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Supplemental methods  

Microarray analysis  
Microarray gene expression was quantified using the R package affy (v.1.72) (1) 

aligning probes to the mouse genome Mouse4302.db and normalizing gene expression using 
the Robust-Multichip Average (RMA-) function. After principal component analysis, the R 
package limma (v.3.44.1) (2) was used to test differential gene expression between UUO and 
sham conditions using the RunLimma function. In case that two or more microarray probes 
mapped to the same gene, duplicate genes were removed. PROGENy and DoRothEA 
transcription factor analyses were performed as described below.  

scRNA and snRNA analysis  
For analysis of ADAMTS12 expression we used scRNA-seq datasets of human 

PDGFRB+ cells (Mesenchyme enriched) from 8 human kidneys and CD10- cells (Proximal 
Tubule depleted) from 15 human kidneys that was recently published by our group (3). In 
addition we assessed ADAMTS12 expression in a large human kidney scRNA-seq dataset, 
which was generated by the “Kidney Precision Medicine Project” (KPMP) (4). Quality control, 
data integration and annotation are described in the original publications (3, 4). ADAMTS12, 
ACTA2, PDGFRB and POSTN expressions were analyzed using Seurat (v4.1.1). For analysis 
of Adamts12 expression in mouse kidneys after AKI we used a publicly-available snRNA-seq 
time course of mouse kidneys after ischemia-reperfusion injury (IRI). The annotated dataset 
was provided by the original authors (5).  

Human kidney tissue microarray  
Human tissue Microarrays (hTMA) were generated as described before (3). In short, 

paraffin-embedded, formalin-fixed kidney specimens from 42 non-tumorous human kidney 
samples were obtained from the Eschweiler/Aachen biobank. The age of the patients ranged 
from 30 years to 86 years with a mean of 66.22 years (standard deviation of 12.97 years). One 
2 mm core was taken from a randomly selected area from each kidney sample using the 
TMArrayer (Pathology Devices, Beecher Instruments). Each core was arrayed into a recipient 
block, from which 2 μm thick sections were cut. All patients gave informed consent in 
accordance with the Declaration of Helsinki.  

Hematoxylin-Eosin and Picro-Sirius Red staining and quantification  
Hematoxylin and eosin staining was performed on FFPE sections from different organs 

from male and female Adamts12—/— animals. Picro-Sirius Red staining was performed on 
human tissue microarrays and mouse hearts using the Morphisto Sirius Red Staining Kit 
(13425, Morphisto) following the manufacturer's instructions. For human tissue microarray 
stainings 7 images were acquired from the renal cortex in a randomized fashion, using the 40x 
objective of a brightfield microscope (BZ-9000, Keyence, IHC) and fibrosis was automatically 
quantified using ImageJ (6, 7). For MI experiments whole slides were scanned using the Aperio 
Slide Scanner (Leica Biosystems). Fibrosis was automatically quantified with the Aperio eSlide 
Manager. MI scar size was quantified by manual annotation of a trained pathologist.  

Gene regulatory network inference  
For inference of gene regulatory networks (GRNs) we used a publicly available kidney 

data set, which was generated by the “Kidney Precision Medicine Project” (KPMP) using the 
SLAM-seq2 protocol (4). Thus, the data set provided matched snRNA-seq and snATAC-seq 
information for each cell, which improves inference of GRNs. The raw count matrices were 
downloaded from the Gene Expression Omnibus database (GSE183273). Using the cell type 
annotations provided by KPMP, we subsetted count matrices of fibroblast populations. 
Subsequently, the snRNA-seq data was processed using Seurat (version 5.0.1) and the 
snATAC-seq data was processed using Signac (version 1.12.0), and a combined object was 
created. The combined Seurat object was used as input for GRN inference using scMEGA 
(version 1.0.2) (8). Trajectory inference is a critical step during GRN construction using 



