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Self-amplifying mRNA (SAM) vaccines can be rapidly deployed
in the event of disease outbreaks. A legitimate safety concern is
the potential for recombination between alphavirus-based
SAM vaccines and circulating viruses. This theoretical risk
needs to be assessed in the regulatory process for SAM vaccine
approval. Herein, we undertake extensive in vitro and in vivo
assessments to explore recombination between SAM vaccine
and a wide selection of alphaviruses and a coronavirus. SAM
vaccines were found to effectively limit alphavirus co-infection
through superinfection exclusion, although some co-replica-
tion was still possible. Using sensitive cell-based assays, replica-
tion-competent alphavirus chimeras were generated in vitro as
a result of rare, but reproducible, RNA recombination events.
The chimeras displayed no increased fitness in cell culture.
Viable alphavirus chimeras were not detected in vivo in
C57BL/6J, Rag1�/� and Ifnar�/� mice, in which high levels of
SAM vaccine and alphavirus co-replicated in the same tissue.
Furthermore, recombination between a SAM-spike vaccine
and a swine coronavirus was not observed. In conclusion we
state that although the ability of SAM vaccines to recombine
with alphaviruses might be viewed as an environmental safety
concern, several key factors substantially mitigate against
in vivo emergence of chimeric viruses from SAM vaccine recip-
ients.

INTRODUCTION
mRNA vaccines have emerged as a novel technology during the SARS-
CoV-2 pandemic, with 100s of millions globally receiving one or more
COVID-19 mRNA vaccinations (e.g., Pfizer-BioNTech, BNT162b2;
Moderna, mRNA-1273). A further development for this technology
is self-amplifying mRNA (SAM) vaccines,1–5 a number of which are
in clinical trials (Table 1) and three having progressed to licensure. A
SAM vaccine against porcine epidemic diarrhea virus (PEDV)
(iPED+, Harrisvaccines) was the first to receive licensing in the US,
with over 2 million doses prescribed by veterinarians for use in
swine.6–8 This technology was acquired byMerck/MSDAnimal Health
Molec
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and forms the basis of the Sequivity vaccine platform (Prescription
Product, RNA Particle), which is based on SAM vaccine packaged in
a so-called virus-like replicon particle (VRP).9 GEMCOVAC-19 (Gen-
nova Biopharmaceuticals), a human COVID-19 SAM vaccine,10,11 was
granted “Primary vaccination series for Restricted Use in Emergency
Situation” by Indian regulators in 2022.12 The human COVID-19
SAM vaccine ARCT-154 (Arcturus Therapeutics) received full
approval by Japanese authorities in 2023.13 In contrast to the early
SAM vaccines packaged in VRPs, these COVID-19 SAM vaccines
are formulated in lipid nanoparticles (LNPs) (Table 1).

SAM vaccines exploit the ability of alphavirus non-structural proteins
(nsPs) to amplify mRNA in cells of the vaccine recipient. Vaccine an-
tigenmRNA and protein levels are thereby amplified providing a dose
sparing vaccine option.1,4,14 The nsPs can be derived from several al-
phaviruses, althoughmost advanced SAM vaccines use the nsPs of the
live-attenuated investigational Venezuelan equine encephalitis virus
(VEEV) vaccine strain TC-83 (Table 1), which has been administered
to thousands of humans, primarily laboratory workers and military
personnel.15,16 TC-83 is also available in Mexico and some South
American countries as a registered veterinary vaccine for horses
(Equivac TC-83).17

The alphavirus nsPs are translated from the positive strand RNA
(+RNA/mRNA) as a polyprotein and cleaved into nsP1, nsP2,
nsP3, and nsP4 (the RNA-dependent RNA polymerase), which
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Table 1. Clinical trials of alphavirus-based SAM vaccines

Alphavirus-based vector Target Delivery platform Enrollment Institute/Company Clinical trial phase and number

? influenza virus ? 468* Pfizer
phase 1
NCT05227001 (2022–2023*)

SFV4 HPV (TCV) VRP 12 UMCG, Dutch Cancer Society, and ViciniVax
phase 1
NCT03141463 (2017-2017)92

Attenuated VEEV CEA (6D) (TCV) VRP 28 AlphaVax
phase 1 and 2
NCT00529984 (2007–2010)93

Attenuated VEEV HCMV VRP 40 AlphaVax
phase 1 and 2
NCT00439803 (2007–2008)94

Attenuated VEEV HIV VRP 48 and 96 AlphaVax
phase 1
NCT00063778 (2003–2005)
NCT00097838 (2004–2009)95

Attenuated VEEV influenza virus VRP 216 and 28 AlphaVax
phase 1 and 2
NCT00440362 (2007–2007)
NCT00706732 (2008–2009)

VEE vector neo-antigen (TCV) LNP 214* Gritstone bio
phase 1 and 2
NCT03639714 (2019–2023*)96

VEEV TRD SARS-CoV-2 LNP 192 Imperial College London
phase 1
ISRCTN17072692 (2020–2021)97,98

VEEV TC-83 SARS-CoV-2 LNP 581 Arcturus Therapeutics
phase 2
NCT04668339 (2021–2022)

VEEV TRD SARS-CoV-2 LNP 42* MRC/UVRI and LSHTM Uganda Research Unit
phase 1
NCT04934111 (2021–2022*)

VEE vector SARS-CoV-2 LNP 81 NIAID and Gritstone bio
phase 1
NCT04776317 (2021–2023*)1

VEEV TC-83 SARS-CoV-2 LNP 72* Arcturus Therapeutics
phase 1 and 2
NCT05037097 (2021–2023*)

VEEV TC-83 SARS-CoV-2 LNP 19400* Vinbiocare and Arcturus Therapeutics
phase 1, 2, and 3
NCT05012943 (2021–2023*)

VEEV TC-83 SARS-CoV-2 LNP 90* SENAI CIMATEC
phase 1
NCT04844268 (2022-2022*)

VEE vector SARS-CoV-2 LNP 340* Gritstone bio
phase 1
NCT05435027 (2022–2023*)

VEEV TC-83 SARS-CoV-2 LNP 63* HDT Bio
phase 1
NCT05132907 (2022–2023*)

VEEV TC-83 SARS-CoV-2 LNP 300* Azidus Brasil and SENAI CIMATEC
phase 2
NCT05542693 (2023-2023*)

VEE vector SARS-CoV-2 LNP 120* Gritstone bio
phase 1
NCT05148962 (2021–2024*)

VEEV TRD/SINV Rabies virus CNE 82 GSK
phase 1
NCT04062669 (2021–2022)

VEEV TRD/SINV SARS-CoV-2 LNP 10 GSK
phase 1
NCT04758962 (2021–2022)99

?, the nature of the alphavirus-based SAM and delivery platform not provided; *, estimated; CNE, cationic nano emulsion; GSK, GlaxoSmithKline Biologicals; HCMV, human cyto-
megalovirus; HIV, human immunodeficiency virus; HPV, human papillomavirus; LNP, lipid nanoparticle; NIAID, National Institute of Allergy and Infectious Diseases; SFV, Semliki
Forest virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SINV, Sindbis virus; TCV, therapeutic cancer vaccine; UMCG, University Medical Center Groningen;
VEEV, TC-83; TC-83-SINV, recombinant replicon vector contains the TC-83 50 UTR and non-structural genes and SINV 30 UTR72; VRP, virus-like replicon particle.
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self-assemble into an RNA replication complex.18,19 This “replicase”
generates a negative strand RNA intermediate, which is used as a tem-
plate for +RNA synthesis.20,21 Importantly, this also initiates synthe-
sis of subgenomic +RNA from the subgenomic 26S promoter located
at the 30 end of the nsP4 gene region on the –RNA.22 In wild-type
(WT) alphaviruses, the subgenomic +RNA encodes the alphavirus
2520 Molecular Therapy Vol. 32 No 8 August 2024
structural proteins, whereas in a SAM vaccine this sequence is re-
placed by a gene of interest (GOI),5 usually a vaccine antigen or (as
used herein) fluorescent reporter genes such as mCherry or nLuc.
No alphaviral structural genes are encoded in the SAM vaccine
RNA, therefore no infectious viruses are generated and no spreading
viral infection can be initiated after SAM vaccination.23



Figure 1. SAM vaccine-induced alphavirus superinfection exclusion

(A) Schematic of experimental set-up; Vero cells were transduced with SAM (10 VRPs/cell) and infected with WT alphaviruses (10 TCID50/cell), either at the same time or with

a 1 h delay between SAM and WT alphavirus. Supernatant fractions were collected and titrated to quantify (B) the WT alphavirus progeny and (D) the level of SAM vaccine

packaged in WT alphavirus particles. (B) WT alphavirus growth kinetics quantified as packaged WT alphavirus genomes (n = 2, detection limit 3 log10TCID50/mL). (C)

