
ICMP882	NA	м	2010	NZI	NA	NA	NA	NA	NA	NA	NO
ICMP327			2010								
2	NA	м	1975	NZL	Riverhead	NA	NA	NA	NA	NA	NO
CFBP159											
0	NA	М	1974	FRA	Vaucluse	NA	NA	NA	NA	NA	NO

DSM669											
4	NA	М	1930	CHE	NA	NA	NA	NA	NA	NA	NO
CH40913					Boston,						
2	NA	М	2013	USA	Massachusetts	42.22N	71.7W	NA	NA	NA	NO
					Lake						
LMCA84					Michigan		86.393408				
60	NA	М	2008	USA	College	42.090114N	W	NA	NA	NA	NO
					Scott Valley,						
SV1779	NA	М	2017	USA	California	NA	NA	NA	NA	NA	NO
					Tulelake,						
T157	NA	М	2019	USA	California	NA	NA	NA	NA	NA	NO

Table S4: Key Resources Table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Deposited Data		
1524 Pseudomonas genomes	Karasov et al. 2018	ENA: PRJEB24450
Experimental Models: Organisms/Strains		
1524 Modern Pseudomonas strains	Karasov et al. 2018	NA
34 Historic strains		In Table S3 (Sample)
10 NCBI genomes	NCBI	In Table S3 (Sample)
p25.A12 △TFA		
p25.A12△TFA +TFA	This study	NA
Software and Algorithms		
		https://github.com/Ananthara
VIBRANT v1.2.1	Kieft et al., 2020	manLab/VIBRANT
Mash v2.2.2	Ondov et al., 2016	https://github.com/marbl/Ma

		<u>sh</u>
		https://github.com/neherlab/p
panX	Ding et al., 2018	an-genome-analysis
		https://pypi.org/project/pank
pankmer	Aylward et al., 2023	mer/
Product	Primers	Size (bp)
p25.A12 △TFA attB DNA construction	upstream forward, 5' ggggacaagtttgtac aaaaaagcaggctC GCGCGCGTCA TCAATTCTA 3' and upstream reverse 5' TTTCAAAGAA CCAGTTAAGG GTATTCATgatc ctctag 3'; downstream forward, 5' tgcaagcttgCAG GAGTTCACAT GCCTATCG 3' and downstream reverse 5' ggggaccactttgtac aagaaagctggtG TGCGTGAGCT GGGCAAC 3'	458bp
Flanking arm screening amplification	F-5' CGCGCGCGTC ATCAATTCTA 3' and R-5' GTGCGTGAGC TGGGCAAC 3'	WT = 946bp KO = 400bp
p25.A12 TFA with RE overhangs	F-5'atgcaagcttA TGCACACAGT ATTAAGCGCT CGC 3' and R-5'ACGAGCT GCCCAAGAC	568bp

CTGAggatccact	
agt 3'	

Table S5. De-novo assembly contigs statistics from reads mapped to the Tailocin region.

MAETRIC\SAMPLE	HB0737	HB0766	HB0814
Total_n	10	9	14
Total_seq_bp	23769	21573	21574
Avgseq_bp	2376.9	2397	1541
Median_seq_bp	2143	1665	1275.5
N_50_bp	2858	3405	1705
Min_seq_bp	583	494	415
Max_seq_bp	5543	7935	3337