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Supplementary Text 

SM 1. Building the dataset 
The methods for dataset collection were inspired from ref (1) and broadly consist of linking a set of species 
observations linked to corresponding remote sensing imagery. How the citizen science observations and 
remote sensing imagery were collected is detailed below. 

SM 1.1 Collecting species observations 

We collected observations from kingdom Plantae using GBIF.org from the years 2015-2022 (2). Only 
records observed by humans with a coordinate uncertainty radius of less than or equal to 120m with no 
flagged geospatial issues were taken from within the state of California. Nearly all of the subsequent 
observations were public observations uploaded using the iNaturalist app. Any person with a smartphone 
and who has downloaded the app can upload observations to iNaturalist, meaning that the observations 
used in this dataset were collected by many thousands of citizen scientists with a wide variety of 
backgrounds. Accordingly, some observations may be mis-identified. 

To minimize misidentification, only research-grade observations with taxon identifications from at least 
two community members were included in the dataset. That being said, mis-identified observations or mis-
located observations can still slip past these filters, making this data especially challenging to work with (3, 
4). However, GBIF takes steps to resolve major mis-identification events between closely related taxa (4). 
Finally, a recent case study from San Clemente Island in California showed that all examined iNaturalist 
observations with a positional error of < 10m as listed in GBIF were within 270m of the corresponding 
species detected from remote sensing imagery (3). Extrapolating to this dataset, it’s reasonable to assume 
that a <120m positional uncertainty filter would place the vast majority of observations within the linked 
remote sensing image, therefore preserving the geographic relationship between the observed species and 
the remotely sensed image.  

In total we downloaded a total of 912,380 plant observations of 5,193 unique plant species (2). We further 
filtered observations to only include vascular plants, which we define vascular plants as all plants in the 
taxonomic classes of Gnetopsida, Liliopsida, Lycopodiopsida, Magnoliopsida, Pinopsida, Polypodiopsida, 
Lycopodiopsida, and Ginkgoopsida. We also removed duplicate observations of the same species within a 
150 m radius, removed species that contain all observations located within a 256 m radius, and were not 
geographically located within the Global Administrative Area boundary of California, or were missing 
climate or NAIP imagery data.  To increase the density of observations in the dataset, we used neighbor 
imputation to add any other species observed within an overlapping 256m radius to a given observation 
(SM 1.2, Fig. S2). We finally removed any species that had fewer than 500 total observations in the dataset 
after neighbor imputation, leaving us with a total of 652,027 observations of  2,221 unique plant species 
(Table S1).  

SM 1.2 Creating Joint Observations 

To create the joint species occurrence dataset, we used neighbor imputation of locally overlapping 
observations. Specifically, for each observation, we appended any species observed nearby within a fixed 
radius to said observation (Fig S2). Observations were considered to be locally overlapping if the Euclidean 
distance between the latitude and longitude of the two points is less than or equal to 256 m. While this 
technically means that some neighbor observations may not be geographically located within a neighbor’s 
256 × 256 pixel image, said resolution is on par with accepted spatial scales in theoretical biogeography 
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and empirical community ecology, which have shown that biotic species interaction networks between 
individual plants can reach scales of thousands of square meters, and both biotic and shared land use features 
are thought to drive site-level plant distribution (5–7). Therefore, although there is no strict guarantee that 
two observations lie within the extent of their overlapping observations’ respective NAIP imagery, strong 
ecological theory supports that the two species may be influencing each other’s co-occurrence and 
subsequent observed co-occurrence. 

The reason that we chose to create a joint dataset is twofold. First, there is theoretical evidence to support 
that biotic interactions (the interactions of two living species both directly and indirectly) are a strong 
driving factor in the distribution of species at a variety of scales (6) and that overlap data can be seen as a 
partial observation of these biotic interactions. Second, many species in our dataset have few observations 
(Fig. S3A) which can make it impossible to learn an accurate representation of the species’ distribution. 
However, oftentimes these rarely observed species will inhabit similar habitats to much more commonly 
observed species. Therefore, building a multi-species observations dataset may enable better modeling of 
those rare species using shared habitat signatures learned for the more common, overlapping species. 

Along with providing overlap data, we also provide higher taxonomic information per-image. Concretely, 
the species, genus, and family of all overlapping species was utilized for training the TResNet and 
Deepbiosphere models. Our rationale was that the phylogenetic history embedded within the taxonomic 
hierarchy of species should also encode a shared ecological niche space for some taxonomic groupings. 
However, depending on the study system, models can be trained without these options by including the flag  
--dataset_type = single_species during training to train models without co-occurrence information and -
-taxon_type = speconly during training to train models without higher order taxonomic information. 

SM 1.3 Generating the test/train splits 

In order to properly validate and compare models, we split the dataset into multiple partitions. Best practices 
to ensure the reproducibility of machine learning models is to have a train-test-validation split, ideally with 
the validation data coming from a separate acquisition process to provide as robust a test as possible. To 
test models with statistical power, such validation sets on the order of thousands of observations would be 
necessary. Furthermore, to test our models appropriately, we require test and validation sets that are at least 
1,300 m away from all training set examples, to prevent data leakage due to spatial autocorrelation in the 
coarse resolution Bioclim data used by baseline models. Next, since the CNN predicts at 256 m resolution, 
observations with low geographic uncertainty are a must. Finally, since citizen science observations tend 
to be common on publicly accessible land and near major access routes, candidate locations for taking 
validation observations tend to be located on private, inaccessible land or in very remote locales that are 
exceedingly difficult to reach on foot. Understandably, finding or collecting such a validation dataset is an 
exceedingly challenging task and is left for future work. Having those caveats in mind, to robustly test the 
models with the data we have, we designed two types of test/train splits to pick hyperparameters and test 
extrapolation accuracy: The first type—the uniform split—was used primarily for choosing an optimal loss 
function and learning rate, while the second type—spatial cross-validation—was used to validate these 
choices and test model extrapolation ability.  

SM 1.3.1 Uniform partition of dataset 

The first partition—the uniform split—was generated by randomly selecting observations uniformly from 
across the state (Fig. S4A) which we refer to as the uniform partition and use the notation modelnameunif to 
refer to models trained using this partition of the dataset. We chose points uniformly across the state to 
maximize the number of unique climates where models would be evaluated on. To ensure the independence 
of training and testing set data due to spatial autocorrelation, we added all overlapping observations to the 
test set to guarantee that none of the remote sensing images and observations in the test set were present in 
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the training set. To ensure that there was no data leakage between the test and train set, only observations 
which were more than 1,300 m away from any other non-overlapping observation were included. We chose 
an exclusion radius of 1,300 m because the climate variable raster pixels converted from arc-seconds to 
meters can have a diameter of up to 1,200 m, so any test set observation within that distance to any 
observation in the train set would have an identical input value as some observations used during fitting, 
resulting in data leakage. Ultimately 1.88% of the dataset was set aside for testing using this method. The 
test dataset has relatively few observations compared to a traditional 80/20% test/train split because the 
iNaturalist observations are very spatially heterogeneous, and tend to be very clustered, meaning that there 
are few observations that are sufficiently far enough away from observations used for training to be included 
in the test split.  

SM 1.3.2 Spatial cross-validation partition of dataset 

In order to provide cross-validation of the uniform train-test split and to test the extrapolation ability of 
all models, we also conducted a latitudinal ten-fold spatial holdout block validation by partitioning 
California into ten one-degree latitudinal bands (Fig. S4B) which we refer to as the spatial partition, 
using the notation modelnamek to refer to models trained using points from the k-th spatial block (Fig. 
S4B). Training points within 1,300 m of the test band were removed to prevent data leakage as discussed 
above (For models utilizing pseudo-absence points, all pseudo-absence points within the test bands were 
removed to ensure a fair comparison to presence-only models). Ultimately, the percentage of test points 
per-spatial block ranged from 1.40-25.35% of the entire dataset.  

SM 1.4 Collecting Remote Sensing Imagery 

To link species observations with images, we utilized aerial imagery from the National Agricultural 
Imagery Program (NAIP) (8) which we downloaded for the entire state of California from 2012 and 2014 
using Microsoft Azure’s NAIP data blob disk image on its West Europe and Eastern U.S. servers. This 
dataset was chosen as it his highly pre-processed and curated, containing sun angle-corrected 
orthophotography data collected during the leaf-on growing season with guaranteed < 10% cloud cover at 
1 m-resolution (see ref. (9) for a comprehensive overview of NAIP data). For training the CNN models, we 
specifically used the NAIP data from 2012 at 1-m resolution to generate 256 x 256 pixel images, where 1 
pixel corresponds to a 1 x 1 m resolution. We used all available bands for training, specifically the RGB 
and infrared color bands (Table S1). The 256 x 256 pixel images were extracted so that the geographic 
coordinates of the corresponding species observation mapped to the center of the image (Fig. S2).  

Our decision to work with four-band RGB-Infrared remote sensing data instead of many-band Landsat data 
or full-band hyperspectral data was motivated by data accessibility and resolution to capture biological 
patterns. Although Landsat data is collected worldwide, it has a pixel resolution of 30 m per-pixel, while 
NAIP data has a 1m-60cm pixel resolution (depending on the year of acquisition). Both Landsat and NAIP 
are sub-kilometer resolution, but the higher resolution of NAIP data better captures important local factors 
for plant distribution modeling such as individual tree crowns, land use, and biotic interactions. Further, the 
four color and infrared bands (RGB-I) of NAIP also contain the same information as derived vegetation 
products such as NDVI (10). Finally, other hyperspectral remote sensing products with a similar level of 
resolution to NAIP—such as the 224-band, full-spectrum product AVIRIS—have limited coverage at 
national scale, not even covering all of California. Indeed, four-band (Red-Green-Blue-Infrared) remote 
sensing products of a similar resolution are available from private companies like Maxar Technologies and 
Planet Labs across the entire globe with weekly to nearly daily acquisitions. Therefore, the four-band NAIP 
imagery provides an optimal mix of spatial resolution and availability to appropriately model plant 
communities at a theoretically sound scale with the ability to scale these techniques to potentially the rest 
of the globe. 
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SM 1.5 Bioclimatic Variables  

We used the 19 bioclimatic variables available from WorldClim Version 2 at 30 arc-second (approximately 
1km) per-pixel resolution (11). Variables were downloaded directly from the WorldClim Version 2 
repository (http://www.worldclim.com/version2). Before fitting any model, all bioclimatic variables were 
normalized per-variable to mean 0 and standard deviation of 1 using the entire raster clipped to the outline 
of California. 

SM 1.6 Resolution Limitations of Bioclimatic Variables 

While downscaling and interpolation techniques exist that allow one to scale bioclimatic variables to 250-
100 meter resolution (12, 13), these downscaling and interpolation methods are inherently limited in the 
amount of novel information they can provide, and introduce a new source of potential bias (14). 
Furthermore, there has been evidence that SDMs trained using coarser-grained climate data overestimate 
some montane species’ tolerance to changing climate compared to meter-resolution local scale information 
(15). This discrepancy can be easily seen in Fig. S1 which illustrates the difference between the remotely 
sensed NAIP imagery and Bioclim in northwest California. One can easily distinguish the various 
grassland-forest transitions along with land use differences from agriculture. This local information is 
simply not detectable from the projected 7th band of Bioclim data shown. The 30 x 30 arc-second pixels of 
the bioclimatic rasters are simply too coarse-resolution to capture the local variations between the various 
communities in this image, as evidenced by the fine scale vegetation map for the region (Fig. S1B). 
Furthermore, from ecological theory it is expected that fundamental drivers of species distribution should 
be different at local versus site scale, with bioclimatic data driving local scale distribution versus 
topographic and land use information driving site scale distribution (7). Thus, it is to be expected that the 
information contained in both sources to be radically different.  

SM 1.7 Challenges in Using Open-Source Citizen Science Data 

Creating citizen science-based species distribution models is challenging due to the unevenness of number 
of observations per species and data quality issues. Despite our data filtering, which included minimum 
data thresholds for species to be included in the analyses, we still see many dataset imbalances (Fig. S3); 
for example, 20% of species have 1,000 images or less while only 27% of species have 10,000 or more. In 
addition, 37,300 images contain only one species while only 61,386 images have >100 species, reaching 
the expected size of a full species checklist for a given 256 m radius area. Moreover, species labels are 
presence-only, meaning that in most cases, the absence of a species label in an image does not guarantee 
true absence from the ecosystem, only that it has not been observed on iNaturalist at that location. Overall, 
this leads to a highly imbalanced dataset, with some habitats and some species underrepresented and hard 
to study.  

Specifically, our dataset of observations suffers from three main types of biases. First, there’s spatial bias, 
in that observations are not uniformly distributed across the landmass of California (Fig. S3C). Citizen 
scientists can only take observations where they can themselves access species, which restricts most 
observations to publicly owned land and convenience plays a large factor in the distribution of observations, 
with more observations coming from ecoregions with a higher population or more public parks, such as the 
Southern California Chaparral or Coast Range ecoregions (Fig. S3D). 