Fluorescence microscopy of co-transduced/infected Vero cell; cell nuclei stained with Hoechst, WT alphavirus (CHIKV) stained with rabbit anti-CHIKV E2 antibody, and SAM

vaccine mCherry expression (recolored green). Co-expression of SAM andWT alphavirus in the same cell is indicated in the enlargement using arrowheads. (D) Titer of SAM

packaged in WT alphavirus particles based on SAM-encoded mCherry expression in serial dilutions of supernatant samples (n = 2, detection limit 3 log10VRP/mL).
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Alphavirus RNA has been shown in various settings to be able to
recombine. For instance, western equine encephalitis virus likely
arose from an ancient recombination event between an eastern
equine encephalitis-like virus and a Sindbis-like virus.24 More
recently, Mayaro virus (MAYV) recombinants from Brazil and
Haiti were reported,25 with recombination between chikungunya
virus (CHIKV) clades also proposed.26 Numerous in vitro and
in vivo studies have also illustrated the propensity for alphaviruses
templates to recombine, specifically during the production of
VRPs.27–33 These VRPs encapsulate SAM in single-cycle delivery ve-
hicles. The first-generation of VRPs were manufactured in mamma-
lian cells by expressing the alphavirus structural proteins from a sin-
gle co-transfected helper RNA (encoding the structural proteins
capsid, E3, E2, 6K and E1), with only the co-expressed SAM
packaged into the VRPs. This repeatedly resulted in recombination
between SAM and helper RNA, generating replication competent
alphaviruses.34 To avoid this, “split-helper” systems were developed
whereby the structural genes were expressed from two separate
helper RNAs, which increased the number of required independent
recombination events to reconstitute a full-length, infectious
alphavirus.23
The ability of alphaviruses to recombine presents a theoretical risk for
SAM vaccines.5,35 WT circulating alphaviruses might infect a recent
SAM vaccine recipient, thereby providing the opportunity for the
generation of a novel chimeric alphavirus comprising the structural
genes of the WT alphavirus, and some or all of the non-structural
genes of the SAM vaccine. Since alphaviruses can cause serious dis-
ease symptoms, ranging from encephalitis to arthritis, such chimera
could present a serious health concern and/or environmental risk.36

Herein, we undertake extensive in vitro and in vivo assessments to
explore recombination between a TC-83-based SAM vaccine and a
selection of WT alphaviruses. We also investigate the possibility of
a WT coronavirus acquiring a novel coronavirus vaccine antigen
from a co-replicating SAM vaccine.

RESULTS
Superinfection exclusion mitigates against co-replication

Recombination between a SAM vaccine and WT alphavirus RNA
would ostensibly need both RNA entities to be replicating in the
same cell. A phenomenon known as superinfection exclusion,
whereby prior infection by one virus blocks subsequent infection by
a similar virus, is well described for alphaviruses.37,38 To determine
Molecular Therapy Vol. 32 No 8 August 2024 2521
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Figure 2. Alphavirus replication kinetics on HeLa DG3BP cells

(A) HeLa and HeLa DG3BP cells were infected with various alphaviruses (0.1 TCID50/cell, n = 2). Supernatant fractions were collected and titrated to determine alphavirus

growth kinetics (detection limit 3 log10TCID50/mL).Venezuelan equine encephalitis virus TC-83 (TC-83), bebaru virus (BEBV), and Semliki Forest virus (SFV) demonstrated to

replicate independently of G3BP, whereas Barmah Forest virus (BFV), chikungunya virus (CHIKV), getah virus (GETV), Mayaro virus (MAYV), Middelburg virus (MIDV), Ross

River virus (RRV), southern elephant seal virus (SESV), Una virus (UNAV), and Whataroa virus (WHAV) required the presence of G3BP for efficient virus replication.
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if SAM vaccines can also mediate superinfection exclusion, Vero cells
were transduced with VRPs encapsulating SAM encoding mCherry
(SAM-mCherry) at a multiplicity of infection (MOI) of 10 VRPs/
cell and infected at a MOI of 10 TCID50/cell with WT alphaviruses;
specifically, Barmah Forest virus (BFV), CHIKV, and Una virus
(UNAV) (Figure 1A). When SAM transduction and alphavirus infec-
tion occurred simultaneously, WT alphavirus titers were reduced by
up to z3 log10 (Figure 1B, red). The suppression was similar if
SAM transduction was performed 1 h beforeWT alphavirus infection
(Figure 1B, green), but was less effective if the alphavirus was added
before the SAM vaccine (Figure 1B, blue). Such reduced superinfec-
tion was largely retained when alphaviruses were added at a lower
MOI of 1 TCID50/cell (Figure S1A). In all cases, the SAM-encoded
mCherry reporter was robustly expressed in the majority of cells
due to the powerful expression kinetics of the TC-83 nsPs.39 Thus,
the SAM vaccine is able to reduce superinfection, consistent with a
role for nsPs in this phenomenon,37,38,40 but does not completely
exclude the superinfecting virus.

Despite the ability to mediate superinfection exclusion, co-expression
of SAM andWT alphavirus proteins was observed in a small number
of cells (�7%) by fluorescence microscopy (Figures 1C and S1B).
Furthermore, in the supernatants of such co-infected/transduced
Vero cells (Figure 1A), SAM packaged (or mobilized) with the struc-
tural proteins of the WT alphaviruses could also be readily detected
(Figure 1D). In the same way in which SAM vaccine VRPs are gener-
ated using helper mRNAs, here structural proteins were provided by
infection with the WT alphaviruses. As might be expected, given TC-
2522 Molecular Therapy Vol. 32 No 8 August 2024
83 RNA is packaged by TC-83 structural proteins, TC-83 infection
provided the most efficient SAM packaging, with up to z7 log10/
mL of packaged SAM particles detected (Figure 1D). CHIKV,
UNAV, and BFV infections also resulted in packaging of SAM via a
process of cross-packaging41,42; albeit slightly less efficiently (Fig-
ure 1D). These experiments also illustrated that SAM transduction
1 h after WT alphavirus infection provided the highest level of co-
replication, as shown by the high level of SAM packaging (Figure 1D).

Thus, superinfection exclusion can substantially mitigate against RNA
co-replication of SAM vaccine and WT alphavirus in the same cell.
However, in Vero cells in vitro using high MOIs and appropriate
timing, superinfection exclusion can, to a certain extent, be overcome.

Generation of replication competent, chimeric alphaviruses by

in vitro RNA recombination between SAM vaccine and getah

virus

To provide optimal conditions for co-infection/transduction and thus
potential recombination events, the 1 h delay between SAM-mCherry
VRP transduction and WT alphavirus infection was used (as in Fig-
ure 1D, blue). The generation of chimeric alphaviruses was evaluated
by transferring supernatants from co-infected/transduced Vero cells
to HeLa and HeLa GTPase-activating protein (SH3 domain)-binding
protein knockout (DG3BP) cells (Figure S2). Although WT alphavi-
ruses replicate in HeLa cells, replication of multiple alphaviruses is
not supported in HeLa DG3BP cells (Figure 2) due to G3BP host fac-
tor dependence.43–45 Of a large panel of 12 alphaviruses, only TC-83,
Bebaru virus and Semliki Forest virus were able to replicate in HeLa



Figure 3. In vitro recombination between SAM vaccine and WT alphavirus

(A) Schematic of experimental set-up. Vero cells were infected with WT alphaviruses and transduced with SAM vaccine. After 72 h, supernatants were serial passaged a total

of four times (every 3–4 days) on HeLa and HeLa DG3BP cells, with CPE monitored by inverted bright-field microscope. (B) WT alphaviruses induced CPE in HeLa cells, but

cannot replicate and induce CPE in HeLa DG3BP cells. CPE in HeLa DG3BP cells (DG3BP) indicated the likely presence of a chimeric alphavirus. In the first experiment in

24-well plates, 1/2 wells showed CPE for the combination GETV and SAM encoding mCherry (SAM-mCherry). In the second experiment in 96-well plates, 1/96 wells showed

CPE for GETV and SAM-nLuc. (C) Schematic of the two chimeric alphavirus sequences (not to scale), with flanking sequences of the recombination sites. The predicted

amino acid sequences are provided, although whether the SAM subgenomic promoter is active is unknown. (D) The replication kinetics of the SAM-mCherry-GETV chimera

compared with TC-83 and GETV in Vero (Cercopithecus aethiops), HeLa (Homo sapiens), C6/36 (Aedes albopictus), and Chao Ball (Culex tarsalis) cells infected with 0.1

TCID50/cell (n = 2). Virus titers determined by serial dilution assays (detection limit 3 log10TCID50/mL).
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DG3BP cells (Figure 2), with TC-83 data consistent with previous
studies demonstrating that its nsP3-hypervariable domain provides
G3BP independence.46 The same phenotypes were observed in
U2OS-DG3BP cells (Figure S3). The supernatants from the co-in-
fected/transduced Vero cells were then serially passaged for three
times in HeLa or HeLaDG3BP cells, while virus replication was noted
by cytopathic effects (CPE) (Figure 3A). Thus, a viable chimeric al-
phavirus derived from the TC-83-based SAM should contain, at min-
imum, the TC-83 nsP3-hypervariable domain and the structural pro-
teins from a G3BP-dependent WT alphavirus. Such chimera will be
detected by CPE in DG3BP cells. The sensitivity of this assay is illus-
trated in Figure S4B.