scMEGA and is based on supervised trajectory inference implemented in ArchR (9), which 
requires the user to define an origin and endpoint for the inferred trajectory. As the quality of 
GRNs is highly influenced by the underlying trajectory, we aimed to define cell types and thus 
origin and end points of the trajectory in a cluster-independent and biologically meaningful 
manner. Here, we calculated a myofibroblast signature for each cell using the 
AddModuleScore function implemented in Seurat in combination with two well-defined 
myofibroblast gene sets, (1) the TRAVAGLINI_LUNG_MYOFIBROBLAST_CELL gene set 
(10) and (2) the NABA_CORE_MATRISOME gene set (11). The resulting score values were 
then used as the X- and Y-coordinates for a myofibroblast-specific embedding of all cells in 
the data set. Myofibroblasts were defined as cells with a positive core matrisome score and a 
myofibroblast signature of more than 50% of the maximum score. Subsequently fibroblast-to- 
myofibroblast trajectories were inferred using ArchR (version 1.0.2) and the quality of the 
inferred trajectories was confirmed by investigation of the expression of known myofibroblast 
marker genes along pseudotime. Finally, transcription factor activity was inferred using 
chromVAR (version 1.22.1) (12) and GRNs were constructed following the standard workflow 
for scMEGA. For the selection of transcription factors, a correlation cutoff of 0.4 was used. For 
the selection of genes, a variation cutoff of 0.9 and a cutoff of 0.05 for the adjusted p-value 
were selected. For visualization of the sub-GRN for BACH1 and JUNB, the edges were filtered 
for transcription factor-gene pairs with a correlation above 0.8.  

CrossTalkeR ligand receptor analysis  
To determine cell-cell communication, Ligand Receptor (LR) analysis was performed 

using the CrossTalkeR (version 1.4.0) package in R. CrossTalkeR internally uses LIANA for 
each condition (i.e. case and control) listed in the dataset. LIANA version 0.1.13 was used 
along with Omnipath database (version 3.10.1) of known ligand receptors to generate LR 
pairs. LIANA uses different methods like Natmi, Connectome, Logfc, sca, Cellphonedb from 
which LR pairs were selected on the basis of p-values (< 0.01), for each case and condition. 
The final cell-cell interaction report on WT vs Adamts12—/— basis was generated using the 
predefined CrossTalkeR function generate_report().  

Spatial gene expression - data analysis workflow Spatial transcriptomics pre-
processing  

Spaceranger (version 1.3.0) was used to align sequencing output. First, the mkfastq 
function was used to convert the bcl files to fastq files. These fastq files along with the tissue 
images were then used as inputs to the count function to align the fastq files to a reference 
genome (version mm10-2020), and perform tissue and automated fiducial alignment. Quality 
control (QC) was then performed on the individual count matrices. Specifically, spots with 
mitochondrial read counts > 60%, and total read counts < 400, were filtered out. Furthermore, 
genes that were detected in < 3 spots were also filtered out. This resulted in a total of 1511, 
1290, 1278, and 1205 number of spots for each slide. The two Knockout samples and two 
wild-type samples were integrated using Harmony (13) and sample ID as the batch variable. 
Here, the top 2000 highly variable genes were identified using the Seurat_v3 method, and PCs 
were calculated using the RunPCA method in Seurat. For Harmony (13) the top 20 PCs were 
used. The integrated data was clustered using the Leiden algorithm in Scanpy (14). Clustering 
with a resolution of 0.5 was used for all subsequent analyses. Here, 6 clusters/zones were 
found and marker genes were calculated using the FindAllMarkers function (version 4.3.0) 
using the MAST algorithm. The clusters/zones were then manually annotated.  

Cell-type deconvolution  
Tangram (15) was used for cell-deconvolution of each spot. Here, our previously 

published human heart cell-atlas with 191795 cells was used as the reference dataset (16). 
Cell-type deconvolution was able to identify the major 7 cell-types (Fibroblast, Endothelial, 



Cardiomyocytes, Myeloid, Pericytes, Neuronal, vSMCs) that were observed in the reference 
dataset.  