Second, observations from casual users tend to show density bias (Fig. S3B), where many observed 
locations have few other overlapping species reported, while a few observations have many overlapping 
species reported. Oftentimes, this is a result of observers noticing and documenting a particularly salient 
individual of a species, like when a specific wildflower is in bloom in the spring. However, rarely will users 

http://www.worldclim.com/version2
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upload all the plant species they may find in a given small area, meaning that the majority of species present 
at any given observation location in our dataset are unreported. These unobserved species are referred to as 
pseudo-absences. The high pseudo-absence rate of our dataset also means that we cannot consider these 
species occurrences to represent full species checklist data at each site in our dataset, meaning that the co-
occurrence network of each site in our dataset is partially observed, again adding extra challenge to the 
machine learning task. 

Third, the dataset is also long-tailed in the number of observations per-species, with many species 
possessing few observations while a few possess a large number of observations in the dataset (Fig. S3A). 
Unfortunately, this “commonness of rarity” is a known phenomenon in plants’ distributions and is an 
expected phenomenon for plant observations (16). This class imbalance can be problematic for classic 
machine learning algorithms, since standard accuracy metrics become less informative, and models can 
simultaneously suffer from both under- and over-fitting across classes (17). However, it should be noted 
that these challenges are not unique to this dataset alone (18–20), thus algorithms successfully able to learn 
a generalizable representation of this data should be of interest to both the species distribution modeling 
and more general machine learning fields. 

Despite these challenges, citizen science provides an opportunity to utilize deep learning methods that may 
require hundreds of thousands to millions of observations to train. Further, the wide array of learning 
functions and training techniques for deep learning models can still enable the learning of useful patterns 
even with this complex dataset. 

SM 2. Accuracy Metrics 
We report twenty accuracy metrics from across a variety of relevant disciplines, from computer vision to 
species distribution modeling. The reported accuracy metrics can be classified into three broad categories, 
which are explained below.  

SM 2.1 Binary classification metrics 

Binary classification metrics are a very common set of metrics used to compare yes/no binary prediction 
tasks (or e.g. whether a species is or is not present at a given location). For binary classification-based 
metrics, probability predictions must be converted to a binary presence / absence output using a threshold 
value. There is vigorous debate within the SDM community on the proper threshold to pick for presence 
versus absence (21, 22), but for consistency with the computer vision community (as sigmoid 
transformations are common in many computer vision loss functions, and thus positive values map to above 
0.5 and negative values map to below 0.5), and the fact that our multi-label domain makes optimal threshold 
determination non-trivial, we chose to threshold all probabilities ≥0.5 as present and <0.5 as absent for 
these metrics. Specifically, for all reported binary classification metrics in the main text, figures, tables, and 
supplemental (precision, recall, F1, presence accuracy), we always use the reported 0.5 threshold. To 
reiterate the rationale, a 0.5 threshold not only a common threshold in species distributions, but it is a 
standard threshold used by the computer vision community, as when using a sigmoid-based loss function, 
values above 0.5 map to positive real-valued numbers and values below 0.5 map to negative real-valued 
numbers. 

There exists many different metrics for binary classification, but in this work we focus on four common 
ones: precision, which measures how many species predicted to be present were actually present; recall, 
which measures how many of the true species present are predicted as present; F1, which is the harmonic 
mean of precision and recall and represents a conservative mean of the two (i.e. is more affected by low 
values); and accuracy which simply measures the percent of correctly identified examples of present 
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species. For each metric, both binary and multi-class versions exist, along with single-label and multi-label. 
In this work, we report the multi-label, multi-class versions of each metric except for accuracy, which is 
reported as multi-class, single-label. To clarify this technicality, we refer to accuracy as presence accuracy 
in this work to signal that for each example the model can either be right or wrong, as there is only one 
species tested at a time. 

In the multi-label, multi-class setting, there are multiple axes by which one can aggregate the chosen 
statistic: the first is by species, which we refer to as per-species; the second is by example image, which we 
refer to as per-image. For all metrics, S is the number of unique species in the training split of the dataset, 

 the number of images in the training split of the dataset,  is the multi-label ground truth neighbor-
imputed presences and absences of each species for each image,  is the single-label original species 
associated with each observation,  is the SDM’s predicted binary present / absent list for each species and 
each image using a  threshold,  is true positives,  is false negatives and  is false positives (N.B. 
true negatives are unknown). Per-species metrics were calculated using scikit-learn version 1.1.1 (23) and 
per-image metrics were implemented by ourselves (see open Github repository for implementation: 
github.com/moiexpositoalonsolab/deepbiosphere). 

 

 

 

For per-image accuracy metrics, we used the definitions as outlined in ref. (24) using a custom 
implementation written in Python.  

 

 

 

Finally, for the presence accuracy, we use the standard multi-class definition, defined as the fraction of 
examples where the correct species observed at that location was predicted as present. This metric was 
calculated using our own custom Python implementation. 

 

https://github.com/moiexpositoalonsolab/deepbiosphere
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SM 2.2 Discrimination metrics 

Binary classification metrics do come with some drawbacks, mainly that the choice of what threshold value 
to use for determining whether a species is present can have an outsized impact on the accuracy of a model 
(25). In order to take into account the effect of thresholds, discrimination metrics measure binary 
classification ability across a wide range of thresholds in order to calculate an SDM’s performance across 
a wide range of presence thresholds and describe the relationship between threshold change and 
performance change. Rather than set an arbitrary threshold, they observe how well the model is able to 
predict across the range of predicted probabilities for that class to see if a higher threshold means more 
species are correctly predicted without adding in too many false positives. In other words, discrimination 
metrics  (AUCROC, AUCPRC, and calibrated AUCROC & AUCPRC) essentially integrate accuracy across a gradient 
of presence thresholds and negate the need for choosing a specific threshold value. This is why AUC is a 
very common metric used to select species distribution models and other classification approaches and is 
why it is the accuracy metric of choice when comparing models in this work. 

For discrimination metrics, we report the area under the receiver operating characteristic curve averaged 
across species (AUCROC) and average area under the precision-recall curve averaged across species 
(AUCPRCspp). We again use multi-label, neighbor imputed ground truth presences and absences when 
calculating discrimination-based metrics. We use scikit-learn version 1.1.2 for all discrimination metrics, 
which utilizes the trapezoidal integration to calculate area under the curve (23).  refers to the 
number of true positive predictions of species  in  when using  as the threshold for predicted presence 
for species , while , and  are the same for the number of false positives and false 
negatives, respectively.  is the true number of actual presences in the ground truth for species , 
which can also be written as and  is the true number of actual absences in the ground truth 
data for species , which can also be written as .  

 

 

 

 

 

 

One major drawback to this approach is that it does not measure the calibration of an SDM’s predicted 
probabilities well, meaning that a model which has extremely low predicted probabilities can still 
nevertheless have a high AUCROC if within its range of predicted probabilities said model has good 
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sensitivity and specificity for that class. This means that it’s possible to have a model that never predicts a 
species as present with the standard presence/absence threshold of 0.5 yet still has a high average AUCROC. 
Furthermore, tuning the presence/absence threshold using the ROC curve for such models is non-trivial, 
since the derived optimal threshold will likely be different across species. To correct for this, we also 
introduce a calibrated area under the curve score where the chosen thresholds are linearly interpolated 
values between 0 and 1. We use a trapezoidal approximation of area under the curve, utilizing scikit-learn’s 
implementation of area under the curve with 50 uniformly spaced probability thresholds between 0 and 1 
(23).   

 

   

SM 2.3 Ranking metrics 

Compared to binary classification and discrimination metrics, ranking metrics focus solely on how high a 
given species is ranked by probability of presence compared to other species in the same image / 
observation. These ranking metrics suffer from the same limitations as the aforementioned discrimination 
metrics in that they only compare accuracy of probabilities in a relative sense, rather than the absolute. 
However, they are the most common within the deep learning and computer vision communities, so we 
choose to report them here for completeness. The first set of ranking-based metrics we report are top-K 
accuracy metrics, a set of single-label metrics. These metrics measure how many times the correct species 
was correctly predicted within the top-K highest-ranked species within a given image (where, for example, 
K=5 would be the 5 species with the highest probability of presence). Much like the binary classification 
metrics, top-K accuracy can be calculated across images and also across species (which we refer to as Top 
Kimg and Top Kspp, respectively). However, top-K accuracy across species is considered to be a better metric 
of an SDM’s ability to distinguish present species, as it corrects for sampling imbalances across species (1, 
4).  

Machine learning papers oftentimes report top-1 or top-5 accuracy, but given our task is an inherently multi-
label one, we choose to report with a larger K than normally seen in computer vision projects with many 
possible labels, as the expected number of unique plant species at the local scale varies anywhere from five 
to one hundred and thus on average we are most interested in the composition of these top five to one 
hundred species. To that note, we report both Top-Kimg and Top Kspp for K = 1, 5, 30, and 100. Along with 
top-K accuracy, both top-K recall and precision also exist but are far less commonly reported and so we do 
not report them here. We implement these metrics in Python using the definitions from ref (1). Here,

 is defined as the rank of species  observed in image  from the sorted list of probabilities  
predicted by the SDM, .  
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However, as a single-label metric, these top-K accuracy metrics do not use or capture any information about 
an SDM’s ability to correctly label overlapping species, making them less useful for judging an SDM’s 
ability to capture co-occurrence patterns correctly. To capture multi-label ranking performance, there exists 
a commonly-used multi-label ranking-based metric called mean average precision (mAP). This metric is 
also sometimes referred to as label ranking average precision (LRAP). mAP calculates how highly each 
species is correctly ranked along with how many other present species are ranked higher, averaged across 
species. mAP is the multi-label version of the mean reciprocal rank metric (MRR) commonly used in 
document retrieval.  

 

SM 3. Species Distribution Models 
Species distribution models (SDMs) describe how a species is distributed across a given geographic extent. 
Oftentimes this is accomplished by modeling how the predicted presence of a species across a landscape 
varies spatially in response to a set of ecologically-meaningful variables. SDMs broadly fall into two rough 
categories: process-based and correlative. Process-based models attempt to derive fundamental equations 
based on processes or mechanisms governing a species distribution and build a model of likelihood of 
occurrence (e.g. dispersal ability, growth rates, demographic characteristics, etc.). Correlative models 
attempt to infer a species’ geographic extent by correlating its known occurrences with a suite of relevant 
environmental variables and projecting likelihood of occurrence from said correlated variables. However, 
these definitions are not dichotomous nor mutually exclusive, meaning correlative models may indeed 
capture some process-based mechanisms intrinsically in their modeling procedure (26). 

Further distinction can be made between single species and joint species SDMs, with the former only 
modeling one species at a time and the latter attempting to model multiple species’ distributions 
simultaneously. Joint SDMs can be further subdivided based upon at what point in the modeling process 
the species were aggregated. Some joint SDMs are really aggregation of individual SDMs, with the 
predicted species’ presence joined during post-hoc analysis (27), while other joint SDMs model all species 
simultaneously throughout both the model fitting and analysis steps (28). For future clarification, when 
referring to a joint SDM, we are referring to the latter process. 

A final important distinction between different types of SDMs is between functional niche models and 
realized niche models. The functional niche of a species traditionally was defined as the set of environments 
where a species individually can sustain itself, while the realized niche is the set of environments where a 
species can sustain itself in the presence of competition from other biotic sources (29). Contemporary niche 
theory has strengthened these definitions to include dispersal dynamics, growth rates, and biotic 
interactions, all vital processes to a species’ dispersal (30). However, many modern uses of the terms use a 
simpler  less precise definition of niche that simplifies the fundamental niche to where a species can occur 
and the realized niche to where a species does occur (31, 32). Our approach falls somewhere in between, 
where for some species, like large redwoods, the realized nice is likely being modeled through direct 
detection of redwood canopy signatures, while for smaller less-observable species, like redwood sorrel, the 
modeling process is closer to the functional niche than realized. 
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SM 3.1 Limitations of on-site sampling methods 

While the best metric of species presence and current biodiversity comes from on-the-ground observation 
of species, generating comprehensive checklists of species presence at high resolution across large 
geographic extents is generally infeasible. For example, in ref. (33), rarefaction curves of species richness 
were generated at various grid sizes and using estimates from this analysis of over 1.5 million plant 
observations, an estimated 1,000 observations would need to be taken per grid scale at a 15 km resolution 
to reach a point where the rarefaction curve begins to plateau, with many cells requiring upwards of a 
magnitude more samples due to California’s extremely heterogeneous and endemic plant communities. 
Using the 1,000 observation estimations, an conservative estimated uniformly sampled 2 million checklists 
would be needed to estimate species richness at 15 km spatial blocks, with rapidly increasing numbers of 
samples as the desired resolution increases. All in all, it would be infeasible to try and perform the same 
species checklist curation using onsite methods that Deepbiosphere can perform.  

