Supplemental figures

Supplemental Figure 1. Single-cell sequencing reveals cellular landscape of intestinal fibrosis.

(A) Representative gross pathology images of non-fibrotic and fibrotic site of surgical intestinal specimens from a CD patient.

(B) UMAP plot showing all cells distribution of across 6 fibrotic and 6 non-fibrotic

samples. R package harmony was used to correct batch effects and constructed one UMAP based on all cells.

(C) Feature plots showing the expression of canonical markers in major cell types from CD patients.

(D) Bar plots showing percentage of major cell types across 12 samples.

(E) Comparison of frequencies of major cell types in paired fibrotic intestinal samples (n = 6) and non-fibrotic intestinal samples (n = 6). Statistical difference were determined by paired t tests.

(F) Boxplots showing respective ECM signature score (collagen, glycoprotein and proteoglycan) of each cell type in fibrosis states. Statistical differences were determined by one-way ANOVA with Bonferroni correction.

Supplemental Figure 2. Heterogeneity of the mesenchymal stromal cells in intestinal fibrosis.

(A) UMAP plot showing MSCs distribution across 6 fibrotic and 6 non-fibrotic samples. R package harmony was used to correct batch effects and constructed one UMAP based on MSCs.

(B) Bar plots showing percentage of MSCs subclusters across 12 samples.

(C) Comparison of frequencies of MSCs subclusters in paired fibrotic intestinal samples (n = 6) and non-fibrotic intestinal samples (n = 6). Statistical difference were determined by paired t tests.

(**D**) Flow cytometry gating strategy for FAP^+ fibroblasts and $FGFR2^+$ fibroblasts.

(E) Dot plots of the markers used by flow cytometry gating in scRNA-seq data. The average gene expression and percentage of cells expressed are shown by dot colour and size, respectively.

Supplemental Figure 3. Heterogeneity of the mesenchymal stromal cells in intestinal fibrosis.

(A) Dot plots showing top 5 significant gene ontology (GO) enrichment terms in all MSCs subclusters. A hypergeometric test was performed with FDR-adjusted P values.
(B) Boxplots showing respective ECM signature score (collagen, glycoprotein and proteoglycan) of each MSCs subcluster in fibrosis states. Statistical difference were

determined by one-way ANOVA with Bonferroni correction.

(C) The relative expression of the ECM-related genes in the non-fibrotic and fibrotic intestinal tissues was analyzed by qPCR. The points corresponding to the paired samples (n=6) in the graph are connected. Statistical difference were determined by paired t tests.

Supplemental Figure 4. TWIST1 is a critical transcription factor in the differentiation of FAP^+ fibroblasts.

(A) The mRNA levels of FAP, FGFR2 and MCAM in FAP^+ fibroblasts, $FGFR2^+$ fibroblasts and pericytes sorted from fibrotic sites(n=5) were analyzed by qPCR to verify the purity of sorted cells. Statistical difference were determined by one-way ANOVA.

(**B-C**) Inferred differentiation trajectory for 4 fibroblast subclusters by monocle. Each dot represents a cell, and colour represents the annoted subclusters (**B**) and estimated pseudotime for each cell (**C**).

(**D**) Heatmap showing the dynamic expression (z score) changes of representative genes along the differentiation pseudotime of $FGFR2^+$ fibroblasts to FAP^+ fibroblasts.

(E) The relative expression of TWIST1 in the non-fibrotic and fibrotic intestinal tissues was analyzed by qPCR. The points corresponding to the paired samples (n=6) in the graph are connected. Statistical difference was determined by paired t test.

Supplemental Figure 5. Identification of profibrotic macrophage phenotypes and their interactions with FAP^+ fibroblasts in intestinal fibrosis.

(A) UMAP plot showing myeloid cells distribution across 6 fibrotic and 6 non-fibrotic samples. R package harmony was used to correct batch effects and constructed one UMAP based on myeloid cells.

(B) Bar plots showing percentage of myeloid cells subclusters across 12 samples.

(C-D) Comparison of frequencies of myeloid cells subclusters in paired fibrotic intestinal samples (n = 6) and non-fibrotic intestinal samples (n = 6). Statistical difference were determined by paired t tests.

(E) Flow cytometry analysis revealed the proportion variation of $AIF1^+$ macrophages to CD45⁺ live cells in non-fibrotic and fibrotic sites. The points corresponding to the paired samples (n=6) in the graph are connected. Statistical difference was determined by paired t test.