Characterization of infarction zones  
To quantify spatial Adamts12 expression, we summed the normalized expression per 

zone and cell type per spot. For assessing changes in cell type composition, we scaled the 
cell type probability score per spot to 100% and plotted its mean and log2-fold change by cell 
type and zone. P-values were determined using an unpaired t-test. Differentially expressed 
genes within the ischemic zone were imputed using the MAST algorithm of Seurats 
FindAllMarkers function. Gene set enrichment analysis was performed based on significantly 
upregulated genes (adjusted p-value<0.05) using gprofiler2 (version 0.2.1) (17). Reactome 
pathways with a term size greater than 10 were selected (18). Biological processing GO Terms 
were recognized at a term size lower than 2000 genes to exclude nonspecific terms. 
PROGENy (version 1.20.0) pathway and DoRothEA transcription factor analysis was carried 
out as described below.  

Fibroblast subset estimation and mapping to spatial data  
To estimate fibroblast subsets in our spatial transcriptomic data, we integrated the 

spatial gene expression dataset with our previously published scRNA-seq dataset of murine 
fibroblasts (19) in heart failure using Seurat (v4.1.1). After normalization and variance 
stabilization using SCTransform, we integrated and estimated fibroblast subset scores using 
the FindTransferAnchors and TransferData functions from Seurat. Fibroblast subset scores 
were corrected for the overall fibroblast probability per spot by multiplying the initially estimated 
fibroblast Tangram prediction score with the fibroblast subset score for each spot. Significance 
levels were determined using an unpaired t-test, and p-values were corrected for multiple 
hypothesis correction.  

Generation of a human PDGFRB+ cell line  
A human PDGFRB+ cell line was generated as described before (3). Briefly, PDGFRB+ 

cells were isolated from the renal cortex of a 71-year-old male individual using magnetic- 
activated cell sorting (MACS) and immortalized using SV40LT and HTERT.  

Cell maintenance  
Cells were cultured in DMEM media (31885-023, Gibco), substituted with 5% FCS, 1% 

Penicillin Streptomycin (15140122, Gibco) and 0.2% MycoZap (VZA2022, Lonza). Cells were 
split at 70–80% confluency using 0.5 mM Trypsin (25300054, Thermo Scientific) and cell 
aggregates were reseeded by diluting 1:2.  

Bulk RNA Analysis  
Bulk RNA data was preprocessed as recommended by the nf-core nextflow pipeline 

(version 21.04.1) using nf-core/rnaseq (version 3.1) (20), star (version 2.7.9a) for read 
alignment (21), salmon (version 1.5.0) for read quantification (22), trimgalore (version 0.6.6) 
for read trimming, and gencode (version 38) for gene annotation (23). For differential gene 
expression analysis, lowly expressed genes, “rRNA” ,”tRNA” and “mtRNA” were filtered out. 
Subsequently, differentially expressed genes were calculated using DESeq2 (version 1.320) 
(24). Of note, we did not observe a relevant compensatory upregulation of ADAMTS12 
homologues, such as ADAMTS7 (Supplemental Figures 7J, 9G, Supplemental Table 12).  

Pathway RespOnsive GENes (PROGENy) for activity inference  
For gene expression data obtained from spatial transcriptomics, PROGENy pathway 

activity was inferred based on genes sorted by their average log2-fold change, using the 



murine version of PROGENy (version 1.16.0). PROGENy pathway analysis of Microarray and 
bulk RNA sequencing data were performed as described previously (25). In summary, pathway 
activity scores were imputed based on the results of differential expression analysis in bulk or 
Microarray data. A null-distribution was subsequently generated by repeated permutation 
(10,000x) of t-values and original pathway scores were scaled to their respective null 
distribution to generate a normalized pathway enrichment score (NES). For scRNA-seq 
inference of PROGENy pathway activity in the human KPMP dataset we subsetted interstitial 
cells and performed analysis as recommended by a benchmark study using the top 500 most 
responsive genes (26).  

DoRothEA Transcription Factor inference  
Transcription factor activity was inferred based on t-values for the microarray and bulk 

RNA sequencing data and for spatial sequencing analysis based on the average log2-fold 
change obtained from differential expression analysis, using DoRothEA (version 1.6.0) and a 
collection of transcription factor targets together with VIPER (version 1.28.0) as previously 
described (25). For imputing transcription factor activity, Dorothea regulons with confidence 
levels A, B, and C were used.  