SM 3.2 Convolutional neural network-based species distribution models 

Convolutional neural networks (CNNs) are a popular machine learning model that have been adapted to 
successfully model a wide variety of complex, real-world image-related tasks, from image classification to 
deciphering handwriting (34, 35). Their widespread success lies in their ability to learn and extract arbitrary 
patterns and features from images without any human input, allowing them to detect and exploit only the 
most relevant visual features of an image for a given task. This ability to intrinsically learn the most relevant 
features of an image makes them very flexible for use across a wide variety of image-related tasks and a 
wide range of image media, from medical imagery of cells to satellite imagery (36, 37). In this work, we 
seek to predict the presence of thousands of plant species from relevant features found in the local aerial 
imagery of a location, a task that CNN models are well-designed to perform.  

We implemented all of our deep learning models in the standard deep learning framework PyTorch and 
implementation details can be found in the associated repository 
(github.com/moiexpositoalonsolab/deepbiosphere). All CNNs were trained with standard mini-batch 
stochastic gradient descent for 13 epochs using the Adam optimizer. The epoch of evaluation was 
determined using early stopping calculated from the per-species average area under the receiver operator 
characteristic curve (AUCROC) on the uniform test set split (see SM 2.2 for metric details). Learning rates 
were tested using a stepwise sweep ranging from 5x10-6 to 1x10-1 in increments of 0.5 and batch sizes were 
chosen depending on model size relative to the GPU size used for training. Batch size, learning rate, 
memory usage, and GPU architecture used for training are reported for each CNN in Tables S2-S10. 

SM 3.2.1 TResNet CNN architecture 

For training CNN-based SDMs using NAIP remote sensing imagery as input, we chose to use the medium-
sized TResNet architecture, a small CNN-based residual neural network (38) which is GPU-optimized for 
fast inference speeds and is a state-of-the-art architecture for multi-label image classification in the 
computer vision community (39). We modified the TResNet architecture to have four input channels in 
order to support the RGB + Infrared NAIP imagery. Following on previous work that suggests higher-order 
taxonomic signals are useful for species-level classification (40), we conducted an ablation study using the 
uniform test split of the dataset (SM 1.3.1) that compared the classification performance of the TResNet 
architecture using just the present species labels to the same architecture using higher-order taxonomic 
information to make predictions, specifically species, genus, and family labels (Table S6). We found that 
adding higher-order taxonomic information improved performance, and thus included both species, genus, 
and family classification during training in all subsequent TResNet-based experiments (Table S2).  

Following on previous work that found using species co-occurrence signals when training deep neural 
networks for species distribution modeling substantially improves performance (41), we also performed 

https://github.com/moiexpositoalonsolab/deepbiosphere
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another ablation study on the uniform test split of the dataset where we compared model accuracy using 
just the original species in each observation (single-label classification) to using all nearby imputed 
neighboring species (multi-label classification) (Table S6). We found that including nearby species 
information again improved performance, and thus subsequently used the nearby species information in all 
subsequent TResNet analyses when possible.  

All model weights were initialized following best practices laid out in the original TResNet paper, using 
Kaiming He-style for CNN layers and zeroed out BatchNorm and residual connections (38). For all 
analyses, the TResNet outputs were converted to independent probabilities using the sigmoid 
transformation. Using the taxonomically-informed architecture and nearby imputed species, we performed 
a linear learning rate optimization sweep, testing a series of static learning rates from 0.01 to 1x10-6

 in 
increments of 0.5. We found a learning rate of 1x10-5 had the highest accuracy on the uniform test set for 
most TResNet-based models and was the chosen learning rate for all subsequent experiments.  

SM 3.2.2 Developing a sampling-aware loss function 

We compared performance of our modified TResNet architecture trained on a variety of common loss 
functions and a new sampling-aware loss function we developed (sampling-aware binary cross-entropy 
[BCE]) using the uniform test split of the dataset (Table S7). Specifically, the loss, which determines how 
correct the CNN model’s prediction is for a given example, is task-dependent and there are many different 
choices for a given task type. In this work, we frame our problem as a classification task, where the goal is 
to classify each image into one of N classes. We also frame our problem as a multi-label task, which extends 
the above definition to classify each image into K of S classes (where K is the number of present species in 
the observation). While many CNNs have been developed for image classification, the vast majority of 
these architectures have been designed for single-label classification, where for each image exactly one 
class should apply; for example, each image may either have a dog or a cat, but an image is never expected 
to have both. However, what makes our dataset both unique but challenging is that it provides occurrences 
of all overlapping species in a given image, making it a multi-label dataset (see Section 1.2 for more details), 
since each image is associated with anywhere from one to nearly one hundred overlapping plant species 
within 256 × 265 m squares.  

Notationally, single-label data refers to training models with examples where only the original species 
observed at that location is included as a positive label, with all imputed neighbors being ignored. 
Alternately, multi-label data refers to including all imputed neighbor species as positive labels in each 
training example in addition to the originally observed species. Following, the notation  refers to the raw 
outputs from a neural network,  refers to the single- or multi-hot vector of known species presence in that 
example, where 0 means a species is absent and 1 means a species is present, and  is the number of unique 
species in the dataset. 

The most commonly used loss function for training classification CNNs in a single-label setting is cross-
entropy loss (CE).  

 

It should be noted that softmax-based losses like CE loss were designed for classification of single-label 
datasets and model a probability density function across labels (35) (meaning the sum of probabilities across 
all possible labels must be 1 per-example). However, this approach does not match the multi-label nature 
of our task well, as in each image the probabilities across species should be independent so that the presence 
of one species in an image does not imply a decrease in presence of other species. Furthermore, when using 
a softmax-based transformation of model outputs, probabilities of an individual species are no longer 
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directly comparable across individual observations on account of the lack of independence across labels, 
and thus is not a valid transformation for calculating binary classification metrics. Nevertheless, to compare 
to previous work in ref. (42), we still report accuracy metrics for models trained with CE loss using the 
softmax transformation.  

In the multi-label setting, the classic loss used for training CNNs is binary cross-entropy (BCE) loss: 

  

BCE loss can be intuitively interpreted as training the neural network to maximize the conditional log-
likelihood of species presence and thus the network’s predictions can be interpreted as estimating the 
likelihood of species occurrence in any arbitrary image. However, our dataset exhibits two important types 
of imbalances that make this standard loss not ideal for our task. First, our dataset exhibits strong 
observation imbalance, with few species possessing many observations and many species possessing few 
observations (Fig. S3A) which is problematic since the standard BCE loss formulation assumes an equal 
number of observations per-class in the dataset. The second is label imbalance, or the imbalance in the 
number of present vs. absent species per-image, a byproduct of using citizen science observations with 
incomplete coverage of all species present in a given 256 × 256 m area (see SM 1.7 for details). Most 
observations have fewer than five species present in the observation (Fig. S3B), and very few observations 
reach close to the expected true number of plant species present in a given 256 m radius. Therefore, in most 
cases only one to one hundred classes from the 2,221 species are present in a given observation and it should 
be assumed that all locations contain some pseudo-absences in . Since BCE loss assumes all absences are 
true absences, yet pseudo-absences are guaranteed to be present in the dataset, a loss calculation whose 
main contributions are from absences points is not ideal for our task.  

Therefore, we also considered two other losses that handle the contribution of the negative class differently. 
The first is a recent multi-label classification loss variant of focal loss called asymmetric focal loss (ASL) 
(43). This loss was explicitly designed and optimized for multi-label tasks by upweighting the loss 
contributions of the present classes without eliminating the contribution of the absent classes entirely. It 
does so by breaking the standard BCE definition down per-class, depending on whether the class is present 
or absent in the observation. The contribution of the absent versus present classes is then differentially 
applied to the loss using the hyperparameters  and . By setting , the loss contribution of all 
absent classes will be scaled down, decreasing their contribution to the overall loss. Furthermore, very easy 
negative examples which the network assigns low probability ( ) will be exponentially down-
weighted, creating a “soft thresholding” effect.  

The loss contribution of absent classes can be further reduced for easy negatives through the addition of 
“hard thresholding” (the function ) which fully discards the loss contribution for absent classes with 
predicted probability below a tunable threshold, . One can think of this as “throwing away” the loss 
contribution of very easy classes ( ). Furthermore, the shape of loss function is such that very 
hard negative samples (  when ) have a down-weighted loss contribution as well (see Fig. 3 of 
ref (43) for specifics). This corresponds to the scenario where an observation is “mis-labeled,” which in our 
dataset would correspond to a location missing an observation of a clearly present species, thus minimizing 
the negative effect of density bias seen in our dataset. Finally, the values of  can be dynamically adjusted 
during online training to maintain symmetry between the probability contribution of absent versus positive 
classes, to ensure that the loss contribution of negative samples does not “overwhelm” the contribution of 
the positive classes. Overall, these benefits fit our dataset well. 

This soft and hard thresholding is somewhat analogous to the sampling of pseudo-absence points, a required 
step for the maximum entropy modeling of Maxent, but importantly the hyperparameters are not dependent 
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on the spatial extent of a given species, as are the pseudo-absence sampling ranges of Maxent, and are 
instead a product of the distribution of presences versus absences in the dataset, thus avoiding the biases 
introduced through Maxent sampling process (44). We used the recommended default values for  , 

 and , the default values proposed in ref. (43). 

 

 

In order to account for sampling biases present in citizen science data, (SM 1.7), we also developed a new 
sampling-aware loss function (sampling-aware binary cross-entropy) which for each training example 
simply weights the loss contribution of present versus absent classes by the number of present and absent 
classes, respectively. The effect is that the magnitude of the contribution to the loss of present labels versus 
absent labels is approximately equal; in other words the correctness of the predictions for present species 
matters as much as the correctness of the predictions for absent species when calculating the model’s regret.  

  

  

We compared the performance of each of these losses on the uniform test set (SM 1.3.1) using the remote 
sensing image-only TResNet architecture (SM 3.2.1, Table S7). All losses were implemented in PyTorch 
and can be found in the code repository associated with the project. We found our new sampling-aware loss 
function—which equally weights the training signal from present and absent classes—had competitive 
performance compared to these common functions while also exhibiting useful properties for downstream 
species mapping.  

SM 3.2.3 Deepbiosphere, a novel climate + remote sensing CNN architecture 

We were interested in testing a neural network architecture that could combine both remote sensing and 
climate sources to improve species modeling using CNNs. Previous work has shown that regional patterns 
in climate data can be interpreted by CNNs (45) but unfortunately climate rasters are too low resolution to 
be able to combine them with remote sensing images, as each 256 x 256 m remote sensing image will be 
assigned a single climate value (Fig. S1).  

To get around this issue of scale, we created our own custom CNN model which combines a TResNet CNN 
head trained using NAIP imagery (Table S2) with a multilayer perceptron (MLP) head trained using climate 
inputs (Table S5), and we refer to this model as Deepbiosphere (Table S3, Fig. 1C). The TResNet head 
processes the high-resolution NAIP remote sensing image data (Fig. S2B) using 2D convolutions while the 
low-resolution bioclimatic information is processed pointwise by the MLP head (Fig. S2C) and ensembles 
the predictions through a series of fully-connected layers before predicting species, genus, and family like 
the TResNet architecture (Table S3, Fig. 1C). Overall, this architecture combines remote sensing imagery, 
climate data, taxonomic signal, and species co-occurrence patterns to make its species-level presence 
predictions. We found that Deepbiosphere performed better than TResNet models trained with just remote 
sensing imagery or MLPs trained with just climate variables (Table S8).  
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All model weights were initialized following best practices laid out in the original TResNet paper, using 
Kaiming He-style for CNN layers and zeroed out BatchNorm and residual connections (38). For all 
analyses, Deepbiosphere’s outputs were converted to independent probabilities using the sigmoid 
transformation. Like the modified TResNet, we performed a linear learning rate optimization sweep for 
Deepbiosphere, testing a series of static learning rates from 0.01 to 1x10-6

 in increments of 0.5, and found 
comparable performance across a range of learning rates ranging from 5x10-6 to 5x10-4. For model-to-model 
comparison, we trained Deepbiosphere with a static 1x10-5 learning rate—the same learning rate as the 
TResNet architectures—and for the case study analyses and change detection experiments, we used models 
trained with a static learning rate of 1x10-4. 

SM 3.2.4 Inception V3 Baseline 

For comparison to previous work using CNNs to predict the presence of individual species from remote 
sensing imagery (46), we also trained an Inception V3 architecture (Inception, Table S4) with softmax 
cross-entropy loss. This architecture only uses remote sensing imagery and the individual species labels 
associated with each remote sensing image and does not make use of climate data, taxonomic signal, nor 
species co-occurrence patterns in its modeling process. We used the official architecture implementation 
and weight initialization from PyTorch, using both the standard and auxiliary loss during training. We 
utilized the standard dropout rate of 0.5 and performed a learning rate optimization sweep for Inception’s 
softmax cross-entropy-based loss with the more computationally-efficient TResNet architecture, and 
ultimately settled on an optimal static learning rate of 1x10-4 for the Inception-based model. While ref. (46) 
used a learning rate scheduler, we did not implement a scheduler in our training framework, so we only 
report accuracies for the model trained with the constant learning rate of 1x10-4. We also use the auxiliary 
loss for model training, which ref. (46) did not, and this addition should improve accuracy by preventing 
vanishing gradients. While the hyperparameters for training were slightly different from ref. (46), the 
Inception V3 models trained with our hyperparameters exhibited expected behavior during training 
(monotonically decreasing training loss and increasing test set accuracy as training progressed), and thus 
should provide a fair comparison to previous work. 