(F) Flow cytometry gating strategy for myeloid cells.

Supplemental Figure 6. Identification of profibrotic macrophage phenotypes and their interactions with FAP^+ fibroblasts in intestinal fibrosis.

(A) Representative gene ontology (GO) enrichment of the marker genes expressed in $CXCL9^+$ macrophages. A hypergeometric test was performed with FDR-adjusted P values.

(B-C) Boxplots showing profibrotic(B) and antifibrotic(C) signature score of each myeloid subcluster. Statistical differences were determined by one-way ANOVA with Bonferroni correction.

(**D**) Gene Set Enrichment Analysis (GSEA) of hypoxia gene sets from 50 hallmark gene sets in MSigDB between $CXCL9^+$ macrophages and the other two macrophage clusters. NES, normalization enrichment score.

Supplemental Figure 7. Single-cell sequencing on DSS-induced fibrosis mouse model.

(A) UMAP plot of major cell types of mouse model.

(**B**) Dot plots of the representative markers of major cell types of mouse model. The average gene expression and percentage of cells expressed are shown by dot color and size, respectively.

(C) Dot plots of the representative markers of subclustered MSCs of the mouse model. The average gene expression and percentage of cells expressed are shown by dot color and size, respectively.

(D) Boxplots showing differential composition of MSCs subclusters between DSS-treated (n=5) and control mice (n=5). Statistical differences were determined by t tests.
(E) Heatmap showing the relative expression (z score) of top 5 TF genes in each MSCs subtypes.

Supplemental Figure 8. Single-cell sequencing on DSS-induced fibrosis mouse model.

(A) Dot plots of the representative markers of subclustered myeloid cells in the mouse model. The average gene expression and percentage of cells expressed are shown by dot color and size, respectively.

(**B**) Boxplots showing differential composition of myeloid subclusters between DSStreated (n=5) and control mice (n=5). Statistical differences were determined by t tests. (**C**) Representative gene ontology (GO) enrichment of the marker genes expressed in *Cxcl9*⁺ macrophages. A hypergeometric test was performed with FDR-adjusted P values.

Supplemental Figure 9. Targeting TWIST1 inhibits fibroblast activation and attenuates experimental intestinal fibrosis.

(A) Schematic diagram showing the strategy for generation of Twist1^{fl/fl} mice by homologous recombination using CRISPR/Cas9. Exon 1-2 of the transcript Twist1-201

was selected as the flox region. P1 and P2 are primers used for PCR to distinguish the wild type and Twist1^{fl/fl} alleles.

(B) Genotyping of Twist1^{fl/fl} mice with P1 and P2 primers. DNA was prepared from tails of Twist1^{fl/fl} mice.

(C) The mouse weight change curve (normalized to the first day) of 4 indicated mouse groups.

(**D**) Representative IF staining of mouse colons among 4 indicated groups. (20x). DAPI (blue), TWIST1 (red) and PDPN (green). Merged channels are shown. Bar, 50 μm.

(E) The mRNA levels of fibrosis-related genes of 4 indicated mouse groups were analyzed by qPCR. Data represent mean \pm SD. Statistical difference were determined by one-way ANOVA with Bonferroni correction.

Supplemental Figure 10. Flow cytometry of MSCs and myeloid cell subsets in *Col1a2-Cre^{ERT2}:Twist1^{fl/fl}* mice.

(A) Bar plot showing the proportional variation in $gp38^+CD81^+$ MSCs (left) and $gp38^+CD146^+$ MSCs to total MSCs (CD326⁻CD45⁻CD31⁻) in *Col1a2-Cre*^{ERT2}: *Twist1*^{fl/fl} and *Twist1*^{fl/fl} mice undergoing chronic DSS treated water control. Statistical differences

were determined by one-way ANOVA with Bonferroni correction. (n=5 per group) (B) Flow cytometry gating strategy for mice MSCs.

(C) Bar plot showing the proportional variation in CD206⁻ macrophages (left) and neutrophils to total CD45⁺ cells in *Col1a2-Cre^{ERT2}:Twist1^{f1/f1}* and *Twist1^{f1/f1}* mice undergoing chronic DSS treated water control. Statistical differences were determined by one-way ANOVA with Bonferroni correction. (n=5 per group)

(**D**) Flow cytometry gating strategy for mice myeloid cells.