Gene set enrichment analysis (GO-Terms)  
GO-Terms were calculated based on the top 500 DEG sorted by t-value using gprofiler2 

(version 0.2.1) (17). Biological processing GO Terms were recognized at a term size lower 
than 2000 genes to exclude nonspecific terms.  

Scoring ActvsKO and ActvsInact signatures in Fibroblast scRNA-Seq data  
To score ActvsKO and ActvsInact activation signatures in a fibroblast scRNA-seq 

dataset (19) we used the function AddModuleScore (Seurat v4.0) using significantly 
upregulated genes (adj. p-value <0.5) derived from differential gene expression analysis of 
either active ADAMTS12 expressing cells vs ADAMTS12-KO cells, or active vs inactive 
ADAMTS12 expressing cells as described above. For statistical comparison of scores 
significance levels were calculated using a one-way ANOVA with Tukey’s post-hoc test.  

Broad-spectrum metalloproteinase inhibition using Batimastat  
60.000 cells per well were seeded in 6 well plates and incubated for 24 hours in 5% 

FCS media. Batimastat (S7155, Selleck Chemicals) was diluted in DMSO according to the 
manufacturer's instructions and subsequently added to the media for a final concentration of 
20 nM. After 24 hours cells were harvested and RT-qPCR was performed as described above.  

Quantification and statistical analysis of mass spectrometry data  
MS raw files were processed by the Spectronaut software version 15 (Biognosys (27)) 

using directDIA with default settings. The human (42,351 entries, additional 57,749 entries, 
2021) uniport FASTA database as a forward database was used. N-terminal acetylation and 
methionine oxidations were set as variable modifications, and cysteine carbamidomethylation 
was set as fixed modification. Enzyme specificity was set as C-terminal to Arginine and Lysine 
as expected, using Trypsin and LysC as proteases and a maximum of two missed cleavages. 
All bioinformatic analyses were done using Perseus software (version 1.6.2.2) (28). Quantified 
proteins were filtered for at least 100% of valid values among three biological replicates in at 
least one condition. Missing values were imputed, and significantly up- or down-regulated 
proteins were determined by the Student’s t-test (two-sided) (FDR = 0.05).  

For the experiment measured in DDA mode, MS raw files were processed by the 
MaxQuant (29) version 2.1.4.0 and fragments lists were searched against the human UniProt 



FASTA database (March 2021) with cysteine carbamidomethylation as a fixed modification 
and N-terminal acetylation and methionine oxidations as variable modifications. The false- 
discovery rate (FDR) was set to less than 1% at the peptide and protein levels and specified a 
minimum length of seven amino acids for peptides. Enzyme specificity was set as semispecific 
including cleavage C-terminal to arginine and lysine as expected using trypsin and lysC as 
proteases and a maximum of two missed cleavages.  

Gene set enrichment analysis of mass spectrometry data  
GO-Terms were calculated based on significantly down-regulated proteins (WT vs 

Adamts12—/—, q.value < 0.05, log2FC<0) using gprofiler2 (version 0.2.1) (17). Biological 
processing GO Terms were recognized at a term size lower than 2000 genes to exclude 
nonspecific terms. For analysis of DB matrisome (11), fgsea (version 1.20.0) gene set 
enrichment analysis was performed with default parameters using significantly up- and 
downregulated proteins (WT vs Adamts12—/—, q.value < 0.05) as input.  

Immunoprecipitation of ADAMTS12, in vitro digestion assay to examine COMP 
degradation and Western Blotting  