For all analyses, the Inception outputs were converted to a probability density function using the softmax 
transformation as in ref. (46). While the Inception model is trained jointly across all species like 
Deepbiosphere, the softmax cross-entropy loss forces the Inception CNN to fit a probability density 
function across species, meaning that it has been trained to predict just one species at a time and making it 
infeasible to use the model as a joint SDM effectively (see Fig. S11B). Specifically, when using softmax 
cross-entropy loss, the raw model outputs can span from  to , so to map these predictions to 
probabilities the softmax transformation restricts that all probabilities across classes must sum to 1. This 
means that per-image, the probability of classes are dependent on one another (in this case, classes are 
species), and if a class is to rise in probability, another class must fall, making the probabilities across 
classes no longer independent. This lack of independence across species classes means that the predicted 
probabilities are not comparable across images and that these models are unable to produce probabilistically 
consistent maps of species’ distributions across space, making them a poor choice for building species 
distribution maps. This means that if the Inception model trained with this loss predicts with high 
probability that a given species is present, for it to also predict another species as likely present, it must 
balance the probability assigned to the two species in a mutually-exclusive way. Naturally mutual exclusion 
proves problematic when wanting to predict upwards of hundreds of species simultaneously. Further, 
converting these probabilities to binary thresholds for calculating accuracy metrics becomes tricky. To this 
note, we still train and compare against the Inception-based model used in this work, and report accuracies 
for probabilities calculated using the softmax transformation, meaning that the Inception model will 
naturally have very low predicted probabilities per-species and per-image, and thus all binary classification 
metrics are 0 for this model. 
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Since the Inception V3 model (Table S4) is significantly larger than the TResNet-based models (Tables S2, 
S3) and requires upwards of 5x the training time and compute, the Inception baseline CNN model was not 
included in the spatial cross-validation analyses as it was prohibitively resource-intensive to train and had 
poor results on the uniform split of the dataset for all binary accuracy metrics (Table S8). 

SM 3.3 Climate-only Species Distribution Model baselines 

Dozens of different SDM methods have been proposed over the decades, ranging from simple linear 
regression to neural network models. We chose to focus on the popular maximum entropy (Maxent) method 
and Random Forest method, as these two models performed consistently well compared to the dozens of 
approaches tried in ref. (47) across hundreds of species. Specifically, we use the popular dismo package for 
species distribution modeling (48) and compare against Maxent and downsampled single stacked Random 
Forest using best practices lined out in ref. (49). We also attempted to compare against ensembling 
approaches and run the popular biomod ensembling algorithm, but the algorithm was too slow and memory-
intensive for us to be able to run it on all 2,221 species in our dataset.  

We used WorldClim 2.0 bioclimatic variables (11) normalized to mean 0 standard deviation 1 (see SM 1.5 
for details). Following best practices from ref. (49), we removed all but one Bioclim variable with a Pearson 
correlation coefficient higher than 0.8, leaving ten variables in total for modeling including Mean Diurnal 
Range, Max Temperature of Warmest Month, Minimum Temperature of Coldest Month, Annual 
Precipitation, Precipitation of Wettest Month, Precipitation of Driest Month, Precipitation Seasonality, 
Precipitation of Wettest Quarter, Precipitation of Warmest Quarter, and Precipitation of Coldest Quarter.  

For each species, we generated 50,000 background samples using a circular overlay across all points in the 
training dataset where the radius of each circle is the median distance between said species’ observations. 
For the spatial cross-validation experiments (SM 1.3.2) we removed all background samples within the 
spatially withheld portion of the state. Finally, we used the same presence and background points for both 
the Random Forest and Maxent models.  

SM 3.3.1 Maximum Entropy Baseline 

For Maxent, we use a stacked single SDM approach to generate predictions for the 2,221 species in our 
dataset by generating individual models for each species then aggregating the predictions post-hoc. We use 
the Maxent implementation from the R package dismo (48) using the aforementioned background samples 
and all presences in a given train split of the main dataset. Consistent with ref. (49), we included the 
‘nothreshold’ option and set the rest of the hyperparameters using dismo defaults. Although studies exist 
that run Maxent on the genus level, we nevertheless opted to only run Maxent to model species distribution, 
not genus or family. Maxent failed to run on 83 species, so for downstream accuracy analyses we imputed 
a prediction of 0.0 for these species. 

SM 3.3.2 Random Forest Baseline 
 
For the Random Forest baseline, we also take a stacked single SDM approach and use dismo (48). For each 
species, we fit Random Forest with 1,000 trees using equal bootstrapping of positive and negative samples 
with replacement as outlined in ref. (49) with all other options set to the dismo default settings. 66 species 
did not properly fit for Random Forest, and so we imputed an accuracy of prediction of 0.0 for these species 
in subsequent analyses.  

SM 3.3.3 Climate-only Multilayer Perceptron baseline 

To compare the difference in remote sensing data versus standard bioclimatic data for species distribution 
modeling, we also considered how well a standard fully-connected multilayer perceptron (MLP) trained 
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using bioclimatic variables would perform as an SDM. MLPs trained on environmental data are a standard 
choice for SDMs, although Maxent and Random Forest have been more popular in recent years as they’re 
less prone to overfitting (47).  

We implemented a four layer, fully-connected MLP with BatchNorm in PyTorch inspired by ref. (50) which 
we refer to as the Bioclim MLP. This architecture consists of two fully-connected layers with 1,000 neurons 
each, followed by a dropout layer with a 0.25 dropout rate, then by two layers with 2,000 neurons each, 
before predicting species, genus, and family like the modified TResNet and Deepbiosphere architectures 
(Table S5). It should be noted that this MLP is not convolutional and learns from the raw value of 
environmental variables, rather than two-dimensional patterns of remote sensing data, like the CNN-based 
models. 

For all experiments, we trained the Bioclim MLPs with sampling-aware binary cross-entropy loss (SM 
3.2.2) and utilized co-occurring species information similar to the modified TResNet and Deepbiosphere 
architectures. All versions of this model were trained with a batch size of 1,000, as the model is significantly 
smaller than the CNN models and so a much larger batch size still easily fits on a small GPU. The optimal 
model learning rate was found using a stepwise sweep ranging from 5x10-6 to 1x10-1 in increments of 0.5 
on the uniform test dataset, with the optimal learning rate being 1x10-5, similar to the TResNet-based 
architectures. The Bioclim MLP was trained with standard mini-batch stochastic gradient descent using the 
Adam optimizer for 100 epochs and like the other deep learning-based SDMs, the epoch of evaluation was 
determined using early stopping calculated from the average area under the receiver operator characteristic 
curve (AUCROC) on the uniform test set split (see SM 2.2 for metric details). 

SM 3.3.4 Trivial baselines 

Finally, we also compared performance against two trivial baselines. The random baseline was calculated 
by drawing random values from a standard normal distribution five times and averaging the accuracy 
metrics across these five trials. The frequency baseline involved calculating the frequency of observations 
per-species on the training set, rescaling the frequencies to 0.001-1.0 and imputing these frequencies as the 
predicted probabilities at each test set example. 

SM 4. Individual species case studies 
While the ability to successfully predict the presence of thousands of species at once is in itself an 
impressive feat, also of importance is how such an SDM can be useful for a variety of downstream 
ecological tasks. By modeling each individual species of a community, we can begin to detect not just 
individual species, but ideally patterns of the entire community as well. To begin to explore the power of a 
multi-species modeling approach, here we present two case studies of well-known vegetation communities 
and their species and demonstrate how Deepbiosphere can detect expected species-level range dynamics 
across a variety of ecoregions. 

SM 4.1 Validating Deepbiosphere’s predictions for individual species 

Since Deepbiosphere generates predictions for thousands of plant species simultaneously, it can 
theoretically be used to detect and model both individual species along with the broader vegetation 
community. For the high-resolution case studies to compare to human annotators, we focused on two large 
charismatic tree species—redwoods (Sequoia sempervirens) and valley oak (Quercus lobata.  We 
specifically chose these two species as they are observable directly from the NAIP imagery so that human 
annotators could distinguish their specific canopies and so that human annotations could be reasonably 
assumed to represent some proxy of ground-truth presence and absence. For both case studies, locations 
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were chosen using expert knowledge of the respective species ranges and known occurrences from Calflora 
(64) (Table S11). 

It is important to note that for the human annotator comparison case studies, the versions of Deepbiosphere, 
Maxent, Random Forest, and Bioclim MLP used in these case studies were trained without observations or 
pseudoabsences from the respective spatial cross-validation band where the case study was located (see 
darkened band inside California inset in Figs. 2, S14). Thus, these models did not see any example images 
or climate variables from the respective regions at train time, with the nearest training examples located 
between 9–20 km away from the case studies (Fig. S4B). Conversely, the Inception V3 baseline was trained 
using the uniform split of the dataset and thus was trained with multiple observations from within the case 
study areas (Fig. 4A, S11B).  

For the additional state-wide species range maps (Figs. S22-23), 55 species representing a mix of well-
predicted and randomly-selected species were chosen. Well-predicted species (Fig. S22) were chosen by 
assigning species to one of the five L2 ecoregions of California based on which L2 ecoregion the most 
Deepbiosphere uniform training set observations fell into, then filtering these species to only include those 
with at least 10 Deepbiosphere uniform test set observations and species with a test set AUCROC accuracy 
of at least 0.98 for either Deepbiosphere or Maxent (for a total of 239 possible species). Then, for both 
Deepbiosphere and Maxent, the top-5 most well-predicted species per-L2 ecoregion were chosen, for 
upwards of a total of 10 species per-L2 ecoregion. Not every ecoregion has 10 species plotted if there was 
overlap between the top-5 best AUCROC species for Deepbiosphere and Maxent, or if one of the two models 
did not have a high enough AUCROC on well-supported species. For the randomly-chosen species (Fig. 
S23), species with a Deepbiosphere test set threshold of at least 10 observations (leaving  1,007 possible 
species) were assigned to one of the five L2 ecoregions of California based on which L2 ecoregion the most 
Deepbiosphere uniform training set observations fell into, and for each L2 ecoregion, five species were 
randomly selected from the list of species most common to that ecoregion using the numpy.choice function 
and a random seed of 1. 

To quantify these 55 species, occurrence records for each species were obtained from the independently-
sampled Calflora occurrence record database (64). For each of the 55 species, all occurrences from Calflora, 
the Consortium of California Herbaria, and the Consortium of North American Bryophyte Herbaria were 
downloaded, only excluding iNaturalist observations as those records are likely present in the 
Deepbiosphere training dataset. From these occurrences, those present within California that included 
location information were used, including obscured records, all varieties, and sub-species. To quantify 
Deepbiosphere and Maxent’s predictive accuracies using AUCROC from these records, each known species 
location was considered a presence and absences were derived from the location of all other Calflora 
occurrences for the selected species in Figs. S22 and S23 not predominantly found in the species’ ecoregion 
(e.g., excluding observations for all other species predominant to the Warm Deserts L2 ecoregion for 
Bahiopsis parishii). Observations from species common to the L2 ecoregion were excluded as absence 
points as these species may co-occur, thus representing pseudo-absence points as opposed to true absence 
points. In total, 30,543 observations were curated from Calflora to validate the models’ performances. 

Additionaly, from each L2 ecoregion one species was chosen for a high-resolution case study zoom-in at 
~1, 0.1, and 0.001 degrees resolution (Fig. S24-28). Species were chosen to highlight the various strengths 
of using remote sensing data for species range mapping, including the ability to detect differences in soil 
type (Figs. S25, S27), land use (Fig. S26), and geographically-isolated extant populations (Figs. S24, S28). 

SM 4.2 Generating high-resolution species range maps with CNN SDMs 
 
Deepbiosphere, like all classification-based CNN models, takes in images of ideally a set dimensionality 
(for our work, 256 x 256 pixels) and makes a single prediction for this image (in our formulation, a single 
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prediction consists of a predicted presence of 2,221 plant species). In other words, Deepbiosphere can 
produce a prediction of all 2,221 species for any arbitrary 256 x 256-pixel image. In order to get a map of 
predictions at a set ground-level resolution using this model, one simply has to convolve this local receptive 
field every K pixels to generate a map of K-pixel resolution, a technique similar to the striding operation in 
the convolutional layers of a CNN. Then, depending on the resolution of the imagery used to make the 
predictions, one can determine the ground-level resolution of the predictions themselves. For example, to 
generate a 50 m ground-level resolution map from 1m NAIP imagery, a stride of 50 should be employed. 
Alternately, to generate a 30 m ground-level resolution map from 60 cm NAIP imagery, a stride of 50 will 
also suffice. A visual explanation of the striding procedure can be found in Fig. S8. Each of these strided 
blocks we refer to as map pixels, which can then be compared to other maps by aligning Deepbiosphere’s 
map pixels to the other map’s pixels through co-registration using the underlying spatial extent of the map 
pixels. Deepbiosphere is efficient enough to generate maps for all 2,221 species across the state of 
California at 150m resolution, taking about a day to run with 30-core parallelization (Fig. S22, S23). 