Initially, a set of BFV, CHIKV, and UNAV infections at different
MOIs (Figure S4C), orders of infection (Figure S4C), and in different
cells (Figure S4D) were screened for recombination with SAM. All
combinations failed to generate a chimeric alphavirus capable of
inducing CPE in DG3BP cells. Subsequently, a set of nine G3BP-
dependent alphavirus infections, i.e., BFV, CHIKV, UNAV, Getah vi-
rus (GETV), MAYV, Middelburg virus (MIDV), Ross River virus
(RRV), Southern elephant seal virus (SESV), Whataroa virus
(WHAV), followed by addition of SAM, at 1 h post infection, were
screened for recombination in HeLa DG3BP (Figure 3B) and U2OS
DG3BP (Figure S4E) cells. CPE was observed in 1 out of 2 wells
(24-well plate) containing HeLaDG3BP cells that had received super-
natant from Vero cells infected with GETV and were transduced with
a SAM encoding mCherry as the GOI (Figure 3B, Exp. 1).

The experiment was then repeated using only GETV, in 96-well
plates, in combination with SAM-mCherry and with an additional
SAM vaccine that encoded nano luciferase (SAM-nLuc) as the GOI.
For Exp. 2, 1 well out of 96 wells showed CPE for the SAM-nLuc/
GETV combination (Figure 3B, Exp. 2), whereas none of the 96 wells
with SAM-mCherry/GETV combinations showed CPE in the HeLa
DG3BP cells. Accordingly, recombination is rare and does not depend
on the GOI, present in the SAM.
Molecular Therapy Vol. 32 No 8 August 2024 2523
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Figure 4. Tropism and persistence of SAM vaccine in vivo

(A) C57BL/6J mice were injected subcutaneously into the hindfeet with SAM vaccine (SAM-mCherry, 2 � 105 VRPs/foot). (B) One day post injection, only inguinal lymph

nodes (ILNs) and feet were positive for SAM vaccine by nsP2 sequence qRT-PCR detection. (C) qRT-PCR illustrated that themajority of SAMwas retained in the feet withz1/

100 disseminating to the draining inguinal lymph nodes. The cut-off for detection by PCR was Ct > 40.
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Finally, the experiment was repeated with lipid-mediated delivery of
the SAM vaccine, as current RNA vaccines are usually delivered by
LNPs rather than VRPs. SAM-mCherry was formulated in LNP lipid
mix but showed insufficient transduction efficiency in vitro, therefore
Lipofectamine 2000 lipofection was used (Figure S4F). The combina-
tion between GETV infection and SAM-mCherry lipofection did not
result in CPE in HeLa DG3BP cells (Figure 3B, Exp. 3).

The generation of SAM-GETV chimeras (Figure 3B) was confirmed
by RT-PCR and western blotting (Figures S4G and S4H). RNA
sequencing (RNA-seq) of clarified culture supernatants revealed
that both chimeras contained recombination sites within the GOI
(mCherry or nLuc) of the SAM construct and nsP4 from GETV,
with both subgenomic promoters of SAM and GETV retained, and
heterologous 50 and 30 UTRs (Figure 3C).

Replication fitness of the chimeric alphavirus

To assess replication fitness, growth of SAM-mCherry/GETV
chimera was compared with TC-83 and GETV in mammalian
(Vero, HeLa) and mosquito (C6/36, Chao Ball) cell lines. In all cell
lines, by 48–72 h post infection, the titer of the chimera was >1 log
lower than the attenuated TC-83 vaccine (Figure 3D). Novel features
of the chimera (such as heterologous 50 and 30 UTRs and/or the two
subgenomic promoters) may contribute to this reduced replicative
ability. The chimera also never grew to significantly higher titers
than GETV (Figure 3D), illustrating that the TC-83 replication ma-
chinery provided no growth advantage over GETV in cell cultures.
No replication of TC-83 or the chimera was detected in the Chao
Ball cells (Culex tarsalis) (Figure 3D), even though Culex tarsalis is
a known vector for VEEV.

Co-replication of SAM vaccine and GETV in mouse tissues

Before the in vivo SAM vaccine and alphavirus co-replication exper-
iments, the tropism and persistence of a SAM-mCherry (delivered as
VRPs) was determined upon bilateral, subcutaneous injection in the
hindfeet of adult C57BL/6J mice (Figure 4A). One day post injection,
2524 Molecular Therapy Vol. 32 No 8 August 2024
SAM was detected in the inguinal lymph nodes and at the site of in-
jection, but not in other tissues or serum (Figure 4B). The dispersal to
the inguinal lymph nodes may, in part, be due to the tropism of the
VRPs for residential dendritic cells at the site of injection, with these
cells then migrating to draining lymph nodes.47–49 The SAM was
approximately 2 logs more abundant at the site of injection than in
the local lymph nodes, and remained detectable for at least 7 days
(Figure 4C).

To examine whether RNA recombination between a SAM vaccine
and a WT alphavirus might occur in vivo, SAM-mCherry VRPs
were mixed with GETV and co-injected subcutaneously into the
hindfeet of adult WT C57BL/6J mice, recombination-activating
gene 1-deficient (Rag1�/�) mice, and type I interferon (IFN) recep-
tor-deficient (Ifnar�/�) mice (Figure 5A). Hindfeet were chosen as
they are a few degrees cooler than core body temperatures (36�C–
37�C), which results in depressed type I IFN responses and thus
increased alphavirus replication in foot tissues of C57BL/6J50 and
likely also Rag1�/� mice. C57BL/6J mice represent a standard model
for alphavirus arthritis51,52 with brief viremia. Rag1�/� mice, which
lack functional B and T cells, provide a model of persistent
viremia52,53 and Ifnar�/� mice provide a lethal model, with high level
viremia54,55 (Figure 5B). The inclusion of GETV did not have a major
impact on the presence of SAM; both SAM and GETV RNAs were
simultaneously detected in feet and inguinal lymph nodes with sub-
stantially higher levels in Ifnar�/� mice (Figure S5).

No evidence for the generation of chimeric alphaviruses in vivo

Mice were bled and/or euthanized and tissues harvested at the indi-
cated days post infection/transduction (Figure 5A). Serum viremias
developed as expected (Figure 5B). The putative generation of
chimeric alphaviruses in mice was investigated by sequencing
the polyadenylated RNA in feet using a stranded, 75 bp paired-
end read approach. Sequencing reads were aligned to references
including the mouse (GRCm38 vM26), GETV, and SAM sequences.
Of the z384 million aligned read pairs (across all samples),



Figure 5. In vivo SAM vaccine and GETV co-injection

(A) Schematic of experimental set-up. SAM vaccine encoding mCherry and GETV were co-injected subcutaneously into hindfeet of C57BL/6J, Rag1�/� and Ifnar�/� mice.

Serum and feet were collected at the indicated days post injection. (B) GETV viremia in the indicated mouse strains (n = 12 or 9 on day 1 and decrease to n = 3 on day 5 for

Ifnar�/� mice, and n = 3 on day 14 for C57BL/6J and Rag1�/� mice). (C) RNA-seq of feet; counts of reads aligning to the SAM or GETV sequence. (D) Serum samples were

passaged a total of four times on HeLa and HeLa DG3BP cells. CPE was noted by bright-field inverted microscope with indication of the number of serum samples tested.

(E) qRT-PCR of serum samples using primers for SAM and GETV nsP2 sequences.
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15,185,006 (z4%) aligned to the sequence of SAM or GETV
(Table S1) and confirmed the simultaneous presence of SAM and
GETV in foot tissues (Figure 5C). As expected, the number of reads
aligning to both GETV and SAM vaccine were substantially (>2
logs) higher in Ifnar�/� mice (Figure 5C).