Supplemental tables:

Patient ID	P1	P2	P3	P4	P5	P6
Age (y/o)	44	28	44	27	51	52
Gender	Male	Male	Male	Female	Male	Female
Disease duration (y)	5	5	7	8	10	8
Smoking status	Never	Never	Never	Never	Never	Never
BMI	23.55	18.52	20.67	28.36	20.41	20.1
Therapy at time of surgery	None	Anti- TNFα	None	5-ASA	AZA	MTX
Motreal classification	l					
Age at diagnosis	A2	A2	A2	A2	A3	A3
Location	L1	L3	L1	L3	L1	L1
Behaviour	B2	B3	B2	B3	B2	B3
Perianal disease	No	No	No	No	No	No
Stricture site	ileum	ileum	ileum	ileum	ileum	ileum
Creeping fat	Yes	No	Yes	Yes	Yes	Yes

Supplemental Table 1. Clinical information of patients included	l for	scRNA-
seq, related to Figure1 and Figure S1		

y/o, years old; y, years; 5-ASA, 5-Aminosalicylic acid; AZA, Azathioprine; MTX, Methotrexate; A1, below 16 y/o; A2, between 17 and 40 y/o; A3, above 40 y/o; L1, ileum; L2, colonic; L3, ileocolonic; L4, isolated upper disease; B1, non-stricturing, nonpenetrating; B2, stricturing; B3, penetrating.

Gene	Species	Forward primer	Reverse primer
COL1A1	Homo	GTGCGATGACGTGATCTG	CGGTGGTTTCTTGGTCGG
	sapiens	TGA	T
COL3A1	Homo	GCCAAATATGTGTCTGTG	GGGCGAGTAGGAGCAGT
	sapiens	ACTCA	TG
COL6A1	Homo	ACAGTGACGAGGTGGAG	GATAGCGCAGTCGGTGT
	sapiens	ATCA	AGG
ACTA2	Homo	GTGTTGCCCCTGAAGAGC	GCTGGGACATTGAAAGT
	sapiens	AT	CTCA
POSTN	Homo	GACCGTGTGCTTACACAA	AAGTGACCGTCTCTTCCA
	sapiens	ATTG	AGG
TWIST1	Homo	AGCTACGCCTTCTCGGTC	CCTTCTCTGGAAACAATG
	sapiens	T	ACATC
FAP	Homo	TGAACGAGTATGTTTGCA	GGTCTTTGGACAATCCCA
	sapiens	GTGG	TGT
FGFR2	Homo	GGAAAGTGTGGTCCCATC	TCCAGGTGGTACGTGTGA
	sapiens	TGA	TTG
MCAM	Homo	GAAGTCACCGTCCCTGTT	CCCCGTTGTCGTTGGTTG
	sapiens	TTC	T
GAPDH	Homo	ACAACTTTGGTATCGTGG	GCCATCACGCCACAGTTT
	sapiens	AAGG	C
Fap	Mus	GTCACCTGATCGGCAATT	CCCCATTCTGAAGGTCGT
	musculus	TGT	AGAT
Twist1	Mus	GAGCAAGATTCAGACCCT	CATCTTGGAGTCCAGCTC
	musculus	CAA	GT
Collal	Mus	CTTCACCTACAGCACCCT	CTTGGTGGTTTTGTATTC
	musculus	TGTG	GATGAC
Col3a1	Mus	GAAAGAGGATCTGAGGG	GGGTGAAAAGCCACCAG
	musculus	CTCG	ACT
Fibronectin	Mus	ATGTGGACCCCTCCTGAT	GCCCAGTGATTTCAGCAA
	musculus	AGT	AGG

Supplemental Table 2. Primer sequences for qPT-PCR

Timp-1	Mus	GCTTGGTTCCCTGGCGTA	GTGAGTGTCACTCTCCAC
	musculus	CTCT	TTTGC
Gapdh	Mus	CAGTGGCAAAGTGGAGA	CTCHCTCCTGGAAGATGG
	musculus	TTGTTG	TGAT