Total cell lysates from cells grown to 80% confluency were made using lysis buffer (50 
mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 2 mM TCEP and 10% glycerol) 
containing Complete EDTA-free Protease Inhibitors (Roche #11836170001) and PhosSTOP 
Phosphatase Inhibitors (ROCHE #4906845001). 7% of TCL were saved as loading control. 
The residual lysate was used for immunoprecipitation using 50 μl of ProteinG Sepharose 4 
Fast Flow suspension (Cytiva #17-0618-01) and 2 μg anti-HA antibody (BioLegend #901533) 
for 1 hour at 4°C. The resulting pellets were washed three times with lysis buffer and 
equilibrated for COMP-digestion assay by additional washing with ADAMTS12 digestion buffer 
(50 mM Tris–HCl pH 7.5, 100 mM NaCl, 5 mM CaCl2, 2 mM ZnCl2, Brij-35 0.05%). 
Subsequently, the pellets were resuspended in 30 μl ADAMTS12 digestion buffer containing 
1 μg recombinant human COMP (R&D #3134-CPB-050) and incubated at 37°C for 12 hours. 
After COMP digestion for 12 hours, 4x Laemmli sample buffer (BIO-RAD #1610747) was 
added and the samples were cooked at 95°C for five minutes. Loading controls (see above) 
and digested samples were resuspended in 8% SDS-Page. For Western Blotting the following 
antibodies were used: Anti-HA (abcam, #ab9110, 1:4000, for detection of HA-tagged 
ADAMTS12), Anti-ß-Tubulin (Sigma-Aldrich #T8328, 1:1000, used as loading control), Anti- 
GFP (Abcam, #ab6556, 1:5000, control for integration of pMIG vector which co-expresses 
eGFP), Anti-COMP (abcam, #ab231977, 1:1000).  

Synthesis of ADAMTS12  
A rat/human ADAMTS12 chimera (rat AA 1-244/human AA 241-543) with a C-terminal 

3xFLAG Tag was cloned into the mammalian pcDNA3.4 expression vector (Genscript). 
Expi293 cells (Life Technologies, A14635) at a density of 2.5 x 106 cells/mL were transfected 
with 1 mg/L of vector plasmid DNA using Expifectamine transfection reagent (Life 
Technologies, A14525). 72 hours post transfection, the supernatant of the Expi293 cell culture 
was collected via centrifugation at 4000 rpm for 10 min, neutralized with 50mM Tris pH8.0, 5 
mM CaCl2, 10 μM ZnCl2 and centrifuged again at 4000 rpm for 10 min. The supernatant was 
incubated overnight at 4°C with anti-FLAG M2 affinity gel (Sigma-Aldrich A2220) equilibrated 
with buffer A (50 mM Tris pH 8.0, 300 mM NaCl, 10% glycerol, 5 mM CaCl2, 10 μM ZnCl2). 
The gel was collected and washed with 10 bed volumes of buffer A and bound proteins were 
eluted with buffer A supplemented with 150 ng/μl FLAG peptide (Sigma-Aldrich F4799). 
Fractions containing ADAMTS12 protein were identified via SDS PAGE, concentrated and 
stored at -80°C.  
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Supplemental Figure 1: Adamts12 is specifically upregulated in fibroblasts after injury. 
(A) Normalized logarithmic intensities stratified by sample (n=3 per group). (B) Principal 
component analysis of kidney Gli1+ cells after sham or UUO surgery. (C) PROGENy pathway 
analysis of kidney Gli1+ cells after sham or UUO surgery. (D) Transcription factor (TF) activity 
prediction based on TF regulons using DoRothEA. (E, G, I) ISH for Pdgfrb and Adamts12 in 
murine kidneys at different time points after unilateral ureter obstruction (UUO), ischemia 
reperfusion injury (IRI) or adenine nephropathy. Scale bar: 10μm. (F, H, J) Quantification of 
Adamts12 ISH expression in kidneys at different time points after UUO, IRI or adenine 
nephropathy. (n=2-5 per group, one-way ANOVA with Tukey’s post hoc) (K) Featureplot of 
ADAMTS12 gene expression in a previously published snRNA-seq dataset of kidney IRI (5). 
Labels refer to cell-types (see Supplemental table 2). (L) Dotplot showing Adamts12 
expression at different timepoints after IRI.  



 

Supplemental Figure 2: ADAMTS12 expression in human kidney disease.  
Dotplot of ACTA2, PDGFRB, COL1A1 and POSTN gene expression in PDGFRB positive cells 
isolated from human kidney nephrectomies. Abbreviations: PT: Proximal tubule, Injured PT: 
Injured proximal tubule, Venular Endo: Venular endothelium, VSMC: Vascular smooth muscle 