We deployed customized bioinformatic processes that identified
(from all mice and all time points), only six chimeric read-pairs/reads
that contained sequences from both the SAM vaccine and from
GETV (Figure S6). Each chimeric read-pair/read was unique and
was present as a single copy, illustrating that the chimeric read-
pairs/reads were not derived from replicating RNA or replication-
competent virus. Negative qPCR on the same samples confirmed
that the chimeric reads are indeed artifacts (Figure S7). Most likely
the chimeric read-pairs/reads were the result of random template
switching during RNA-seq library construction (Figure S6), which
produces a low frequency of stochastic, irreproducible artifactual
fusion alignments.56 Similar artifactual chimeric read-pairs were
identified for mouse genes on different chromosomes (Figure S8;
Table S1). As cross-chromosome mRNA splicing is not a feature of
mammalian cells, these chimeric reads were assumed artifacts.56 As
expected for a stochastic process, chimeric reads were more frequent
for highly expressed genes (Figures S8B–S8E). As the SAM-GETV
chimeric reads had a lower frequency than mouse-mouse chimeric
reads (Table S1), and were single copies (Figure S6), they are assumed
artifacts created during RNA-seq library preparation.56

In addition to RNA-seq, serum samples collected at the indicated
times (Figure 5A) were examined for the presence of chimeras by
passaging the samples on HeLa and HeLa DG3BP cells as described
previously (Figure 3A). As expected, GETV present in serum samples
caused CPE in HeLa cells (Figure 5D). However, no CPE was
observed in HeLa DG3BP cells for any sample, at any time point,
from any mouse strain (Figure 5D). This indicated that a similar
chimera as generated in vitro (Figure 3C) was not present in the
serum samples.
Molecular Therapy Vol. 32 No 8 August 2024 2525
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Serum samples were also analyzed by qRT-PCR. GETV RNA was de-
tected for up to 7 days post injection in all C57BL/6J mouse serum
samples, consistent with previous data.57 GETV RNA levels persisted
in Rag1�/� and were elevated in Ifnar�/�mice (Figure 5C), consistent
with viremia (Figure 5B). SAM was detected in serum samples of one
C57BL/6J and one Rag1�/� mouse on day 2, and all Ifnar�/� mice on
days 2 and 3 (Figure 5E). This indicated the presence of either (1)
input SAM vaccine that had escaped the injection site and entered
the circulation, (2) SAM packaged/mobilized (as described in Fig-
ure 1D) by GETV structural proteins, or (3) a chimeric virus had
emerged and generated a low-level viremia. Either of the latter two
would indicate co-replication of SAM and GETV in the same cells
in vivo, illustrating (at a minimum) that this experimental set-up
had provided conditions for recombination. However, the actual
occurrence of recombination is not supported by the other analyses;
a replication-competent chimera was not detected in serum by
passaging on HeLa DG3BP (Figure 5D) or in feet by RNA-seq
(Figure 5C).

No evidence for recombination in the spike gene of a SAM

coronavirus vaccine

Distinct from the possibility of recombination between WT alphavi-
ruses and the alphavirus sequences of the SAM vaccine, we investi-
gated the possibility that the SAM vaccine antigen (GOI) could pro-
vide recombination opportunities with virus sequences targeted by
the vaccine. The advent of COVID-19 SAM vaccines (Table 1) and
the well-known ability of coronaviruses to recombine and generate
chimeras with increased fitness,58,59 begged the question of whether
a coronavirus could recombine with a SAM vaccine encoding a coro-
navirus antigen. Recombination between PEDV and a SAM-encoded
PEDV spike protein of a different PEDV strain was therefore evalu-
ated. Firstly, in vitro conditions (Figure 6A) were established that re-
sulted in the presence of SAM and PEDV in the same cells, specifically
PEDV-induced syncytia (Figures 6B, S9A, and S9B).

To assess recombination, we exploited the ability of the PEDV DR13
spike to mediate trypsin-independent infection, due to an R to G sub-
stitution at position 890 in the spike S2 domain,60,61 with PEDV
CV777 only able to infect cells in vitro in the presence of trypsin (Fig-
ure 6C). A series of SAM constructs encoding the PEDV DR13 spike
or S2 domain were transfected into Vero cells (Figures 6D and S9C),
which were also infected with PEDVCV777 in the presence of trypsin
(Figure 6E). Co-replication of SAM and PEDV CV777 did not result
in superinfection exclusion, with PEDV CV777 titers largely being
unaffected by SAM (Figure 6F). Supernatant samples were transferred
onto Vero cells and passaged three additional times in the presence
and absence of trypsin (Figure 6G). As expected, CPE occurred in
the presence of trypsin due to the replication of PEDV CV777 (Fig-
ure 6G, Exp. 1). No CPE was observed in the absence of trypsin (Fig-
ure 6G, Exp. 1), despite the sensitivity of the assay (Figure S9D). This
indicated that no recombination had occurred between the SAM-
DR13 spike/S2 sequence and PEDV CV777 genome to produce a
chimeric coronavirus capable of proliferating in the absence of
trypsin.
2526 Molecular Therapy Vol. 32 No 8 August 2024
A replication-defective PEDV DR13 RNA template (D-PEDV-
DR13)60,61 (Figure 6D) was included as positive control. Supernatant
from cells transfected with this RNA template and infected with
PEDVCV777was able to cause CPE in absence of trypsin (Figure 6G).
As expected, recombination between PEDV CV777 and D-PEDV-
DR13 resulted in acquisition by PEDV CV777 of trypsin indepen-
dence from D-PEDV-DR13 (Figure 6G, Exp. 1).

A repeat experiment was undertaken using the expanded 96 wells
format, with the expected recombination between PEDV CV777
and D-PEDV-DR13 seen in 4 of 96 wells (Figure 6G, Exp. 2). Again,
no PEDV CV777-SAM chimera was generated in any of the 96 wells,
capable of replicating in the absence of trypsin (Figure 6G, Exp. 2).
Overall, these experiments illustrated that PEDV CV777 was able
to acquire genes from a PEDV DR13 RNA template, but not from
a SAM-DR13 spike vaccine.

DISCUSSION
Herein,wepresent thefirst evidence for rareRNArecombination events
between an alphavirus-based SAMvaccine and aWT alphavirus gener-
ating replication-competent alphavirus chimeras in vitro in Vero cells
under optimized conditions. Sequencing indicated a single recombina-
tion event in both chimeras between the SAMGOI (mCherry or nLuc)
and the GETV nsP4 gene. Both chimeras also retained the subgenomic
promoters of the SAM vaccine and GETV. No such recombination
events were observed with a series of other alphaviruses under identical
conditions. Despite optimizing in vivo conditions that would promote
recombination and identify recombination events, we were unable to
detect replication-competent chimeras in three differentmousemodels.
These included Ifnar�/� mice, in which high levels of SAM and GETV
were co-expressed in the same tissue. GETV titers in our in vivo exper-
iments (up to 104 TCID50/mL in C57/BL6 mice at 2 dpi, Figure 6B) are
comparable with viral titers in natural GETV infection of swine62 and
thus reflect the physiological relevance of our model.

Although the ability of SAM vaccines to recombine with a WT alpha-
virus might be viewed as a safety concern, a series of factors mitigate
against emergence of such entities from SAM vaccinated populations.
As shown, superinfection exclusion substantially reduces the proba-
bility of SAM and alphavirus replication in the same cell. Further-
more, SAM vaccines induce CPE in mammalian cells,63 so the num-
ber of transduced cells steadily declines post vaccination, although
SAM can remain detectable for up to 60 days in primates.64 Alphavi-
rus viremias are usually cleared within 7 days,36,65 although again,
viral RNA in tissues steadily declines over time, but can remain
detectable for up to 100 days.53,66 Thus, vaccination and infection
would need to occur within a limited time frame to provide opportu-
nities for co-replication in the same cell. Arguably the most important
consideration is that the high MOIs used in vitro to achieve co-infec-
tion/transduction and overcome superinfection exclusion, may be
difficult to achieve in vivo. In addition, infection with an alphavirus
ordinarily causes rapid induction of protective neutralizing IgM
and IgG antibodies.53,65 Therefore, if a chimeric alphavirus did
emerge in an infected vaccine recipient, it would contain the same



Figure 6. In vitro co-introduction of a coronavirus and a SAM vaccine encoding a coronavirus spike

(A) Schematic of experimental set-up (B) Vero cells were transfected with SAM vaccine encoding mCherry and infected with PEDV CV777 (0.1 TCID50/cell, 24 h post

transfection). (B) Fluorescence microscopy of co-transfected/infected Vero cell; cell nuclei stained with Hoechst, PEDV CV777 stained with mouse anti-PEDV spike, and