SM 4.3 Human annotation protocols 

To generate ground-truth human annotations at a similar resolution to Deepbiosphere’s, a user study was 
implemented in Google Sheets where human annotators classified the same NAIP imagery as 
Deepbiosphere by percent cover. To calibrate annotators to the task, each annotator received three NAIP 
images from 2012 (the same imagery used to train Deepbiosphere) and an assigned cover classification 
using known species occurrences pulled from Calflora (64) (Table S11, Fig. S9, S14C). These example 
photos were chosen from outside the case study area yet within the species’ core ranges and were annotated 
on a scale of 0% cover to 100% cover at five different levels.  

Annotators were then given the full NAIP imagery (Fig. S9, S14A) partitioned into 256 × 256m blocks—
which were labeled A-Z and 1-30 to correspond with the appropriate cell in Google Sheets—and were 
asked to label each corresponding image block in its matching cell. Annotators were not domain experts 
and the only training received a priori were the three already classified example images (Figs. S9, S14C). 
Three non-expert human annotators annotated Sequoia sempervirens cover and two annotated Quercus 
lobata cover. Annotations took between 30 minutes to two hours per-case study (depending on the 
efficiency and familiarity of the annotators with the task) and final cover scores were calculated by 
averaging annotations per-pixel across annotators.  

SM 4.4 Redwoods case study 

To validate the predicted presence of redwoods across vegetation types and models, the National Park 
Service’s (NPS) 2017 vegetation mapping and classification project was used, specifically the alliance-
level classification mapped to the thirty vegetation classes used for the accuracy assessment in ref. (51). To 
generate this map, the association-level vegetation map was cross-walked to the generalized alliance level 
(see section 2 of ref. (51) for details on class type designations). We further grouped these alliance-level 
classes into the thirty vegetation classes used in ref. (51)’s accuracy assessment (see 6.2.1 of ref. (51) for 
details on the map classes; see sections 5 and 6 of ref. (51) for justification on classes that were removed) 
and filtered the mapped vegetation categories to only include those mapped to these thirty classes. For the 
final map, the class “mature redwoods” mapped to the Sequoia sempervirens Mature Forest alliance, the 
class “young redwoods” mapped to the Sequoia sempervirens- (other) YG alliance, and the class “other 
vegetation” mapped to all other alliance-level classes present in the study area. Per-pixel labels were 
determined based on which alliance had the largest area overlap with the pixel’s extent.  

The co-occurring species used for the understory analysis were chosen based on importance values for 
primary versus secondary-growth redwoods as reported in Table 2 of ref. (52) from 16 inventory plots and 
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the constancy values generated from 65 relevé surveys reported in ref. (51) for Manual of California (MoC) 
vegetation associations crosswalked to either the Sequoia sempervirens-(Other) YG Mixed Forest alliance 
(Lithocarpus densiflorus-Sequoia sempervirens Young Growth association [Appendix B Table B10], Alnus 
rubra-Sequoia sempervirens Young Growth association [Appendix B Table B8], and Pseudotsuga 
menziesii-Lithocarpus densiflorus-Sequoia sempervirens Young Growth association [Appendix B Table 
B11]) or the Sequoia sempervirens Mature Forest alliance (Sequoia sempervirens- Acer macrophyllum- 
Umbellularia californica association [Appendix B Table B12], and Sequoia sempervirens/Vaccinium 
ovatum/Polystichum munitum association [Appendix B Table B14]).  

Species were first filtered to only include shrubby and herbaceous understory species present in Table 2 of 
ref. (52) and those that were present in all constancy tables for the crosswalked MoC associations. Species 
were further filtered to only include species who showed similar association patterns across the two 
independent studies (e.g. higher constancy values on average for old-growth-associated plots in both studies 
and lower constancy values on average for secondary-growth- associated plots in both studies). Specifically, 
species were considered to be old-growth-associated if they had a higher importance value for old-growth 
versus secondary-growth in ref. (52) and a strictly higher constancy in old-growth-associated MoC 
vegetation associations compared to secondary-growth-associated MoC associations in ref. (51). Species 
were considered to be secondary-growth-associated if they a higher importance value for secondary-growth 
versus old-growth in ref. (52) and a strictly higher constancy in secondary-growth-associated MoC 
vegetation associations compared to old-growth-associated MoC associations in ref. (51). Species were 
considered to be associated with both forest types if the importance values for old-growth versus secondary-
growth plots in ref. (52) were smaller than 3.0 and the average difference between constancy values in in 
ref. (51) was < 10. Only 6 species met this filter, two that were secondary-growth-associated, two that were 
old-growth-associated, and two that were associated with both types of vegetation. Constancy values are 
individually reported for each crosswalked MoC association and also for the redwood forest maturity type 
reported in the relative frequency column of Table 2 in ref. (52), ultimately leaving four independently 
sampled constancy values for the Sequoia sempervirens-(Other) YG Mixed Forest class and three 
independently sampled constancy values for the Sequoia sempervirens Mature Forest class. 

SM 4.5 Oaks case study 

For the oaks case study, the United States Department of Agriculture (USDA) Forest Service’s Region 5 
South Coast existing vegetation map (53) was used to validate species predictions, specifically the type 1 
regional dominance (REGIONAL_DOMINANCE_TYPE) crosswalked to species using the Classification 
and Assessment with Landsat of Visible Ecological Groupings (CALVEG) class descriptions from Region 
5’s Zone 7 (54). A species was considered present within a given regional dominance type if said species’ 
name was mentioned in the corresponding CALVEG Zone 7 vegetation description. The final species to 
CALVEG mappings are as follows: Ceanothus cuneatus: CC, CQ, EX; Quercus lobata: QL; Bromus 
diandrus: HG; Quercus berberidifolia: CQ; Arctostaphylos glandulosa: CQ,  SD, Adenostoma 
fasciculatum: QA, CC, CQ, SS, EX. Other CALVEG classes were present in the study area, but either were 
associated with developed and agricultural land use or were too small in area to map to a sufficient number 
of pixels and were thus excluded from the analyses. For comparing predicted presence inside versus outside 
CALVEG zones, CNN-based SDM predictions made at 256 m resolution were used to minimize spatial 
autocorrelation. For a given species, pixels were marked as “inside” if a given pixel intersected at least one 
of the associated CALVEG classes for that species and was marked as ‘outside’ otherwise.   

SM 5. Mapping spatiotemporal changes with Deepbiosphere 
On top of modeling individual species, Deepbiosphere’s multi-species predictions can also be evaluated in 
aggregate to explore more macroecological trends in community composition, such as spatial and temporal 
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change. Historically, these processes have been difficult to observe directly without detailed species 
checklist data, limiting the resolution at which these metrics can be generated (55, 56). However, combined 
SDMs for thousands of species have been proposed previously to measure certain important ecological 
phenomena, such as the imperiled species index (27). Here, we showcase that Deepbiosphere could 
potentially be used for similar purposes, especially for detecting community change in space and time at 
high-resolution. 

SM 5.1 Detecting spatial community change 

In order to interpret Deepbiosphere’s predictions of species presence as community change, a novel edge 
detection algorithm inspired by common edge detection filters from computer vision was used (see Fig. 
S19 for visual walk-through). Specifically, the averaged one-neighbor Euclidean norm was calculated per-
pixel from a map of all 2,221 species predictions to generate a map of averaged similarity to neighbor pixels 
(See SM 4.2 for map generation details). This algorithm essentially measures the average distance of the 
predictions of a given pixel to all its nearest neighbor pixels, summarizing how similar or different a given 
pixel’s predicted species list is from nearby areas. Another interpretation of this statistic is as a measure of 
the average rate of change of species composition within a local area.  

The Euclidean norm was the chosen statistic as it is a metric that encodes both magnitude and direction. 
Therefore, it captures both changes in a given species’ presence across pixels through the directional 
component (e.g: a species highly predicted in one pixel has much lower predicted probability in the other 
pixel) and capture changes in the raw number of species predicted through the magnitude component (e.g.: 
many species are predicted with high probability in one pixel, but then very few are predicted with high 
probability in the other pixel). Generalizing, for all non-edge pixels in the given extent of Deepbiosphere’s 
presence predictions, we take the Euclidean norm from the central pixel to its neighboring pixels, then take 
the average across its eight neighbors to generate the final spatial community change value. Below,  is 
the predicted probability vectors for all 2,221 species at the given pixel of interest and  are the predicted 
probability vectors at all eight one-neighbor pixels (see Fig. S19 for visual walk-through).  

 

We refer to this averaged one-neighbor Euclidean norm metric as spatial community change. Directly 
validating spatial community change is exceedingly difficult, as such data rarely exists at scale. As a proxy, 
the number of unique alliance-level vegetation classes in a given pixel is used to approximate how rapidly 
habitat transitions are occurring in a given location. The rationale is that more vegetation classes 
intersecting in the pixel means that the area is likely an ecotone, and thus should have a higher spatial 
turnover of species.  

To validate Deepbiosphere’s spatial community change predictions, we utilized a case study associated 
with the 2018 Marin fine-scale vegetation map (Fig. S17C) (57), calculating the number of vegetation 
classes intersecting each pixel. The number of intersecting alliance-level vegetation classes were counted 
per 256 x 256 image using Geopandas’ “intersects” function (58) and the spatial community change metric 
was correlated to the number of vegetation classes using the modified t-test from SpatialPack using the 
centroid of each pixel as the coordinates per-sample (59).  

To confirm that predicting changes in community composition is more complex than simply predicting the 
change in greeness or infrared absorption, a similar comparison to the number of intersecting vegetation 
classes was performed using the averaged one-neighbor Euclidean norm between the normalized raw NAIP 
pixel values per-band, upsampled to 256 m resolution. (Fig. S17D). Since Deepbiosphere was trained with 
observations from the case study region (Fig. S17E), to confirm that predicting changes in community 
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composition is also not as simple as simply recapitulating the number of species in a given area, the number 
of unique species observed in a given pixel was also correlated with the spatial community change from 
Deepbiosphere (Fig. S17F). 

SM 5.2 Detecting temporal community change 

One major benefit to using remote sensing data to train SDMs as compared to climatological datasets like 
WorldClim is that rapid, short-term ecological change is more readily captured in high-resolution remote 
sensing imagery as opposed to long-term climatological trends (Fig. S1D-F). To test the utility of high-
resolution remote sensing imagery for capturing changes in time, we conducted a case study from the Rim 
Fire that occurred in the Sierra Mountain foothills. At the time of the blaze, the Rim Fire was California’s 
second-largest fire on record. More specifically, the blaze occurred in the Hetch Hetchy Valley in the 
western Sierra mountains, and occurred in the fall of 2013, giving an entire growing season between the 
fire and the acquisition of the next round of NAIP imagery in summer of 2014. In order to detect temporal 
change, a metric similar to the spatial community change was developed. Specifically, the per-pixel 
Euclidean distance between Deepbiosphere’s predicted species probabilities made from NAIP imagery 
acquired in 2012 and 2014 was used to approximate the magnitude of temporal community change. 

 

This temporal Euclidean distance metric we refer to as the temporal community change (visual explanation 
found in Fig. S21). This change metric essentially measures the magnitude of per-species change (including 
both increases and decreases) aggregated between the two timepoints. 

As with spatial community change, directly detecting temporal community change is difficult. However, 
hyperspectral data was independently collected within the bounds of the fire at high resolution, enabling 
the estimation of the differenced normalized burn ratio (dNBR), a popular metric of fire severity (60). 
Normalized burn ratio (NBR) is an empirical measurement of burn severity calculated by taking the 
difference between infrared wavelengths—which capture photosynthesis intensity—and shortwave infrared 
wavelengths—which capture heat absorption from char—and is typically measured using hyperspectral 
spectrometers such as AVIRIS or MASTER sensors (61). To calculate dNBR, the change in NBR from 
data acquired before the fire to data acquired after is calculated. For this analysis, MASTER sensor data 
was chosen as it had more coverage over the fire than the AVIRIS sensor data, covering roughly half of the 
fire’s extent. Specifically, dNBR calculated using NBR acquired in June of 2014 was used for validation, 
as that was the closest time point to the acquisition of the corresponding NAIP imagery. In order to reach 
the same resolution as the empirical burn severity data, we used a 35 pixel stride (SM 4.2).  