Cell types	Top marker genes
MSCs	LUM, DCN, PTGDS, CFD, COL3A1, COL1A2, ACTA2, COL1A1, IGFBP5, COL6A2
Endothelial cells	PECAM1, VWF, FABP5, ACKR1, RAMP2, SLC9A3R2, HYAL2, RAMP3, ID1, SOX18
Myeloid cells	IL1B, LYZ, S100A9, CXCL8, C1QA, CCL3, C1QB, HLA- DRA, HLA-DPA1, G0S2
B cells	MS4A1, CD79A, BANK1, CD37, HLA-DRA, CD83, HLA-DQA1, HLA-DQB1, CCR7, HLA-DPB1
Plasma cells	JCHAIN, IGKC, IGHA1, IGHA2, IGHG1, IGLC1, IGHG3, MZB1 ,SSR4, DERL3
Glial cells	CRYAB, S100B, GPM6B, NRXN1, PLP1, CDH19, SCN7A, PMP22, CLU, ALDH1A1
Mast cells	TPSB2, TPSAB1, CTSG, CPA3, GATA2, MS4A2, AREG, IL1RL1, ADCYAP1, HDC
T/ILCs	CD3D, CD3E, IL7R, CCL5, KLRB1, CD2, TRBC2, TRAC, IFNG, NKG7
Epithelial cells	KRT18, EPCAM, KRT19, MUC2, KRT20, FABP6, AGR2, KRT8, ALDOB, REG3A
FAP+ Fibroblasts	FAP, TWIST1, CHI3L1, CTHRC1, IGFBP4, GREM1, CTSK, THBS2, C3, FBLN2
NT5E+ Fibroblasts	NT5E, SFRP2, MGP, CCDC80, DPT, C7, RSPO3, GSN, OGN, CXCL12
FGFR2+ Fibroblasts	FGFR2, ADAMDEC1, CXCL14, CTSC, CXCL1, ALDH1A3, CCL8, CXCL6, CXCL8, HAPLN1
CCL11+ Fibroblasts	CCL11, CCL13, SFRP1, CFD, PTGD, ADAMDEC1, FABP5, FNDC1, TNXB, FBLN1
<i>BMP7</i> + Telocytes	PDGFRA, F3, FOXL1, BMP7, NRG1, ID1, NPY, AGT, SOX6, TRPA

Supplemental Table 3. Signature genes for each cell cluster (human).

BMP7- Telocytes	PDGFRA, F3, FOXL1, ALKAL2, APO, EDNRB, PCSK6, LY6H, SOX6, MMP11
Pericytes	PDGFRB, MUSTN1, RGS5, TINAGL1, MT1M, RGS16, NOTCH3, NDUFA4L2, MCAM, CPE
Myocytes	DES, ACTG2, MYH11, HHIP, CKB, GREM2, CNN1, TPM2, FLNA, TAGLN
Monocytes	IL1B, IL1A, PTGS2, VCAN, FCN1, SOD2, NLRP3, IER3, OLR1, CD44
CXCL9+ macrophages	CXCL9, CHI3L1, CAPG, MMP9, CXCL10, IL411, IL32, NR1H3, LILRB4, BHLHE41
<i>MRC1</i> + macrophages	MRC1, SELENOP, MAF, FOLR2, C1QA, A2M, IGF1, PLD3, CD163, CSF1R
AIF1+ macrophages	AIF1, TMSB4X, TPT1, HLA-DPA1, HLA-DPB1, CD74, TYROBP, HLA-DRA, APOE, B2M
Granulocytes	FCGR3B, CSF3R, S100A8, S100A9,CXCR1,CXCR2,IFITM2,SOD2,SRGN,CXCL8
DC1	CLEC9A,CADM1,CLNK,XCR1,ENPP1,TACSTD2,DBN1, ASB2,BTLA,CCND1
DC2	CD1C,FCER1A,CD207,AFF3,CD1E,CD52,PLD4,CD1D, NDRG2,PRMT9
Migratory DC	LAMP3,FSCN1,CCR7,LAD1,NCCRP1,CD200,TREML1, CCL19,INSM1,CCL22
pDC	CLEC4C,LILRA4,GZMB,CLIC3,SCT,TCL1A,MYBL2,SM PD3,LRRC26,MAP1A