SAM vaccinemCherry expression (recolored green). Merge showing co-expression of PEDVCV777 and SAM in syncytium (white line). (C) Vero cells were infected with PEDV

CV777 or PEDV DR13 (0.1 TCID50/cell) in the presence or absence of trypsin (n = 2). PEDV titers were determined based on serial dilutions of supernatants samples on Vero

cells in the presence of trypsin (detection limit 3 log10TCID50/mL). D, Genome organization of PEDV CV777, three SAM vaccine constructs and a defective PEDV DR13 RNA

construct. (E) Schematic of experimental set-up (F and G). The SAM vaccine or defective PEDV DR13 RNA (positive control) constructs were transfected into Vero cells, that

were infected with PEDV CV777 (0.1 TCID50/cell) 4 h prior or 24 h post transfection. After 72 h incubation in the presence of trypsin, supernatants were serial passaged a total

of four times (every 3–4 days) on Vero cells in the presence or absence of trypsin, with CPEmonitored by inverted light microscope. (F) Growth kinetics of PEDVCV777, with or

without transfection with SAM vaccine constructs (n = 2, detection limit 3 log10TCID50/mL). (G) PEDV CV777 induced CPE in Vero cells with trypsin, but cannot replicate and

induce CPE in Vero cells without trypsin. CPE in Vero cells without trypsin indicated the likely presence of a chimeric coronavirus. In the first experiment in 24-well plates, 1/2

wells showed CPE for the combination PEDV CV777 and the defective PEDV DR13 RNA (positive control). In the second experiment in 96-well plates, 4/96 wells showed

CPE for PEDV CV777 and the defective PEDV DR13 RNA (positive control).
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structural proteins as the WT alphavirus and would therefore be sub-
ject to neutralization by the same antibodies. Moreover, a chimera
needs to achieve a high viremia to be transmitted via mosquito vec-
tors.67 Transmission via mosquitoes would not be assured, because
the SAM-GETV chimera was not able to replicate in a Culex cell
line, in contrast to GETV (Figure 2D). Culex mosquitoes are impor-
tant vectors for GETV,68 with a number of barriers within the mos-
quito to be overcome before transmission can occur.67,69 Finally, al-
phavirus outbreaks are usually sporadic, often short-lived and
restricted to specific geographical regions,36,70 again limiting oppor-
tunities for infection of SAM vaccine recipients. Nevertheless, regula-
tors may take pause when considering a mass rollout of a SAM vac-
cine in the middle of a GETV outbreak.

The two SAM-GETV chimeras showed recombination in the GOI
of the SAM vaccine and nsP4 gene of GETV, and both retained
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the subgenomic promotors of SAM and GETV. Recombination in
the vicinity of the subgenomic region has been described previously
for defective interfering alphaviruses RNAs.31 Whether this repre-
sents a recombination hot spot remains unclear. As the GOI of
the SAM (mCherry or nLuc) and nsP4 of GETV have no sequence
similarity, this suggest a mechanism of non-homologous recombi-
nation by template switching of the RNA-dependent RNA polymer-
ase, which has been described for alphavirus RNA templates.27,71

The two promoters may need to be retained to generate a functional
virus. As the interaction between the SAM nsP4 and nsP1-3 is high-
ly selective, a non-functional chimera may well be generated when
the SAM nsP4 is replaced with the corresponding sequence from
GETV.32 Although the relative activity of the two subgenomic pro-
moters in terms of transcription and translation is unknown, at least
one is needed to maintain the optimal ratio of genomic and subge-
nomic RNA for efficient virus replication.72 The presence of the two
promoters may contribute to the attenuation of the chimera in cell
culture.73

Our analyses had a few limitations regarding alphavirus combina-
tions. We were unable to assess potential recombination between
SAM and the G3BP-independent alphaviruses VEEV, WEEV and
EEEV because of biosafety restrictions, and because these viruses
do not require G3BP, precluding the use ofDG3PB cells for detection.
The inability to detect other chimeric viruses using the G3BP-depen-
dent alphaviruses BFV, CHIKV, MAYV, MIDV, RRV, SESV, and
WHAV (Figure 3B), may argue that viable chimeras cannot readily
be generated with these alphaviruses. Key features like regulation of
genomic to subgenomic RNA levels, packaging requirements, or
compatibility of 50 and 30 UTRs might be most optimal for SAM-
GETV chimeras.42,74 However, the probability of chimera formation
may simply be low, requiring a larger number of repeat experiments
to export further recombination possibilities. Also unclear is whether
the immortalized Vero cells (an African green monkey kidney cell
line), which is remarkably permissive for replication of many viruses,
provides a favorable environment for recombination. Conceivably,
such conditions are substantially less favorable in primary cells
in vivo.

Infection of a SAM vaccine recipient with the very virus targeted by
the vaccine, might be viewed as somewhat likely, with, for instance,
many recipients of the GEMCOVAC-19 vaccine likely to be infected
with SARS-CoV-2. SARS-CoV-2 can recombine to increase fitness,
as seen for the XBB variant.59 However, we were unable to show
recombination between a SAM-spike vaccine and a coronavirus,
despite establishing an in vitro system where recombination between
a defective coronavirus RNA and a coronavirus could repeatedly be
demonstrated. Conceivably, opportunities for recombination may
be limited because SAM and coronavirus RNAs replicate in distinct,
virus-induced, subcellular membrane bound structures. Alphaviruses
utilize single membrane spherules at the plasma membrane, which
are internalized in endosomes and lysosomes to form cytopathic vac-
uoles.75,76 In contrast, coronaviruses form double membrane vesicles
in the endoplasmic reticulum.77,78
2528 Molecular Therapy Vol. 32 No 8 August 2024
There is only one form of recombination that we did not explore;
recombination between the SAM-encoded coronavirus spike and al-
phaviruses, creating a potential coronavirus-alphavirus chimera.
Although inter-genus and inter-family recombination events to
generate replication competent chimeric viruses have been reported
for geminiviruses (plant viruses),79,80 this is very rare for mammalian
RNA viruses81 and, to the best of our knowledge, has never been re-
ported for an alphavirus. The reasons likely include strict structural
protein assembly requirements, RNA packaging constraints, RNA
polymerase incompatibilities, and for alphaviruses a propensity to
delete heterologous unnecessary sequences.33

Current RNA vaccines are usually delivered by LNPs rather than
VRPs. VRPs were used herein as they provide high transduction effi-
ciency, thereby avoiding false negative results when very low-fre-
quency events are involved. The lower transduction efficiency of
LNPs would likely decrease the probability of detecting recombina-
tion events. In addition, as VRPs and GETV usemembers of low-den-
sity lipoprotein receptor family as entry receptors,82 the probability of
co-transduction/infection in the same cell in vivo may be lower for
LNP delivery. In reality, deployment of a licensed SAM vaccine in-
volves vaccination of millions of individuals, permitting low-fre-
quency events to emerge. That the SAM vaccine delivery modality it-
self could influence the recombinationmechanism seems improbable,
with LNP-delivered SAM likely to be as capable of recombination
with an alphavirus RNA as VRP-delivered SAM. However, a full
exploration of the cell type(s) in vivo that show SAM vaccine RNA
replication after LNP delivery, and also support alphavirus replica-
tion, may be warranted to further explore recombination events.

In summary, we demonstrated recombination events between SAM
vaccines and GETV in vitro, thereby presenting a potential environ-
mental safety risk for SAM vaccines. However, a series of factors mit-
igates against generation, emergence, and transmission of chimeric
alphaviruses as a result of SAM vaccination.

MATERIALS AND METHODS
Ethics statement and regulatory compliance

Mouse work was conducted in accordance with the Australian code
for the care and use of animals for scientific purposes as defined by
the National Health and Medical Research Council of Australia.
Mouse work was approved by the QIMR Berghofer MRI Animal
Ethics Committee (P3746 A2108-612). Details of housing conditions
and environmental enrichments have been described previously.83

The SAM vaccine was imported to QIMR Berghofer MRI from Wa-
geningen University and Research under Australian DAWR Permit
no. 0005386925. SAM vaccine work was undertaken in a biosafety
level 3 facility at the QIMR Berghofer MRI: Australian Department
of Agriculture, Fisheries and Forestry, Approved Arrangement site
certification Q2326; and Office of the Gene Technology Regulator
certification 3445. Work with the SAM vaccine was approved under
Notifiable Low Risk Dealing (NLRD) Identifier; NLRD_Suhrbier_
Sept2022: NLRD 2.1(d). Breeding and use of GM mice was approved
under NLRD Identifier: NLRD_Suhrbier_Oct2020: NLRD 1.1 (a).
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The HeLa and HeLa DG3BP cell lines were imported under Austra-
lian DAWR Permit no. 0006024827. Work with GETV was conduct-
ed under a Queensland Biosecurity Act 2014 permit no PRID 000907.