Deepbiosphere’s predicted temporal community change metric was correlated to dNBR using Pearson’s r 
corrected for spatial autocorrelation using the Dutilleul correction from the SpatialPack R package using 
the centroid of each pixel as the sample coordinates (59, 62). Before correlation, both dNBR and 
Deepbiosphere’s temporal community change predictions were upsampled to 256 m resolution as the 
spatial correction calculation is very computationally intensive. The Pearson’s r does not change 
substantially between correlations calculated at 35 m versus 256 m resolution, thus only the 256 m results 
are reported. 

As with spatial community change, the Euclidean distance between NAIP imagery acquired in 2012 and 
2014 was calculated to confirm that detecting fire severity is not as simple as recapitulating the difference 
in the infrared and green bands across time. NAIP imagery was upscaled to 35 m and 256 m resolution 
respectively, normalized, and mean-centered in the same way that imagery is prepared during 
Deepbiosphere model training. The correlation between the distance in NAIP pixels and dNBR was also 
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generated at 35 m and 256 m resolution, and as with the temporal community change, the Pearson’s r does 
not change substantially between correlations calculated at 35 m versus 256 m resolution. 
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Supplemental Figures 

 
Fig. S1 | Spatial and temporal resolution comparison of remote sensing data vs. SDM bioclimatic covariates 
(A) National Agricultural Imagery Program (NAIP) imagery data acquired in 2012 for northern Marin County in northwest 
California. From this imagery, different ecological features of this ecological transition zone are clearly visible, such as the light 
green of invasive annual grasslands interspersed with patches of coast live oak. (B) Fine-scale vegetation map from ref (57), which 
contains almost 50 highly fragmented unique habitats and land use categories for the study area. (C) Temperature annual range 
from WorldClim 2.0 (11), a version of bioclimatic variables commonly used as covariates for species distribution modeling (SDM). 
These bioclimatic variables are of low spatial resolution and do not capture the local habitat changes in (B) that are clearly visible 
from remote sensing imagery in (A). (D) National Agricultural Imagery Program (NAIP) imagery data acquired in 2012 at a 
degraded ephemeral freshwater wetland at Ash Creek Wildlife Area in northern California (park bounds outlined in white). The 
degradation of the wetlands is clearly visible as the large light brown grassland intrusion cutting through the middle of the much 
greener and darker-colored wetland (center of image) (E) NAIP imagery acquired in 2014, after a restoration project was undertaken 
to restore the degraded wetland through a series of pond and plug procedures (visible as small dark dots in the center of image). 
The restored wetlands are clearly visible as a now-continuous band of green vegetation traversing the majority of the wildlife area. 
(F) Annual precipitation from WorldClim 2.0 at Ash Creek Wildlife Area (11). The WorldClim bioclimatic variables are averaged 
across a three decade timespan (1970-2000) and thus fail to meaningfully capture this rapid temporal ecosystem change.  
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Fig. S2 | Illustration of building the biodiversity dataset 
(A) For each unique observation in the dataset, first, a species observation is selected. (B) For this selected observation, a 256 × 
256 pixel image is generated from the four band NAIP imagery, centered at the geographic location of the observation (orange 
cross). Observation locations may have upwards of a 30 m radius of geographic uncertainty (orange circle) but still fall well within 
the image extent. (C) Next, the bioclimatic variables for that location are selected. The resolution of the bioclimatic variables is 
much coarser than the remote sensing imagery, thus for each 256 x 256 pixel remote sensing image, only one pixel of bioclimatic 
data is selected. (D) Afterwards, a list of overlapping species is generated by selecting other observations from the dataset (blue 
cross) whose coordinates fall within a 256 m radius of the original observation (pink circle) (E) The final data products consist of 
the four-band remote sensing image (B), the Bioclim variables (C) and the partial species checklist (E). 
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Fig. S3 | Biases present in the dataset and their effects on accuracy 
(A) Many species have few images in the dataset, while a few species have a disproportionate number of observations. This extreme 
imbalance between species class frequencies can make it difficult for classic machine learning methods that rely on an assumption 
of an equal number of examples per-class to learn a good representation. (B) The dataset also exhibits significant imbalance in the 
number of species labeled per-image in the dataset. Most observations have few overlapping species in the observation—likely not 
fully describing all species actually present in a given site—while only a few observations contain many species and present a more 
accurate checklist of species presence in a given area. (C)  Plot of distance to nearest non-overlapping observation across California. 
Color and size represent the distance in kilometers to the next-closest non-overlapping image in the dataset. As to be expected from 
opportunistic citizen science data, observations tend to cluster and distances are not distributed evenly. (D) Comparison of number 
of species occurrences in a given Level III EPA ecoregion versus the area of that ecoregion. Citizen science observations like those 
used in the dataset tend to cluster around population areas and natural regions where observers can reach. This leads to oversampling 
in some ecoregions, especially the California Coastal Sage, Chaparral and Oak Woodlands and Coast Range, and significant 
undersampling in other regions, especially the Cascades and Northern Basin and Range habitats. Colored bars represent the number 
of observations in the dataset from that region and the grey bars represent the area in square kilometers of the specific ecoregion. 
Inset is a map of the Level III ecoregions of California. (E) Average per-image recall accuracy of Deepbiosphere on the uniform 
split of the dataset (same model as Table S8). The accuracy differences of Deepbiosphere’s predictions across ecoregions is less 
pronounced than the underlying citizen science data, implying that the model is learning patterns of species’ distributions that are 
generalizable across regions.  
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Fig. S4 | Partitioning the dataset for cross-validation  
(A) Location of observations used for the uniform split of the dataset. Observations were selected for the test set if they were at 
least 1.2 km away from any observation in the training set to ensure that there was no train/test leakage for Bioclim-trained models. 
Color scales represent the number of unique species present in each observation, log-scaled. (B) Location of test blocks for spatial 
cross-validation. A 10-block spatial holdout procedure was employed to test models’ extrapolation ability. Areas that were included 
in the training set are in color and areas used for the test set are in white. Any images within 1.3km of the test region were removed 
from the training set in order to prevent potential overlap between bioclimatic variables in the train and test splits (grey boundary). 
The number of images within each split is also annotated, along with the number of unique species present in both splits. 
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Fig. S5 | Comparison of SDM models’ accuracy metrics across species 
Here we report the accuracy of Deepbiosphere to baseline models on the uniform split of the dataset (Fig. S4A) for the eleven 
accuracy metrics that can be calculated per-species, using species found both in this train and test set split (1,541 species out of 
2,221 total species in the dataset). On average, Deepbiosphere outperforms the baseline approaches, having a higher median 
accuracy for seven out of the eleven metrics reported here. Stars represent unpaired student t-test comparing Deepbiosphere’s 
accuracy per-species to the relevant baseline SDMs with *** indicating a P-value of < 10-3, ** indicating a P-value of < 10-2, * 
indicating a P-value of < 10-1, and NS. indicating a non-significant P-value. Annotated values are the median accuracy for that 
metric, bolded and underlined for the model with highest accuracy. Batch size, learning rate, and epoch of evaluation can be found 
in Table S8. 
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Fig. S6 | Comparison of SDM models’ accuracy metrics by species rank in the dataset 
Here we visualize all eleven accuracy metrics that can be calculated per-species (columns) for Deepbiosphere, its building block 
models, and all baselines (rows) by breaking down the per-species accuracy by how frequent said species is in the dataset (rank, X 
axis). In general, we see that performance degrades for all models as species become rarer, but not universally (see species top-K 
metrics). We also see that oftentimes Deepbiosphere’s performance on rarer species degrades less severely than other modeling 
approaches (see precision, AUCROC), implying that modeling choices such as our sampling-aware loss function and use of co-
occurrence data helps improve rare species performance. Species rank was calculated using the un-imputed observations across all 
train and test splits, with rank 0 corresponding to the most common species. Annotated lines correspond to the median accuracy 
for that model and metric.  
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Fig. S7 | Comparison of SDM models’ accuracy metrics across latitudinal cross-validation bands 
Here we report the accuracy of Deepbiosphere to baseline models on the latitudinal cross-validation blocks (Fig. S4B) for the eight 
accuracy metrics from Table 1. Deepbiosphere outperforms all climate-based baseline approaches and has a higher median 
accuracy for the eight metrics reported here. Dots are median accuracies per-band. Stars represent unpaired student t-test comparing 
Deepbiosphere’s accuracy per-band to the relevant baseline SDMs with *** indicating a P-value of < 10-3, ** indicating a P-value 
of < 10-2, * indicating a P-value of < 10-1, and NS. indicating a non-significant P-value. Annotated values are the median accuracy 
for that metric, bolded and underlined for the model with highest accuracy. Batch size, learning rate, and epoch of evaluation can 
be found in Table S10.  
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Fig. S8 | Generating high-resolution predictions with Deepbiosphere  
To generate high resolution predictions from Deepbiosphere, a technique from computer vision called striding is employed. Since 
Deepbiosphere is trained with images of size 256 x 256 pixels, we are limited to generating predictions of this size and shape. 
However, we can get a higher resolution by shifting Deepbiosphere’s local receptive field (the current 256 x 256 pixels used to 
make a prediction) by K pixels to generate a map of K-m resolution. This iterative sliding of the local receptive field is similar to 
striding, a technique used within the architecture of many CNN models.  For example, to generate a 2 m-resolution map from 1 m 
resolution imagery using a CNN that makes predictions using a 3 x 3 image, we would generate predictions for each 3 x 3 image 
within the map, striding the predictions by 2, resulting in a final map with a ground resolution of 2 m. When comparing maps made 
using this approach with Deepbiosphere to other maps, each map pixel corresponds to the geographic area covered by each pixel; 
for example, each map pixel in the bottom right maps to a 50 x 50m block spatial extent and can be co-registered to data from other 
maps that overlap the same spatial extent. 
  