cells, Glom Cap: Glomerular Capillaries, IC: Intercalated cells, PC: Principal cells, TAL: Thick 
ascending loop of Henle. (B) Featureplot of ADAMTS12 gene expression in human kidney 
PDGFRB cells shown also in (A) at the highest annotation level. Labels refer to cell types (see 
Supplemental table 4). (C) Dotplot of ADAMTS12, ACTA2, PDGFRB, COL1A1 and POSTN 
gene expression in PDGFRB cells shown in (B) at the highest annotation level. (D) Featureplot 
of ADAMTS12 gene expression in a published scRNA-seq dataset of CD10 negative cells 
(proximal tubule depleted) isolated from human kidney nephrectomies. Labels refer to cell 
types (see Supplemental Table 4). (E) Dotplot of ADAMTS12, ACTA2, PDGFRB, COL1A1 and 
POSTN gene expression in a dataset of CD10 negative cells shown in (D). (F) Dotplot of 
ACTA2, PDGFRB, COL1A1 and POSTN gene expression in a previously published KPMP 
scRNA-seq dataset (see Supplemental Table 5 for cell type abbreviations). (G) Quantification 
of the % of ADAMTS12+ cells in COL1A1+ or COL1A1-- cells (n=43, p<0.0001, two tailed paired 
t-test). (H) Representative image of a picrosirius red staining of human kidneys. Scale bar: 25 
μm. (I) Pearson correlation of the number of ADAMTS12+ cells with ECM as determined by 
spectral thresholding analysis of picrosirius red stainings shown in H (n=43). (J) UMAP 
embedding of human kidney cells from a SNARE-Seq kidney dataset of the KPMP Project. 
Fibroblast (circled in red) were subsetted for trajectory inference analysis. (K) ArchR trajectory 
of subsetted fibroblasts from a SNARE-Seq KPMP kidney dataset in a myofibroblast specific 
embedding based on core matrisome and myofibroblast gene expression. Cells are labeled 
according to the assigned ArchR pseudotime. (L) COL1A1, POSTN, DCN and ADAMTS12 
expression along pseudotime. (M) Subsetted gene regulatory network for JUNB and BACH1. 
Core matrisome genes (ECM collagens, glycoproteins, proteoglycans) are labeled in orange.  

  



 

Supplemental Figure 3: Genetic loss of Adamts12 ameliorates organ fibrosis.  
(A) RT- qPCR for Adamts12 (pWT UUO vs. Adamts12—/— UUO= 0.0036),Tgfb (pWT UUO vs. Adamts12—/— UUO= 
0.0270), Acta2 (pWT UUO vs. Adamts12—/— UUO= 0.58) and IL6 (pWT UUO vs. Adamts12—/— UUO= 0.69) in 
kidney tissue of WT and Adamts12—/— mice after UUO surgery. (WT n=7, Adamts12—/— n=6) 
(B) aSMA Western Blot and quantification of kidneys from WT and Adamts12—/—— mice after 
sham surgery. GAPDH Western Blot was used as a loading control. (C) aSMA Western Blot 
and quantification of kidneys from WT and Adamts12—/— mice after UUO surgery. GAPDH 
Western Blot was used as a loading control. (D, F, H) Representative images of PDGFRB, 
CD31 and CD11b immunofluorescence stainings. Scale bars: 25μm. (E, G) Quantification of 
PDGFRB and CD31 positive area based on immunofluorescence stainings shown in D and F 
(PDGFRb: pWT UUO vs. Adamts12—/— UUO=0.0004, CD31: pWT UUO vs. Adamts12—/— UUO=0.96). (I) 
Quantification of CD11b positive cells based on immunofluorescence stainings shown in H 



(pWT UUO vs. Adamts12— /— UUO=0.98). For (B) and (C) an unpaired t-test was performed. All other 
comparisons were performed by two-way ANOVA with Tukey’s post hoc.  