Cell lines and viruses

HeLa and U2OS G3BP1 and G3BP2 double knockout cells (DG3BP)
were generated using CRISPR-Cas9.84 Mammalian cells were cultured
in complete medium (DMEM [Gibco], 5%–10% FBS [Gibco], and 1%
penicillin-streptomycin [Sigma-Aldrich]) at 37�C in 5% CO2. Mos-
quito cells were maintained at 28�C in supplemented medium (Leibo-
vitz L-15 medium, 10% FBS, 2% tryptose phosphate broth, and 1%
nonessential amino acids [all Gibco]). Alphavirus stocks of Bebaru vi-
rus (MM2354), BFV, CHIKV (S27, MF580946.1), GETV (MM2021,
MW404214.1), MAYV (BeH407, MK573238.1), MIDV) (30037),
RRV) (T48, GQ433359.1), SESV (HM147990.1), Semliki Forest
virus (4, KP699763.1), UNAV (CoAr2380), TC-83 (L01443.1),
and WHAV were grown on C6/36 or Vero cells. PEDV CV777
(GenBank JQ023162.1) and PEDV DR13 (GenBank AF353511.1) sto-
cks were grown on confluent Vero cells supplemented with 10 mg/mL
trypsin-EDTA (Gibco).

SAM vaccine

The SAM vaccine construct and two split-helper RNA constructs
were based on the attenuated VEEV TC-83 strain.23 In brief, the
SAM construct encoded the TC-83 non-structural proteins, the 26S
subgenomic promoter, and a multiple cloning site for insertion of
the GOI (mCherry, nLuc, PEDV DR13 spike, or PEDV DR13 spike
S2 domain sequence). The helper RNA constructs carried the first
195 nucleotides of nsP1 and the capsid or envelope glycoprotein
genes.23 Plasmids encoding the SAM and helper constructs were iso-
lated (NucleoBond Xtra Midi EF purification kit, Macherey-Nagel),
linearized (NotI, New England BioLabs), in-vitro-transcribed (T7
RNA polymerase, New England BioLabs), and capped (Cap structure
analog, New England BioLabs). The capped RNA constructs were co-
electroporated (0.4 cm cuvettes, two pulses of 850 V/25 mF using Gene
Pulser Xcell [Bio-Rad]) into 8� 106 BHK-21 cells (clone 13, ECACC
85011433) in 800 mL PBS to produce VRPs, which were harvested
from the supernatant 24 h post electroporation. VRPs were quantified
by serial dilution of supernatant on Vero cells. After overnight incu-
bation, cells were counted that expressed SAM encoded mCherry or
nsP2, by respectively fluorescence microscopy or immunoperoxidase
straining with goat anti-TC-83 nsP2 (1:1,000, AlphaVax), rabbit poly-
clonal anti-goat alkaline phosphatase (1:2,500, Sigma), alkaline phos-
phatase, and NBT/BCIP (1:50, Roche). Based on the positive cell
count and the dilution factor, the VRP titers were determined.

SAM vaccine transduction and WT alphavirus infections in vitro

Mammalian cells in 24- or 96-well plates were transduced with SAM
vaccine (10 VRPs/cell) and/or infected withWT alphaviruses (1 or 10
TCID50/cell). After 1 h, the supernatant was replaced for fresh me-
dium or a sequential SAM vaccine transduction or alphavirus infec-
tion. Supernatant samples were collected at indicated time points to
determine the alphavirus and packaged SAM titers. Samples were
serially diluted on Vero cells. After overnight incubation, cells ex-
pressing the SAM-encoded mCherry protein were counted. Based
on the fluorescent cell count and the dilution factor, the packed
SAM titers were determined. Alphavirus titers were determined by
CPE as described.85 In case of CHIKV infection, 24 h post infection
co-expression with the SAM vaccine was examined by immunofluo-
rescence staining using rabbit anti-CHIKV E2 (1:5,000) and goat
polyclonal anti-rabbit Alexa Fluor 488 (1:2,000, Invitrogen) as
described.85

Lipid nanoparticle formulation

In vitro transcribed mRNA of SAM-mCherry was treated with
RNase-Free DNase (Promega) and was purified with the RNeasy
Midi Kit (QIAGEN). Purified mRNA was formulated in LNPs by
hand mixing with ALC-0315 lipid mix in a 5:1 ratio (LNP Trailblazer
Kit, Echelon Biosciences) and was diluted 20� in 1� PBS buffer. Vero
cells in a 96-well plate were transfected with LNPs (up to 250 ng
mRNA per well) in 100 mL volume. After 2 h, the supernatant was re-
placed for fresh medium. The transfection efficiency was observed by
fluorescence microscopy at 24 h post treatment.

WT alphavirus infection followed by SAM-mCherry lipofection

Vero cells in a 96-well plate were first infected with GETV (10
TCID50/cell), followed by SAM-mCherry lipofection at 1 h post
infection. Transfection was performed with Lipofectamine 2000
transfection reagent (Invitrogen) with 0.2 mL in-vitro-transcribed
mRNA per well. After 2 h, the supernatant was replaced for fresh me-
dium. A cell-based alphavirus recombination detection assay was per-
formed by serial passaging the supernatant onHeLa andHeLaDG3BP
cells.

Cell-based alphavirus recombination detection assay

RNA recombination events between SAM vaccine and WT alphavi-
ruses were evaluated by serial passages of supernatant samples
collected 72 h post co-introduction, or serum samples collected
from mice. Samples were incubated for 3–4 days on HeLa, HeLa
DG3BP, U2OS, and U2OS DG3BP cells, passaged to fresh cell mono-
layers, and screened for CPE by eye using a light inverted microscope.
The sensitivity of the assay was illustrated by using TC-83 and a con-
structed TC-83-CHIKV chimera (Figures S4A and S4B).

RNA-seq of in-vitro-generated SAM-GETV chimeras

SAM-GETV chimeras isolated from HeLa DG3BP cells were used to
infect Vero cells. 48 h post infection, RNA was purified from super-
natant using TRIzol LS reagent (Invitrogen), and direct RNA-seq li-
braries were generated using the TruSeq Stranded mRNA Library
Prep kit (Illumina). Poly(A) containing RNAmolecules were purified,
fragmented, and copied into cDNA strands. Adapter sequences
were ligated at the ends of the cDNA to allow hybridization with
sequencing primers. The resulting libraries were sequenced at Utrecht
Sequencing Facility (Utrecht University, the Netherlands) on the iSeq
100 platform (2 � 100 bp, Illumina). Resulting Fastq files were
trimmed, qualified filtered, de novo assembled and aligned to
GETV (MM2021 strain, GenBank MN849355) and SAM vaccine
reference (Geneious bioinformatics software).
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Alphavirus growth kinetics

Alphavirus growth kinetics were determined by alphavirus infection
(0.1 TCID50/cell) of indicated cell lines. One hour post infection,
the infection fluid was removed, cell monolayers were washed with
PBS, and fresh medium was added. Viral titers were determined
from supernatant samples collected at various time points as
described.85

SAM vaccine and GETV co-injections in vivo

Female 6- to 8-week-old C57BL/6J and Rag1�/� (B6.129S7-Rag1tm1-
Mom/J) mice were purchased from the Animal Resource Centre,
Perth, WA, Australia. Ifnar�/� mice on a C57BL/6J background
were kindly provided by P. Hertzog (Monash University, Melbourne,
Australia)86 and were bred in-house at the QIMR Berghofer MRI An-
imal Facility. Female mice (6–10 weeks) were injected subcutaneously
into the hindfeet52 with SAM vaccine (2� 105 VRPs/foot) mixed with
GETV (105 CCID50/foot).