34 

 
Fig. S9 | Example images from human redwood labeling task 
(A) Labelers were given these three examples of old-growth redwoods as positive examples of redwood forest before completing 
the annotation task. Details of the three locations can be found in Table S11. (B) Block partitions of the imagery used by human 
annotators to generate redwood cover maps. Each block was annotated by 3 human annotators using the 1-5 scale in (A) as guides.  
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Fig. S10 | Humans can correctly detect mature but not young redwood groves 
(A) Comparison of the predicted presence of S. sempervirens at every pixel for Deepbiosphere10 and other models based on whether 
the associated vegetation class for said pixel is redwoods-dominant using the map from Fig. S11A at 256 m resolution. 
Deepbiosphere10 and Maxent10 were fitted without any examples from the region, while Inceptionunif did see examples from the 
study area during training. Using a 0.5 presence-absence threshold, (grey line) for assessing the binary classification accuracy, 
Deepbiosphere’s true positive rate is 92.0%, true negative rate is 36.2%, and overall classification accuracy is 81.4%. The human 
annotator’s aggregated true positive rate is 23.5%, true negative rate is 99.2%, and overall classification accuracy is 37.9%. 
Inception’s true positive rate is 0.0%, true negative rate is 100.0%, and overall classification accuracy is 19.0%. Maxent’s true 
positive rate is 0.0%, true negative rate is 100.0%, and overall classification accuracy is 7.9%. Deepbiosphere has the highest 
classification accuracy and in general, Deepbiosphere10 is the only model to predict pixels coded as redwood-dominant as likely to 
contain redwoods, on average. While Deepbiosphere10 also predicts many pixels not coded as redwood-dominant as likely 
containing redwoods, redwoods may indeed be present in these areas, just not as the dominant species. (B) Comparison of the 
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predicted presence of S. sempervirens at every pixel for Deepbiosphere10 and other models based on whether the associated 
vegetation class for pixels coded as S. semperivens Mature Forest alliance using the official National Park Service vegetation map 
for the region (Fig. S11A) at 256 m resolution. Using a 0.5 presence-absence threshold, (grey line) for assessing the binary 
classification accuracy, Deepbiosphere’s true positive rate is 100.0%, true negative rate is 16.4%, and overall classification 
accuracy is 31.9%. The human annotator’s aggregated true positive rate is 93.5%, true negative rate is 97.8%, and overall 
classification accuracy is 97.0%. Inception’s true positive rate is 0.0%, true negative rate is 100.0%, and overall classification 
accuracy is 81.4%. Maxent’s true positive rate is 0.0%, true negative rate is 100.0%, and overall classification accuracy is 85.7%. 
When only looking at mature redwood groves, human annotators trained using the examples in Fig. S9 do a better job at 
distinguishing mature redwood-coded pixels than any other model.  Deepbiosphere10 has a lower overall accuracy because it 
predicts many non-mature pixels as containing redwoods, likely detecting pixels that contain secondary growth redwood groves, 
while both the Inceptionunif and Maxent10 baselines fail to detect any redwoods in the area. (C) Comparison of the predicted presence 
of S. sempervirens at every pixel for Deepbiosphere10 and other models based on whether the associated vegetation class for pixels 
coded as S.sempervirens-(Other) YG Mixed Forest alliance using the official National Park Service vegetation map for the region 
(Fig. S11A) at 256 m resolution. Using a 0.5 presence-absence threshold, (grey line) for assessing the binary classification accuracy, 
Deepbiosphere’s true positive rate is 89.7%, true negative rate is 18.3%, and overall classification accuracy is 62.8%. The human 
annotator’s aggregated true positive rate is 2.6%, true negative rate is 53.4%, and overall classification accuracy is 21.7%. 
Inception’s true positive rate is 0.0%, true negative rate is 100.0%, and overall classification accuracy is 37.6%. Maxent’s true 
positive rate is 0.0%, true negative rate is 100.0%, and overall classification accuracy is 22.2%.  Deepbiosphere is the only approach 
that is able to detect young secondary regrowth redwood forest. Stars indicate an unpaired student’s t-test with *** indicating a P-
value of < 10-3, ** indicating a P-value of < 10-2, * indicating a P-value of < 10-1, and NS. indicating a non-significant P-value. 
Species maps are generated at 256 m resolution or lower to minimize spatial autocorrelation. Batch size, learning rate, and epoch 
of evaluation can be found in Table S12. 
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Fig. S11 | Baseline SDMs cannot detect redwoods in Tall Trees Grove 
(A) Official National Park Service alliance-level vegetation map of study area (51). Most of the cover in the area is redwoods-
dominated with a few other vegetation classes interspersed. (B) Inceptionunif predictions of redwoods in study area. Since the 
Inception model is trained to predict one species exclusively at a time (courtesy of the softmax transformation in the cross-entropy 
loss function), the model’s outputs cannot be interpreted as species distribution maps reliably as the predicted probability per-class 
is dependent on the value of other species’s predicted presence. Even in this example where Inceptionunif has been trained using 
redwood observations from inside the study area (white xs),  Inceptionunif still doesn’t predict any pixel as present, even for pixels 
it has seen as containing redwoods before thanks to the softmax transformation. Model weights from the 5th epoch of training were 
used to generate the area-wide predictions. (C) Maxent10 predictions of redwoods in the study area. Maxent also does not predict 
any pixel as present in the study area, likely because it was not trained with any observations in the 10th spatial cross-validation 
band (light grey region in inset). Maxent can reliably extrapolate to new regions if those regions have a similar climate profile to 
the regions used for fitting. However, the southern and northern populations of redwoods occupy quite dissimilar climates, with 
the northern population that is largely contained in the 10th cross-validation band living in a much cooler and at times wetter 
environment than the populations in the Central Coast and Santa Cruz mountains. However, while the climates between populations 
may differ strongly, the shape of the redwood canopy from remote sensing imagery is still quite similar across environments (see 
Fig. S9 for examples from diverse groves), lending more extrapolative prediction power to remote-sensing based modeling 
approaches. Batch size, learning rate, and epoch of evaluation can be found in Table S12. 
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Fig. S12 | Deepbiosphere-generated species presence maps for six redwood understory and associated species  
(A,B) Species presence maps for Struthiopteris spicant and Oxalis oregana, respectively. In refs. (51) and (52), both species were 
shown to have a higher on average constancy (relative number of times the species was observed in field plots of that vegetation 
type) in mature redwood field plots compared to secondary growth redwood field plots. (C,D) Species presence maps for 
Polystichum munitum and Vaccinium ovatum, respectively. In refs. (51) and (52), both species had similar average constancies in 
both mature redwood field plots compared to secondary growth redwood field plots. (E,F) Species presence maps for Rubus ursinus 
and Viola sempervirens, respectively. In refs. (51) and (52), both species were shown to have a higher on average constancy in 
secondary-growth redwood field plots compared to mature redwood field plots. Batch size, learning rate, and epoch of evaluation 
can be found in Table S12. 
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Fig. S13 | Deepbiosphere prediction breakdown by forest age for six understory species 
Comparing how Deepbiosphere’s predictions of understory species line up to field-validated measurements of species’ relative 
frequencies (constancy) in both mature and secondary-growth redwood forests. (A) Two understory species that co-occur with both 
old-growth and secondary-growth redwoods. (B) Two understory species that co-occur more frequently with old-growth redwoods 
than secondary-growth redwoods. (C) Two understory species that co-occur more frequently with secondary-growth redwoods 
than old-growth redwoods. For some species (S. spicant, V. ovatum, P. munitum), Deepbiosphere’s predicted presence values are 
well-calibrated to field-validated presence. For others, (R. ursinus, O. oregana), Deepbiosphere’s predicted presence are higher on 
average than the field-validated constancies, but the expected relationship between old-growth and secondary-growth-mapped 
pixels still holds (e.g. O. oregana still has a significantly higher predicted presence in old-growth versus secondary-growth 
redwoods, matching the constancy trends). Finally, V. sempervirens is predicted quite broadly and despite having a higher predicted 
presence in secondary-growth forest (0.990) compared to old-growth forest (0.986) similar to the constancy relationship, the 
difference between old-growth and secondary-growth predictions isn’t significant. Co-occurrence relationships were determined 
from constancy tables in refs. (51, 52) (SM 4.4) and within these studies, constancy values were determined with between 5-24 
plots, depending on the association. Predictions were generated at 256 m resolution from Deepbiosphere to minimize spatial 
autocorrelation, then classified by largest overlapping alliance-level vegetation type from ref. (51) and filtered to only keep pixels 
from redwood-dominant alliances (Sequoia sempervirens-(Other) YG Mixed Forest or Sequoia sempervirens Mature Forest). Box 
and whisker plots for Deepbiosphere’s predictions are overlaid in hatched grey. Box and whisker plots of constancy values from  
refs. (51, 52) are overlaid in black (SM 4.4). YG = young-growth; stars indicate an unpaired student’s t-test with *** indicating a 
P-value of < 10-3 and NS. indicating a P-value of > 10-1. Batch size, learning rate, and epoch of evaluation can be found in Table 
S12. 
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Fig. S14 | Predictions of dominant species in the Santa Ynez Valley and Mountains of Southwest California 
(A) The Santa Ynez mountains of Southern California have a rich and varied ecological landscape with many rapid ecosystem 
transitions—such as dry interior valley savanna to scrubby mountain peak—making it a good case study to explore how well 
Deepbiosphere can capture spatial variation in chaparral ecosystems. (B) South Coast existing vegetation map (CALVEG) zone 7 
alliance-level vegetation classes for study area (53). Only zones mapping to native vegetation with a sufficient cover in the study 
area are shown. (C) Quercus lobata annotation task examples. Detailed information about sites can be found in Table S11. (D) 
Deepbiopshere3 prediction of Q. lobata across the study area. Generally speaking, Deepbiosphere3 predicts Q. lobata as present in 
the Santa Ynez valley —its native habitat— and absent in the Santa Ynez mountains. (E) Human cover annotations of Q. lobata 
across the study area. Human labelers struggled with correctly labeling squares where Q. lobata is expected to be found, favoring 
the chaparral scrub of the Santa Ynez foothills over the valley floor where the oaks are actually found. (F) The Inceptionunif  baseline 
does not predict Q. lobata present anywhere within the study area, a consequence of its softmax-based loss function. (G) The 
Maxent3 baseline does predict Q. lobata as present in most of the valley pixels, but has a much lower resolution than 
Deepbiosphere3, making it impossible for the model to disambiguate the wooded hills centered in the valley from the grassland 
portions of the valley. (H) Comparison of Q. lobata presence annotations per-pixel shows that Deepbiosphere3 and Maxent3 are 
the only SDMs that correctly disambiguate pixels annotated as Q. lobata habitat (QL) by the CALVEG vegetation map from those 
not annotated as such. Pixels are labeled as Q. lobata habitat if any part of the pixel intersects any CALVEG polygon of class QL 
(Q. lobata).  Stars indicate an unpaired student’s t-test per-pixel with *** indicating a P-value of < 10-3, ** indicating a P-value of 
< 10-2, * indicating a P-value of < 10-1, and NS. indicating a non-significant P-value. Species maps were generated at 256 m 
resolution or lower to minimize spatial autocorrelation and batch size, learning rate, and epoch of evaluation can be found in Table 
S13. 
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Fig. S15 | Deepbiosphere-generated species presence maps for six chaparral indicator species 
(A) Species presence map for Ceanothus cuneatus (buckbrush), an indicator or associated species for CALVEG zones Ceanothus 
chaparral alliance (CC), lower montane mixed chaparral alliance (CQ), and coastal mixed hardwood alliance (EX). (B) Species 
presence map for Quercus lobata (valley oak), an indicator species for the valley oak alliance (QL). (C) Species presence map for 
Adenostoma fasciculatum (chamise), an indicator or associated species for the coast live oak alliance (QA), Ceanothus chaparral 
alliance (CC), coastal mixed hardwood alliance (EX), lower montane mixed chaparral alliance (CQ), and California sagebrush 
alliance (SS). (D) Species presence map for Bromus diandrus (great brome), an indicator species for the annual grasses and forbs 
alliance (HG). (E) Species presence map for Quercus berberidifolia (scrub oak) an associated species in the lower montane mixed 
chaparral (CQ) alliance. (F) Species presence map for Arctostaphylos glandulosa (eastwood manzanita), an associated species in 
the lower montane mixed chaparral (CQ) and manzanita chaparral (SD) alliances. Species maps were generated at 256 m resolution 
or lower to minimize spatial autocorrelation and batch size, learning rate, and epoch of evaluation can be found in Table S13. 
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Fig. S16 | Deepbiosphere prediction comparisons to baseline SDMs for six chaparral indicator species 
Per-pixel comparison of indicator species presence using the USDA Forest Service’s South Coast existing vegetation map 
(CALVEG) (53) for Deepbiosphere3 and two baseline SDMs. On average, Deepbiosphere3 does a good job of correctly predicting 
species as present in the pixels located within their associated CALVEG habitats (Fig. S15B). All species are predicted as present 
(above 0.5) on average for pixels inside the associated habitats and as absent (below 0.5) for pixels outside of the associated 
CALVEG habitats. Meanwhile, both Maxent3 and Inceptionunif fail this test for all but one case (Maxent3 modeling Q. lobata). 
Pixels are labeled as inside habitat if any part of the pixel intersects any CALVEG polygon from the USDA Forest Service’s South 
Coast existing vegetation map (53) where said species is mentioned in the CALVEG Zone 5 vegetation description for that class 
(54). Stars indicate an unpaired student’s t-test per-pixel where *** means a P-value of <10-3. Species maps were generated at 256 
m resolution or lower to minimize spatial autocorrelation and batch size, learning rate, and epoch of evaluation can be found in 
Table S13. 
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Fig. S17 | Deepbiosphere predicts spatial community change in northern Marin county 
(A) Northern Marin County is very ecodiverse, located at the boundary between the Coast Range and Central California Foothills 
and Coastal Mountains level 1 EPA ecoregions, thus making it an ideal location to study spatial transitions in plant communities. 
NAIP aerial imagery of the area confirms visually that the landscape is highly varied with beach, forest, and grassland ecosystems 
visible. (B) Using the edge detection algorithm from Fig. S19, predictions of spatial community change can be generated using 
Deepbiosphere7. These predictions appear to capture rapid spatial plant community composition changes, including beach to forest 
and forest to grassland. (C) An independently-generated fine-scale map of vegetation and land use in the area confirms that the 
region contains many unique ecosystems and transitions (57). The color key can be found in Fig. S18. (D) Running the same edge 
detection algorithm from Fig. S19 using the raw NAIP bands as input (A) generates a map of the average difference in color 
between nearby NAIP pixels. Visually, the map looks quite different from the Deepbiosphere-generated spatial change predictions, 
implying that Deepbiosphere7 can detect far more than just simple pixel color changes. (E) Mapping the location of observations 
both seen and unseen during training shows that the spatial community change visually also does not appear to naively recapitulate 
locations it has seen before. (F) Correlating the number of observations per-pixel with the spatial community change as predicted 
by Deepbiosphere7 confirms that the spatial community change metric is capturing real changes in the community rather than 
spurious correlations to either raw pixel greenness (E) or previously seen observations (F). Predictions were generated from 
Deepbiosphere trained with a learning rate of 1x10-4 and a batch size of 150 evaluated at epoch 5. 
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Fig. S18 | Legend for fine-scale Marin vegetation map 
Color key for fine scale vegetation map of northern Marin county (57). The map contains 80 unique classes, so a circular color 
scale was utilized to aid visualization.  
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Fig. S19 | Spatial community change algorithm visual explanation 
Visual explanation of spatial community change detection algorithm inspired by edge detection filters from computer vision. (A) 
First, the algorithm identifies images adjacent to a given 256 x 256 m square (B) Next, taking the predicted probabilities from 
Deepbiosphere, the distance between the predictions made for each neighboring cell and the central pixel is calculated. (C) Then, 
the norm of these differences is used to generate the average local neighborhood change for the central pixel. (D) Convolving this 
norm-of-neighbors pixel-by-pixel generates the full map of spatial community change at the same resolution as the original map, 
with a one pixel buffer.  
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Fig. S20 | Detecting rapid temporal plant community change after a major California wildfire 
(A) NAIP imagery from the Sierra Mountain foothills in eastern California in 2012. This area was the site of the major Rim Wildfire 
in 2013, which at the time was the second-largest wildfire in California history. (B) NAIP imagery of 2014 after the 2013 Rim Fire, 
with boundary outlined in white. Comparing (A) and (B), the burn scar of the wildfire is very visible within the fire perimeter 
compared to regions outside the burn scar. (C) The differenced normalized burn ratio (dNBR) for part of the fire area from ref. 
(60). The dNBR metric estimates fire severity using a normalized scale based on differences in green and near infrared band 
wavelengths from hyperspectral data collected before vs. after the fire. Only part of the region was imaged before the fire, so the 
dNBR coverage does not cover the entire burn scar. (D) Temporal community change as predicted by Deepbiosphere7 with 
observations used to train Deepbiosphere7 overlaid. (E) Temporal Euclidean distance calculated using raw NAIP Red-Green-Blue-
Infrared imagery. Visually, the raw pixel difference across years does not appear to match the burn severity metric near as well as 
the Deepbiosphere-based temporal community change prediction. This is curious given that the infrared and green NAIP bands 
used to calculate the Euclidean distance are nearly the same wavelength as the bands used to calculate dNBR. (F) Comparing both 
the Deepbiosphere-based and NAIP-based temporal Euclidean distance predictions per-pixel from inside vs. outside the fire. On 
average, the change predictions were higher within versus outside the fire bounds as expected (unpaired student’s t-test; P-values 
< 2.2 x 10-16). Predictions were generated from Deepbiosphere trained with a learning rate of 1x10-4 and a batch size of 150 
evaluated at epoch 5. 
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Fig. S21 | Example of temporal Euclidean distance calculation 
(A) NAIP imagery before fire in a subset of the fire’s extent (location inside perimeter of fire inset). (B) Deepbiosphere7 predicted 
probabilities for Pinus ponderosa (ponderosa pine) before the fire, using the imagery in (A). (C) NAIP imagery after the fire from 
the same geographic location. Visually, locations in the bottom right of the image appear to have suffered the most severe burning, 
while forests on the left-hand side of the area have been somewhat spared. (D) Deepbiosphere7 predicted probabilities for P. 
ponderosa after the fire. Predicted probabilities on the left-hand side of the area have not changed substantially while the more 
severely burned lower right quadrant now has P. ponderosa predicted mostly as absent. (E) To capture this temporal change in P. 
ponderosa presence, the Euclidean distance between the probabilities in (B) and (D) are calculated per-pixel. For the one-
dimensional case (only one species at a time) the Euclidean distance simplifies to the difference between  and . Extending 
this difference calculation across all species in the dataset and taking the subsequent norm is how the temporal community change 
metric is generated, capturing both the magnitude and direction of probability shifts across species and across time. (F) Here, the 
empirical metric of burn severity—difference in normalized burn ratio (dNBR) (60)—is displayed for the region.  Predictions were 
generated from Deepbiosphere trained with a learning rate of 1x10-4 and a batch size of 150 evaluated at epoch 5. 
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Fig. S22 | Species range maps for a subset of well-predicted species across California.  
Range maps of 150 m per-pixel for Deepbisphere and ~1 km per-pixel for Maxent were generated using the same model evaluated 
in Table 1 and Figure 1, namely Deepbiosphere trained on the uniform split of the dataset with a learning rate of 0.0001 and 
evaluated at epoch 5. Species were partitioned into the L2 ecoregions that the majority of said species’ Deepbiosphere training 
observations were found in, then filtered to only include species for which there were at least 10 observations in the Deepbiosphere 
uniform test set. The top-5 highest accuracy species by AUCROC on the Deepbiosphere uniform test set for both Deepbiosphere and 
Maxent were then selected, filtering the top-5 ranking to only include species with an AUCROC of at least 0.98 for upwards of a total 
of 10 species per-L2 ecoregion. Not every ecoregion has 10 species plotted if there was overlap between the top-5 best AUCROC 
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species for Deepbiosphere and Maxent, or if one of the two models did not have a high enough AUCROC on well-supported species. 
The two model’s predictive accuracies were then compared using an independently-derived set of occurrence records from Calflora 
(64), and in general, we see that Deepbiosphere does on average a better job at predicting species’ presence at the independently-
collected Calflora occurrence locations, with Deepbiosphere exhibiting a higher AUCROC for 29 species as compared to Maxent’s 
5 species (noted using underline). Deepbiosphere especially exhibits increased predictive accuracy for relatively range-constrained 
species with few observations in the study area, such as Yucca baccata (73 Calflora observations, 78 Deepbiosphere dataset 
observations, Tsuga heterophylla (88 Calflora observations, 78 Deepbiosphere dataset observations) and Clarkia rubicunda, 396 
Calflora observations, 435 Deepbiosphere dataset observations).   
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Fig. S23 | Species range maps for a subset of random species across California.  
Range maps of 150m per-pixel for Deepbisphere and ~1km per-pixel for Maxent were generated using the same model evaluated 
in Table 1 and Figure 1, namely Deepbiosphere trained on the uniform split of the dataset with a learning rate of 0.0001 and 
evaluated at epoch 5. Species were partitioned into the L2 ecoregions that the majority of said species’ Deepbiosphere training 
observations were found in, then filtered to only include species for which there were at least 10 observations in the Deepbiosphere 
uniform test set. Five species were chosen at random from each and the two model’s predictive accuracies were then compared 
using an independently-derived set of occurrence records from Calflora (64). Even for randomly-derived species, we see that 
Deepbiosphere does a better job at predicting species’ presence at the independently-collected Calflora occurrence locations, with 
Deepbiosphere exhibiting a higher AUCROC for all but one species compared to Maxent (exception is Prunus persica, noted using 
underline). 
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Fig. S24 | High-resolution zoom-in of Juniperus osteosperma in Transverse Range. 
(A) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01  x 0.01 degree zoom-ins of the species range maps generated by Deepbiosphere at 
150m resolution for J. osteosperma (see Fig. S22 for statewide range map). J. osteosperma has a very distinctive and visible crown 
from remote sensing imagery (see highest-resolution inset of (C) for examples), enabling Deepbiosphere to detect this population 
of J. osteosperma not included in the training dataset. (B) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of the 
species range maps generated by Maxent at ~1km resolution for J. osteosperma (see Fig. S22 for statewide range map). Maxent 
does not effectively detect the Transverse Range population of J. osteosperma. (C) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.0 x 0.01 
degree zoom-ins of corresponding NAIP imagery for the same geographic extent overlaid with known species occurrences from 
both the Deepbiosphere training dataset (pink Xs) and a larger collection of contemporary and historic occurrences from Calflora 
(64) (cyan Xs). Juniperus osteosperma is present in the Transverse Range (see Calflora observations) but has no observations from 
that region in the Deepbiosphere dataset.  
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Fig. S25 | High-resolution zoom-in of Rhododendron macrophyllum near Red Mountain, Mendocino County.   
(A) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of soil maps from the USDA’s STATSGO2 soil database 
(65) demonstrating a known area of serpentine soil (Lithic Argixerolls, dark blue). (B) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 
0.01 degree zoom-ins of species range maps generated by Deepbiosphere at 150m resolution for R. macrophyllum (see Fig. S22 
for statewide range map). Beyond better-representing R. macrophyllum observations from Calflora (64) (see (C)), Deepbiosphere 
may also have learned substrate-specific relationships between species and the soil they grow on, as Deepbiosphere does not predict 
R. macrophyllum, as present in the red mountain serpentine outcrop (Lithic Argixerolls, white outline) (65), which matches the fact 
that R. macrophyllum is not serpentine-associated (66). (C) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of 
species range maps generated by Maxent at ~1km resolution for R. macrophyllum (see Fig. S22 for statewide range map). (D) 
Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of NAIP imagery for the same geographic extent overlaid with 
known species occurrences from both the Deepbiosphere training dataset (pink Xs) and a larger collection of contemporary and 
historic occurrences from Calflora (64) (cyan Xs).  
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Fig. S26 | High-resolution zoom-in of Calochortus argillosus in the Bay Area region. 
(A) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of the species range maps generated by Deepbiosphere at 
150m resolution for C. argillosus (see Fig. S22 for statewide range map). At the coarsest scale, Deepbiosphere visually appears to 
have a more tightly-resolved species distribution map compared to both training observations from the Deepbiosphere dataset and 
unseen Calflora observations (see (C)), as compared to Maxent (see (B)). At the finest scale, Deepbiosphere can finely resolve the 
outlines of Jasper Ridge Biological Preserve (outlined in white). (B) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-
ins of the species range maps generated by Maxent at ~1km resolution for C. argillosus (see Fig. S22 for statewide range map). At 
the finest scale, Maxent’s climate predictors lack the land use information present in remote sensing imagery to distinguish 
residential zones from protected habitat at Jasper Ridge Biological Preserve (outlined in black) (C) Progressive ~1 x 1, ~0.1 x 0.1, 
and ~0.01  x 0.01 degree zoom-ins of NAIP imagery for the same geographic extent overlaid with known species occurrences from 
both the Deepbiosphere training dataset (pink Xs) and a larger collection of contemporary and historic occurrences from Calflora 
(64) (cyan Xs).  
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Fig. S27 | High-resolution zoom-in of Salvia funerea in Death Valley.  
(A) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of soil maps from the USDA’s STATSGO2 soil database 
(65). (B) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of the species range maps generated by Deepbiosphere 
at 150m resolution for S. funerea (see Fig. S22 for statewide range map). Deepbiosphere’s remote sensing-based predictors enable 
it to finely resolve S. funerea’s distribution along the limestone canyons flanking Death Valley and finely resolve the washes from 
the canyon foothills in the highest-resolution scale. (C) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of the 
species range maps generated by Maxent at ~1km resolution for S. funerea (see Fig. S22 for statewide range map). (D) NAIP 
imagery for the same geographic extent overlaid with known species occurrences from both the Deepbiosphere training dataset 
(pink Xs) and a larger collection of contemporary and historic occurrences from Calflora (64) (cyan Xs). Only one observation 
from Calflora is present in the example area (centered in the zoom-ins). 