Cell types	Top marker genes
MSCs	Dcn, Col3a1, Gsn, Col1a2, Col1a1, Dpt, Postn, Fn1, Igfbp4, Igfbp5
Endothelial cells	Pecam1, Vwf, Ccl21a, Fabp4, Flt1, Plvap, Ly6c1, Igfbp7, Podxl, Adgrf5
Myeloid cells	S100a9, S100a8, Cxcl2, Il1b, Lyz2, Tyrobp, Cd14, Clec4e, Ifitm1, Fcer1g
B cells	Cd79a, Ly6d, Ighm, Cd79b, Ebf1, Ms4a1, Scd1, Ighd, H2- Ob, Cd74
Plasma cells	Mzb1, Igha, Jchain, Iglv1, Iglv2, Iglc1, Iglc3, Iglc2, Xbp1, Igkc
Proliferating cells	Mki67, Stmn1, Pclaf, Hmgb2, Top2a, Tubb5, Ube2c, Tuba1b, Cks1b, Smc4
T/NK cells	Cd3d, Nkg7, Ccl5, Icos, Trbc2, Cd3e, Cd3g, Il7r, Gzmb, Trbc1
Epithelial cells	Epcam, Krt8, Saa1, Krt19, Muc3, Tff3, Muc2, Muc13, Cldn7, Tspan1
Cd81+Pi16- Fibroblasts	Cd81, Ptn, C3, Dcn, Smoc2, Il33, Rspo3, Thbs2, Ackr4, Fbln1
Cd81+Pi16+ Fibroblasts	Cd81, Pi16, Cd34, Col14a1, Igfbp6, Cilp, Pcolce2, Mfap5, Plxdc2, Dcn
Fgfr2+Grem1- Fibroblasts	Fgfr2, Adamdec1, Igfbp3, Col15a1, Col6a5, Igfbp4, Lpl, Ccl11, Nrp1, Fn1
Fgfr2+Grem1+ Fibroblasts	Fgfr2, Grem1, Eln, Sfrp2, Mgp, Igfbp4, Tnfsf13b, Gsn, Cd55, Cxcl12
<i>Bmp3</i> - Telocytes	Pdgfra, Foxl1, Procr, F3, Bmp2, Nrg1, Ptprr, Glp2r, Ptpre, Il1rl1
<i>Bmp3</i> + Telocytes	Pdgfra, Foxl1, Procr, F3, Bmp3, Wnt5a, Tcf4, Nbl1, Sox6, Adam19

Supplemental Table 4. Signature genes for each cell cluster (mouse).

Pericytes	Rgs5, Notch3, Mcam, Pdgfrb, Rgs4, Ebf1, Rasd1, Myo1b, Esam, Heyl
Myocytes	Hhip, Myh11, Acta2, Actg2, Tagln, Myl9, Mylk, Tpm2, Cnn1, Lmod1
Monocytes	Ly6c2, Cd14, S100a4, Lyz2, Vcan, Ly6e, Ccr2, Ms4a4c, Tmsb10, Npc2
<i>Cxcl9</i> + macrophages	Cxcl9, Cd68, Ccl5, Cxcl10, Nos2, Sdc4, Mmp14, Il1a, Ly6i, Nrg1
<i>Mrc1</i> + macrophages	Mrc1, Selenop, Folr2, C1qb, C1qc, C1qa, Ccl8, Ccl7, Apoe, Fcrls
Aif1+ macrophages	Aif1, H2-Aa, H2-Ab1, H2-Eb1, C1qa, C1qb, C1qc, Mmp13, Itga9, Mmp14
Granulocytes	Csf3r, S100a8, S100a9, Retnlg, Wfdc21, G0s2, Cstdc4, Pglyrp1, Lcn2, Hdc
DC1	Clec9a, Wdfy4, Xcr1, Itgae, Ears2, Flt3, Ncoa7, Hic1, Lrrk2, H2-Ob
DC2	Cd209a, Klrd1, H2-DMb2, Cd209c, H2-Oa, Klrb1b, Ramp3, Kit, Clec10a, Ctnnd2
Migratory DC	Ccr7, Fscn1, Il12b, Ccl22, Il4i1, Socs2, Cd200, Sema7a, Ccser2, Mreg
pDC	Ly6d, Siglech, Bst2, Ccr9, Cd8b1, Cd7, Lrp8, Atp1b1, Spib, Cd300c

Supplemental Table 5. Signature genes used to define functional genesets.