87 Serum viremia and disease manifesta-
tions were monitored as described.52,87

Mouse RNA-seq and bioinformatics

RNA from feet was purified and subjected to RNA-seq as described
earlier.51,66,88 The cDNA libraries were sequenced in-house at
QIMR Berghofer MRI on the NextSeq 550 platform (2 � 75 bp, Illu-
mina). Bioinformatics was undertaken as described.51,89,90 In brief,
Fastq files were trimmed to remove sequencing adapters using Trim-
momatic version 0.36 and were quality checked using fastQC.
Trimmed reads were aligned to a multi-fasta reference sequence con-
sisting of the GETV (MM2021 strain) (GenBank ID: MN849355)
genome sequence and the sequence of the SAM vaccine encoding
mCherry, using Bowtie2 version 2.2.9 with “–fast-local” settings.
Reads were aligned to the GRCm38 version M26 mouse reference
sequence using STAR version 2.7.1. The number of primary proper
reads aligning to each reference genome was calculated using Sam-
tools version 1.10, and plotted with ggplot2 version 3.3.5 in R version
4.1.0.

qRT-PCR of mouse serum

RNA was extracted from serum samples using TRIzol LS reagent (In-
vitrogen). qRT-PCR (iTaq Universal SYBR Green Supermix, Bio-
Rad) was undertaken using specific TC-83 and GETV primers (TC-
83 nsP2 sequence F 50ACCAAGAAAGCTTGTCTGCATCTG30, R
50CTTCAAGTGAGGATTTCGGTTTGC3ʹ; GETV nsP2 F 50GGAG
GGGATTCACTACACCTGC30,R50TTGCTCGTCACACACGCTGG30),
with normalization to housekeeping gene Rpl13a.91

SAM vaccine transfection and coronavirus infections in vitro

The SAM vaccines were transfected (Lipofectamine 2000, Invitrogen)
when Vero cell monolayers reached 70% confluence, followed by the
PEDV CV777 infection (0.1 TCID50/cell) when monolayers reached
100% confluence 24 h post transfection to allow supplementation
of trypsin in absence of FBS. In addition, the transfection was per-
formed on 100% confluent Vero cell monolayers 4 h post PEDV
CV777 infection (0.1 TCID50/cell) in medium with trypsin. After
2 h incubation, the transfection/infection fluid was replaced with
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fresh medium with trypsin. Supernatant samples were collected at
indicated time points and PEDV titers were determined by serial di-
lutions of supernatant samples on Vero cells in medium with
trypsin.60 Co-expression of SAM vaccine and PEDV CV777 was
examined by immunofluorescence staining using mouse monoclonal
anti-PEDV spike (1:50, Friedrich Loeffler Institute) and goat poly-
clonal anti-mouse-Alexa Fluor 488 antibody (1:2,000, Invitrogen) as
described.85

Coronavirus growth kinetics

PEDV CV777 and PEDV DR13 growth kinetics were determined by
infection (0.1 TCID50/cell) on Vero cells in the presence or absence of
10 mg/mL trypsin-EDTA (Gibco). One hour post infection, the infec-
tion fluid was removed, cell monolayers were washed with PBS, and
fresh medium with or without trypsin was added. Viral titers were
determined from supernatant samples by serial dilution on Vero cells
in medium with trypsin.

Cell-based coronavirus recombination detection assay

RNA recombination events between SAM vaccine and PEDV CV777
were evaluated by serial passages of supernatant samples collected
72 h post transfection/infection. Samples were incubated for 3–
4 days on Vero cells in the presence of absence of trypsin, passaged
to fresh cell monolayers, and screened for CPE by eye using light in-
vertedmicroscope. The sensitivity of the assay was illustrated by using
serial dilutions of PEDV DR13 (Figure S9D).
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Supplemental Tables and Figures 

 

Table S1. RNA-Seq read pairs derived from feet. Polyadenylated positive strand RNA 

sequences of GETV, SAM vaccine and mouse present in RNA isolated from feet identified by 

RNA-seq. Chimeric read-pairs identified from all mouse foot RNA-Seq data. Chimeric cDNA 

species likely arise as artefacts due to random template switching during reverse-transcription 

(RT)1 (see Supplemental Fig. 6 and 7).  

 

St
ra

in
 

Time 
(dpi) Sample 

Proper read pairs Chimeric read 
pairs 

Total GETV SAM Mouse GETV/ 
SAM Mouse 

C
57

B
L/

6J
 2 

CCg24 16,496,555 357 550 16,094,607 0 661 
Cg25 17,444,881 274 516 17,010,685 0 542 
Cg26 15,482,350 272 674 14,938,719 0 535 

3 
Cg21 16,509,615 438 78 16,195,705 0 498 
Cg22 15,675,118 2,993 4 14,895,533 0 303 
Cg23 16,223,836 155 25 15,884,778 0 605 

Ifn
ar

-/-
 

 

2 

Cg51 16,047,840 421,495 5,116 15,071,584 1 438 

Cg52 17,425,852 462,229 10,783 16,204,692 2 240 

Cg61 15,998,134 347,707 5,836 15,130,673 0 435 

3 

Cg21 18,994,287 1,655,929 5,293 16,886,302 0 516 

Cg41 17,238,761 2,142,702 5,556 14,694,258 1 467 

Cg42 15,706,105 882,896 2,818 14,422,143 0 498 

5 
Cg11 21,969,798 3,583,158 3,925 17,884,208 0 1110 

Cg31 16,841,127 2,722,173 3,959 13,673,336 0 944 

R
ag

1-/-
 

2 
Cg83 18,491,093 94 45 18,183,205 0 391 
Cg84 18,007,132 141 133 16,885,390 0 48 
Cg85 19,604,811 431 133 18,696,171 0 114 

3 
Cg81 18,108,538 340 21 17,150,222 0 244 
Cg82 14,059,628 708 5 13,581,597 0 469 
Cg86 20,155,651 210 73 19,724,814 0 698 

14 
Cg74 16,923,637 2,710 7 16,520,045 0 556 
Cg75 16,244,992 2,907,751 3,866 12,818,883 1 844 
Cg76 17,387,562 421 6 16,930,047 0 483 

Total 397,037,303 15,135,584 49,422 369,477,597 5 11,639 
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Figure S1. Superinfection exclusion and co-expression. Vero cells were transduced with 

SAM (10 VRPs/cell) and infected with WT alphaviruses (MOI=1 TCID50/cell) with a 1 hour 

delay (n=2). Supernatant fractions were collected and titrated to determine WT alphavirus 

growth kinetics by serial dilutions on Vero cells (detection limit 3 log10TCID50/ml). b, 

Fluorescence microscopy of co-transduced/infected Vero cell; cell nuclei stained with Hoechst, 

WT alphavirus (CHIKV) stained with rabbit anti-CHIKV E2 (1:5000), and SAM vaccine 

mCherry expression.  
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Figure S2. Hela and U2OS ΔG3BP cell lines. Hela and U2OS G3BP deficient cells (ΔG3BP) 

were generated using CRISPR-Cas9 technology to delete expression of G3BP1 (ΔG3BP1), 

G3BP2 (ΔG3BP2), or both (ΔG3BP) as described2. a Western blot showing loss of G3BP in 

Hela and U2OS cells. b Immunofluorescence assay using mouse anti-G3BP (BD biosciences, 

1:2000), rabbit anti-G3BP2 (1:2000, Bethyl), anti-tubulin (1:5000, Sigma-Aldrich), and anti-

eIF2 (stress granular identification factor, 1:200, SantaCruz) antibodies.  
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Figure S3.  Alphavirus replication kinetics on U2OS ΔG3BP cells. U2OS and U2OS ΔG3BP 

cells were infected with various alphaviruses (0.1 TCID50/cell, n=2). Supernatant fractions were 

collected and titrated to determine alphavirus growth kinetics (detection limit 3 

log10TCID50/ml).Venezuelan equine encephalitis virus TC-83 (TC-83), Bebaru virus (BEBV), 

and Semliki Forest virus (SFV) demonstrated to replicate independently of G3BP, whereas 

Barmah Forest virus (BFV), chikungunya virus (CHIKV), getah virus (GETV), Mayaro virus 

(MAYV), Middelburg virus (MIDV), Ross River virus (RRV), southern elephant seal virus 

(SESV), Una virus (UNAV), and Whataroa virus (WHAV) required the presence of G3BP for 

efficient virus replication. 
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Figure S4. Alphavirus recombination detection assay using ΔG3BP cells. a, An alphavirus 

chimera was constructed, that encoded the nsPs of TC-83 (SAM) and the structural proteins of 

CHIKV S27, by cloning the latter into the multiple cloning site of the SAM plasmid. The 

hypervariable domain of nsP3 (indicated by asterisk) confers G3BP independent replication 

capacity. This infectious clone was recovered after lipofectamine-mediated transfection of Vero 

cells. b, The TC-83/CHIKV chimera and TC-83 were able to replicate and induce CPE in 105 

ΔG3BP cells within four serial passages even at low MOI and in the presence of an excess of 

G3BP-dependent CHIKV (5x105 TCID50), illustrating the assay’s sensitivity and suitability. c, 