  



Supplemental Figure 4: Visium spatial transcriptomics of WT and Adamts12—/— mice 
after myocardial infarction.  
(A) Automated Quantification of ISH time course for Adamts12 and Pdgfrb in murine hearts 0 
(sham), 1, 4, 7, 14 and 28 days after MI. Representative pictures of day 0 (sham), day 7 and 



day 28 are shown. Scale bars: 10μm (n=1-5 per group). (B) Total detected genes for each 
spatial transcriptomic sample (n=2 per group). (C) Percentage of valid UMIs for each spatial 
transcriptomic sample. (D) HE staining of WT and Adamts12—/— hearts selected for spatial 
transcriptomics. (E) Top 5 marker genes for each spatial zone. (F) Featureplot of cell type 
assignment. Spots show the cell type with the highest Tangram Prediction score. (G) Scaled 
Tangram cell type prediction scores stratified by sample and zone. (H) Top enriched Biological 
Process GOs in IZ of Adamts12—/— mice based on DEG shown in Figure 3G. Abbreviations: 
circulatory sys dev: circulatory system development, est protein localization: establishment of 
protein localization, anatomical struc from: anatomical structure formation involved in 
morphogenesis, muscle structure dev: muscle structure development, cell catabolic proc: 
cellular catabolic process, reg of prot mod process: regulation of protein modification process. 
(I) DoRothEA transcription factor activity in IZ based on DEG shown in Figure 3G. (J) Spatial 
Featureplot of Fibroblast 3 Tangram-adjusted prediction score in WT sample #2 and 
Adamts12—/— sample #2. T.-adj. score: Tangram-adjusted prediction score. (K) Spatial 
Featureplot of IR Fibroblast Tangram-adjusted prediction score in WT sample #2 and 
Adamts12—/— sample #2. (L) Differential (WT vs Adamts12—/—) CrossTalkeR pagerank scores 
(importance score) of cell types in spatial transcriptomic sequencing of murine myocardial 
infarction. Cell types are assigned to spots based on tangram prediction scores. (M) Circular 
plot of differential cell-cell interactions (WT vs Adamts12—/—) as predicted by CrossTalkeR 
analysis in spatial transcriptomic sequencing of murine myocardial infarction. Cell types are 
assigned to spots based on tangram prediction scores. (N) CrossTalkeR Sankey plot of 
differentially expressed ligand receptor interactions (WT vs Adamts12—/—) in spatial myocardial 
infarction data, where fibroblasts are the receptor. (O) Differential (WT vs Adamts12—/—) ligand 
and receptor CrossTalkeR pagerank scores.  
  



 

Supplemental Figure 5: ADAMTS12 expression in spatial multi-omic map of human 
myocardial infarction.  
(A) Cell type composition as determined by scaled Tangram cell type prediction scores.  

  



 

Supplemental Figure 6: CRISPR-Cas9 KO of ADAMTS12 in human PDGFRB+ cells.  
(A) Sequencing of the PCR-amplified ADAMTS12 CRISPR target site in human PDGFRB+ 

kidney cells transduced with a non-targeting guide RNA (control) or an ADAMTS12 CRISPR-
Cas9 vector. Two point mutations and a base deletion were identified in ADAMTS12-KO cells. 
Seq: WT ADAMTS12 sequence. (B) RT-qPCR for ADAMTS12 (n=6 per group, pNTG TGFb vs. 

ADAMTS12 KO TGFb<0.0001, two-way ANOVA with Tukey’s post hoc) in control and ADAMTS12-KO 
PDGFRB+ fibroblasts after treatment with TGFb or Vehicle. (C) Logarithmized gene counts of 
individual control and ADAMTS12-KO PDGFRB+ samples (n=4 per group). (D) Principal 
Component Analysis (PCA) of control and ADAMTS12 KO PDGFRB+ samples. (E) Image 
processing workflow for migration tracking: Cell autofluorescence was captured every 10 min 
for 18-24 hours. Prediction maps were created, and cell tracks calculated. Cell tracks were 
overlaid starting from the origin. Scale bar: 100 μm.  