Signature	Genes
	ITGA2, COL5A1, LAMC3, DCN, LAMA3, CPB2, ITGA11, PRSS2,
	CYP1B1, COL6A3, COL6A2, COL6A1, COL11A1, FSCN1, CTRB2,
	HSPG2, FAP, PLOD3, GREM1, COL4A1, COL3A1, COL2A1, COL1A1,
	FERMT1, NPHS1, LAMA2, THBS1, LAMB1, VCAM1, BCAN, CTRB1,
	TNXA, ABL1, BCL3, DPP4, PRDX4, OLFML2A, SPARC, FN1, CCDC80,
	MMP11, LOXL1, DDR1, CAPN2, TLL1, CAPN1, MPV17, ANXA2,
	PDGFA, CMA1, VTN, CTSV, MATN3, LAMA5, ITGA10, COL8A2,
	COL18A1, ADAMTS20, ADAM19, LAMA4, RECK, COL5A2, MMP20,
	SPINK5, RIC8A, DDR2, SPINT2, COMP, CTGF, CLASP2, SERAC1,
	FLOT1, CARMIL2, ICAM5, ENG, ATXN1L, MMP8, SERPINE1, FMOD,
	NID2, FGF2, ANTXR1, VWA1, THSD4, TNXB, ITGAX, ITGAL, SPP1,
	COL19A1, GFOD2, ATP7A, NOXO1, DNAJB6, ADAMTS4, ADAM12,
	FGFR4, MATN4, ADAMTS2, COL5A3, IHH, ERO1A, SFRP2, ELN, CTSS,
	KDR, KLK2, SMOC2, NDNF, FBLN5, VPS33B, OPTC, SMAD3, SPINT1,
	PLG, PRSS1, NR2E1, CREB3L1, ICAM4, ITGB1, MMP14, LRP1, P4HA1,
	COL7A1, ITGA4, VCAN, ADAM10, ABI3BP, DPT, MELTF, DSPP, CD47,
	NOX1, COL8A1, HSD17B12, PTK2, CRISPLD2, PDGFB, LOX, HAS2,
	MMP19, COL1A2, SPOCK2, COL16A1, ITGA8, IBSP, BGN, SCUBE3,
	TCF15, SERPINH1, TTR, CD44, JAM2, LCP1, VIPAS39, CFLAR, GAS6,
	ITGB2, MMP1, KLKB1, APP, FOXC1, B4GALT1, MYH11, PHLDB2,
ECM	LAMB2, NFKB2, CTSG, ACAN, ITGB6, LAMB3, ITGA9, TGFB2, ELANE,
	NPHP3, CLASP1, MFAP2, FBLN1, KIF9, PECAM1, MATN1, ITGAM,
	HPN, VWF, MMP12, COL12A1, FOXC2, HPSE2, A2M, TPSAB1, F11R,
	COL13A1, HAS1, CTSK, ITGAE, APBB2, LOXL2, ITGB5, ERCC2,
	MPZL3, SH3PXD2A, NF1, COL4A4, C6orf15, COL9A1, CST3, TIMP1,
	AGT, ADAMTS14, LAMC1, TGFBI, POMT1, ITGAV, SOX9, CYR61,
	EGFLAM, TLL2, SERPINB5, ADAMTSL4, EXOC8, PDPN,
	CSGALNACT1, TNFRSF11B, PDGFRA, HTRA1, MMP16, MMP15,
	LOXL3, COL10A1, POSTN, ETS1, TIMP2, CAPNS1, SCX, TMPRSS6,
	ITGA7, CHADL, NOTCH1, MYF5, ITGB8, ITGB7, ADAMTSL2, ITGA3,
	FURIN, WNT3A, TNC, KAZALD1, LUM, NPNT, VIT, TNF, COL27A1,
	WASHC1, TGFBR1, AGRN, ADAM8, NID1, SH3PXD2B, GPM6B,
	MADCAM1, ADAM15, JAM3, TNR, COL14A1, ERO1B, TGFB1, DAG1,
	RAMP2, ITGB3, BSG, MYO1E, FOXF2, FOXF1, LAMA1, COL11A2,
	COL9A2, EGFL6, LAMC2, PHLDB1, ITGA2B, ELF3, MMP9, COL4A2,
	MMP2, MMP3, HAPLN1, MFAP4, SCUBE1, ECM2, SULF1, SULF2,
	HAS3, ITGB4, ITGA6, PXDN, MMP13, ICAM2, NCAN, COL9A3,
	COL4A6, FBN2, FBN1, HAPLN2, BMP1, MFAP5, SERPINF2, ITGA5,
	COL4A5, ICAM3, CTSL, FLRT2, KLK7, ICAM1, CAPNS2, ADAMTS5,
	RGCC, ITGAD, COL4A3, DMP1, FGG, FGB, FGA, ITGA1, ADAMTS3,
	CDH1, WT1, MMP10, MMP7