Supernatants from Vero cells transduced with a SAM vaccine encoding mCherry (10 

VRPs/cell) and infected with the indicated WT alphaviruses (as in Fig. 2a) were evaluated for 
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the presence of chimeric alphaviruses using both Hela ΔG3BP and U2OS ΔG3BP cells. Vero 

cells were transduced with SAM vaccine and 1 hour later infected with the WT alphavirus at 

the indicated MOIs (SAM→WT MOI=1/10 (+1h)). SAM vaccine and WT virus (10 

TCID50/ml) were added to the Vero cells at the same time (SAM + WT), or Vero cells were 

infected with the WT alphavirus (10 TCID50/ml) and 1 hour later transduced with SAM vaccine 

(WT→ SAM (+1h)). After 72 hours, supernatants were four times serial passaged on Hela, Hela 

ΔG3BP, U2OS, and U2OS ΔG3BP cells. No CPE (indicating absence of a chimeric alphavirus) 

was observed in ΔG3BP cells. d, Indicated cell lines were infected with the WT alphaviruses 

(10 TCID50/ml) followed by transduction with SAM vaccine (10 VRPs/cell, 1 hour later). After 

72 hours, supernatants were four times passaged on Hela, Hela ΔG3BP, U2OS, and U2OS 

ΔG3BP cells. No CPE (indicating absence of a chimeric alphavirus) was seen in ΔG3BP cells. 

e, Supernatants from Vero cells infected with the indicated WT alphaviruses followed by 

transduction with SAM vaccine (10 VRPs/cell, 1 hour later) were four times passaged on U2OS, 

and U2OS ΔG3BP cells. No CPE (indicating absence of a chimeric alphavirus) was seen in 

ΔG3BP cells. f, Delivery to Vero cells of SAM vaccine (SAM-mCherry) formulated as LNPs 

(ALC-0315 lipid mix, Echelon Biosciences) or using Lipofectamine-2000 (Thermo). g,  One 

step RT-PCR analysis of the SAM-mCherry-GETV chimera (chimera), GETV, and TC-83 

using RNA extracted from supernatants. Primers amplify fragments of the TC-83 non-structural 

protein 2 sequence (nsP2, 150 bp), GETV nsP2 sequence (150 bp), TC-83 structural envelope 

glycoprotein E2 sequence (100 bp), and GETV E2 sequence (GETV sP, 100 bp). h, SDS-PAGE 

and western blot analysis of SAM-mCherry-GETV chimera (chimera), GETV, and TC-83 

infections. Infected cell lysate was heated in SDS sample buffer and loaded onto SDS-PAGE 

gel. The SDS-PAGE gel was stained by using Coomassie Brilliant Blue (protein stain) and 

transferred to PVDF membranes followed by western blot detection using goat anti-TC-83 nsP2 

(1:1000, AlphaVax), rabbit anti-goat alkaline phosphatase (1:2500, Sigma), alkaline 

phosphatase, and NBT/BCIP (1:50, Roche).  
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Figure S5. SAM vaccine and GETV co-injection qRT-PCR analyses by tissue and time.  

a, C57BL/6J mice were co-injected subcutaneously into the hind feet with SAM vaccine (2x105 

VRP/foot) and with GETV (105 TCID50/foot) into hind feet of indicated mouse strains. b, SAM 

vaccine RNA in feet and inguinal lymph nodes detected by qRT-PCR. c, GETV RNA in feet 

and inguinal lymph nodes detected by nsP2 sequence qRT-PCR. C57BL/6J feet on days 2 and 

3, Rag1-/- feet on days 2, 3 and 14, and Ifnar-/- feet on days 2, 3 and 5 were chosen for RNA-Seq 

as they had the highest consistent levels of RNA for both GETV and SAM vaccine. The 

persistence of alphavirus RNA in feet of C57BL/6J mice has been reported previously3,4.  
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Figure S6. Characterization of alphavirus chimeric read pairs and read. a, Polyadenylated 

positive strand RNA sequences of GETV and SAM vaccine present in RNA isolated from feet 

identified by RNA-seq. b, Six chimeric read-pairs/read identified from all mouse foot RNA-

Seq data (3 mice per group, 3 mouse strains, all times post injection, see Fig. 3a, c).  i.d. – inter-

read distance. Chimeric cDNA species likely arise as artefacts due to random template 

switching during reverse-transcription1 (see Fig. S8). The artefactual chimeric cDNA species 

and the strand switching events (dashed boxes) can be inferred. To detect chimeric read pairs, 

alignments (BAMs) were viewed using Samtools to identify paired alignments in which each 

read in the pair aligned to a different sequence. To detect chimeric reads, read files (Fastqs) 
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were searched to identify reads containing 22-mers relating to both the GETV and SAM vaccine 

reference sequences, using an original Python script in Python version 3.7 (original script 

https://github.com/CameronBishop/detect_chimeric_sequences). Putative chimeric read pairs 

and reads were subsequently interrogated using Integrative Genomics Viewer version 2.9.4, 

BioEdit version 7.2.5, Genome Analysis Toolkit version 4.2.4.1 and R version 4.1.0.  

 

  

https://github.com/CameronBishop/detect_chimeric_sequences
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Figure S7. Quantitative RT-PCR detection of putative chimeric reads. Results are shown 

for the sample (IFNAR mouse 2 dpi) from which chimeric read 6 was obtained. This is the 

chimeric read with no inter read distance (for details see Fig. S6). Primers were designed to 

amplify this exact chimeric read. GETV primers served as positive control for qRT-PCR 

amplification of viral RNA. Chimeric read 6 cannot be amplified and most likely is an artefact. 
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Figure S8. Artefactual mouse chimeric reads generated during cDNA synthesis. a, Process 

description of STAR-Fusion, illustrating that at least 1 in 42,010 of total mouse reads represent 

fusion/chimeric read pairs. These likely arise from generation of cDNA artefacts during reverse 

transcription (RT) 1. b, The expression levels of mouse genes that are present in chimeric reads 

are higher than expression levels of mouse genes not present in in chimeric reads. c, Derived 
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from b by dividing y axes into 20 bins (and using raw counts rather than TPM). The greater the 

abundance of an mRNA species (high expression), the greater the chance that it will be 

incorporated into an artefactual cDNA chimera/fusion during RT. Curve is consistent with a 

stochastic process1. Importantly, the SAM-GETV chimeric read frequency is much lower than 

the artefactual mouse-mouse chimeric read frequencies. The SAM-GETV chimeric reads are 

thus highly likely to also be artefacts. d, Views of GETV reads aligned to the GETV genome 

from one mouse. Each grey cigar represents a read. The blue graphs show log read coverage at 

each nucleotide position (genome is 11, 690 bp). As expected, there are many more reads 

aligning to the subgenomic RNA encoding the structural genes. The subgenomic promoter 

operates during synthesis of +RNA from a -RNA template. The less abundant full length +RNA 

(also generated from the –RNA template) is initiated at the 3ʹUTR. e, As for (d) but for SAM 

vaccine alignments, where the subgenomic promoter drives production of +RNA carrying the 

GOI (mCherry). 
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Figure S9. Evaluating recombination between PEDV CV777 and SAM vaccine. a, 

Fluorescence microscopy of co-transfected/infected Vero cell. Vero cells were transfected with 

SAM vaccine encoding mCherry and infected with PEDV CV777 (0.1 TCID50/cell) 24 hours 

post transfection. Cell nuclei were stained with Hoechst, PEDV CV777 stained with mouse 

anti-PEDV spike, and SAM vaccine was visualized by expression of mCherry. b, Schematic 

representation of the development of PEDV CV777 syncytia expressing SAM encoded 

mCherry. PEDV CV777 infected cells formed large syncytia with SAM-transduced cells. 

Thereby, the SAM-induced mCherry expression can be detected in the syncytia, visualized by 

mCherry-positive nuclei in the syncytia. c, Detection of spike S2 domain RNA after transfection 

of SAM templates (SAM-mCherry, SAM-Spike and SAM-S2) and defective PEDV DR13 (D-

PEDV-DR13) RNA template in Vero cells. RNA was extracted from cells, DNase treated, and 

used as input for RT-PCR and PCR analysis using specific spike S2 sequence primers (430 bp 

product). The presence of the spike RNA after transfection was confirmed by a RT-PCR 

(amplification of RNA and DNA) product in combination with the absence of a PCR 

(amplification DNA) product. d, Sensitivity of the cell-based coronavirus recombination 

detection assay. PEDV CV777 was unable to replicate and induce CPE in 105 Vero cells in the 

absence of trypsin, whereas PEDV DR13 was able to replicate and induce CPE within 4 serial 

passages even at low MOI and in the presence of an excess of PEDV CV777 (105 TCID50/ml), 

illustrating the assay’s sensitivity and suitability.  
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