 

 

 

 

  



Supplemental Figure 7: Rescue of ADAMTS12-KO by overexpression of catalytically 
active and inactive ADAMTS12.  
(A) Confirmation of Cas9 silencing in ADAMTS12-KO PDGFRB+ cells. Cas9 gene expression 
in ADAMTS12-KO cells shortly after ADAMTS12 CRISPR-Cas9-plasmid transduction versus 
Cas9 expression at later time points (n=4 per group, pKO (before) vs. Active<0.0031). (B) Western 
Blot for HA and Tubulin after HA-ADAMTS12 immunoprecipitation. TCL = Total Cell Lysate. (C) 
Western Blot for HA and COMP after digestion of COMP by active and inactive HA-
ADAMTS12. Active, but not inactive ADAMTS12 leads to cleavage of COMP as detected by 
anti-COMP bands at 54,8 kDA after incubation with active, but not inactive ADAMTS12. (D) 
Gene counts of ADAMTS12-KO, active and inactive ADAMTS12 expressing samples after 
Log2 transformation (n=4 per group). (E) Principal Component Analysis of samples shown in 
D, including the outlier sample “Inactive 4”. (F) Principal Component analysis of samples 
shown in D, excluding the outlier sample “Inactive 4”. (G) Volcano Plot showing DEG of inactive 
ADAMTS12 expressing PDGFRB+ cells versus ADAMTS12-KO PDGFRB+ cells. (H) DEG in 
active vs inactive ADAMTS12 expressing PDGFRB+ cells. (I) DEG in inactive ADAMTS12 
expressing PDGFRB+ cells vs ADAMTS12-KO PDGFRB+ cells. (J) Differentially expressed 
matrix-metalloproteinases in active vs inactive ADAMTS12 overexpressing PDGFRB+ cells 
ordered by t-value. 

  



 
Supplemental Figure 8: Loss of Adamts12 abrogates JAK-STAT signaling in vivo. 
(A) Western Blot and band density quantification of STAT1 and STAT2 in kidneys of WT and 
ADAMTS12—/— mice 10 days after UUO surgery (WT n=7, Adamts12—/— n=6, pSTAT1=0.0095, 
pSTAT2=0.0091) or (B) sham surgery (pSTAT1=0.08, pSTAT2=0.16). (C-D) Western Blot and band 
density quantification of STAT3 after UUO or sham surgery (pSTAT3, UUO=0.08, pSTAT3, Sham=0.86). 
(E) PROGENy pathway activity of interstitial cells subsetted from the published KPMP scRNA-
seq human kidney dataset stratified by cell type and disease (donor control, AKI, CKD). (F) RT-
qPCR of injury response fibroblasts marker genes ATF3, DHRS7 and FOS after treatment with 
20 nM Batimastat or Vehicle in ADAMTS12 KO, active ADAMTS12 overexpressing and 
inactive ADAMTS12 overexpressing PDGFRB+ cells (n=3 per group). For (A-D) an unpaired t-
test was performed. For (F) a two-way ANOVA with Tukey’s post hoc was performed.  



 
Supplemental Figure 9: HMCN1 is a substrate of ADAMTS12 that facilitates ADAMTS12-
induced migration. 
(A) Western Blot of COMP in kidneys from WT and Adamts12—/— mice 10 days after sham or 
UUO surgery (WT n=7, Adamts12—/— n=6). (B) Band density of COMP shown in A normalized 
by Beta-Tubulin (pSham=0.19, pUUO=0.10). (C) Western Blot of CTGF in above mentioned 
kidneys. (D) Band density of CTGF shown in C normalized by GAPDH (pSham=0.0013, 
pUUO=0.068). (E) GO-terms based on top downregulated proteins in ECM of WT vs 
ADAMTS12-KO PDGFRb+ cells. (F) DB Matrisome gene set enrichment in ECM of WT vs 
ADAMTS12-KO PDGFRb+ cells. (G) Top differentially expressed matrix metalloproteinases in 
the ECM of WT vs KO PDGFRb+ cells. (H) Western Blot of recombinant COMP after digestion 
with 90 (1x) or 180 ng (2x) ADAMTS12 (pSham=0.24, pUUO=0.002815). (I) RT-qPCR of HMCN1 
after knockdown with HMCN1 or scrambled siRNA in ADAMTS12-KO or active ADAMTS12 
expressing cells (n=3 per group, pKO=0.0038, pAct=0.0015, two-way ANOVA with Tukey’s post 
hoc). Unless otherwise specified comparisons were performed with an unpaired t-test. 



 

Supplemental Figure 10: Representative HE stainings of hearts, kidneys, livers, lungs, 
spleens and muscle of WT and Adamts12—/— mice. Scale bar: 50 μm. n=6 per group.  

 