	COL10A1, COL12A1, COL14A1, COL16A1, COL1A1, COL1A2,
Collagen	COL21A1, COL3A1, COL5A1, COL5A2, COL6A2, COL6A3, COL8A1,
	COL8A2, COL11A2, COL13A1, COL15A1, COL17A1, COL23A1,
	COL25A1, COL4A1, COL4A2, COL22A1, COL24A1, COL26A1, COL4A6,
	COL9A2, COL18A1, COL19A1, COL27A1, COL4A3, COL4A4, COL4A5,
	COL6A1, COL7A1, COL28A1, COL5A3, COL9A3
	EDIL3, IGFBP1, IGFBP2, NDNF, NPNT, NTNG1, PCOLCE2, SBSPON,
	SMOC1, WISP3, AGRN, BMPER, COCH, CRISPLD1, EMILIN2, FBLN2,
	FBN2, FBN3, FGB, FGG, FGL2, FRAS1, GLDN, HMCN1, IGFALS,
	LAMA1, LAMA3, LAMB1, LAMB3, LAMB4, LAMC2, LGI1, LGI2, LGI4,
	MATN4, MMRN1, MXRA5, NELL1, NELL2, NTN1, PAPLN, RELN, SLIT2,
	SPP1, TGFBI, TINAG, VWA5A, VWA5B1, VWA7, VWDE, ABI3BP,
	AEBP1, CILP, COMP, CRISPLD2, CTGF, CTHRC1, CYR61, DPT,
	ECM1, ECM2, EFEMP1, EFEMP2, EGFLAM, ELN, EMILIN1, FBLN1,
	FBLN5, FBLN7, FBN1, FNDC1, IGFBP3, IGFBP6, IGSF10, LAMA2,
Glycoprotein	LAMA4, LAMC3, LTBP1, LTBP2, LTBP4, MATN2, MATN3, MFAP2,
	MFAP4, MFGE8, MGP, NID1, PCOLCE, POSTN, RSPO3, SLIT3,
	SMOC2, SPON1, SPON2, SRPX, SRPX2, SVEP1, THBS1, THBS2, THBS3,
	THBS4, THSD4, TNC, TNFAIP6, TSKU, VTN, WISP1, WISP2, BGLAP,
	COLQ, CRELD1, CRELD2, CRIM1, EMID1, EYS, FN1, GAS6, HMCN2,
	IGFBP4, IGFBP5, IGFBP7, KCP, LAMA5, LAMB2, LAMC1, LRG1,
	LTBP3, MFAP1, MFAP3, MFAP5, MMRN2, NID2, NOV, NTN4, NTN5,
	NTNG2, POMZP3, PXDN, SNED1, SPARC, SPARCL1, SSPO, TECTA,
	TINAGL1, TNXB, VWA1, VWCE, VWF, ZP3
	CHADL, ESM1, HSPG2, IMPG2, PRG2, SRGN, ACAN, BGN, HAPLN2,
Proteoglycan	HAPLN3, ASPN, DCN, FMOD, LUM, OGN, OMD, PODN, PODNL1,
	PRELP, VCAN, PRG4, SPOCK1, SPOCK2
Dro fibrosia	LIPA, LPL, FDX1, SPP1, SPARC, MATK, GPC4, PALLD, CHI3L1,
r ro-morosis	CHIT1, CTSK, MMP9, MMP7, CSF1, FCMR, TIMP3, SIGLEC15, CCL22
Anti-fibrosis	MMP1, MMP2, MMP14, MMP13, ITGA2, MRC1, MRC2, MFGE8

Supplemental Table 6. Primer sequences for mice Genomic PCR

Primer	Sequence $5' \rightarrow 3'$	Primer type
P1	GGGGAATCCCTTGGGACTAGA	Forward
P2	CTGGGTCGCTGTTGCAGTC	Reverse