55 

 
Fig. S28 | High-resolution zoom-in of Collinsia torreyi in the North Coast Mountains.  
(A) Progressive ~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of the species range maps generated by Deepbiosphere at 
150m resolution for C. torreyi (see Fig. S22 for statewide range map). Since Deepbiosphere has access to remote sensing predictors, 
it is able to pick up the presence of the species in the region despite having seen no training examples from the area. (B) Progressive 
~1 x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of the species range maps generated by Maxent at ~1km resolution for C. 
torreyi (see Fig. S22 for statewide range map). As Maxent is restricted to climate variables and no observations were present in the 
Deepbiosphere dataset from that climate, the model does not predict the region as having C. torreyi presence. (C) Progressive ~1 
x 1, ~0.1 x 0.1, and ~0.01 x 0.01 degree zoom-ins of NAIP imagery for the same geographic extent overlaid with known species 
occurrences from both the Deepbiosphere training dataset (pink Xs) and a larger collection of contemporary and historic 
occurrences from Calflora (64) (cyan Xs). In the Deepbiosphere dataset (pink Xs), there are no observations of C. torreyi in the 
Northern Coast Mountains. However, the species does grow in the region according to the expanded Calflora observation list (blue 
Xs).   



56 

 

Supplemental Tables 

Plant biodiversity dataset Observation date range 1/1/2015 - 5/1/2022 

 Number of unique vascular species 2,221 

 Total plant diversity present 29.216% 

 Number of unique genera 878 

 Number of unique families 153 

 Number of unique observations 652,027 images 

 Number of linked observations 614,727 images 

 Threshold for species inclusion 500 linked observations 

 Shannon diversity index 6.825 

 Gini inequality index 0.334 

 Simpson index 1.000 

NAIP Aerial Imagery Spatial resolution of imagery 1 meter ground sample distance 

 Bands used Blue (428-492 nm) 

 Green (533-587 nm) 

 Red (608-662 nm) 

 Near-Infrared (883-887 nm) 

 Year of observation 2012 

 Number of unique images 11,095 

 
Table S1 | Key metrics of dataset 
Relevant metrics for the biodiversity dataset, including number of observations, images, and summary statistics for observations. 
Information is also included about the National Agriculture Imagery Program aerial imagery used for convolutional neural network 
training. 
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Layer (type:depth-idx) Output Shape # Params Layers Cont’d Output Shape Cont’d # Params Cont’d 

├─Sequential: 1-1 [65, 2048, 8, 8] -- │ │ └─Bottleneck: 3-13 [65, 1024, 16, 16] 1,183,104 

│ └─SpaceToDepthModule: 2-1 [65, 64, 64, 64] -- │ │ └─Bottleneck: 3-14 [65, 1024, 16, 16] 1,183,104 

│ └─Sequential: 2-2 [65, 64, 64, 64] -- │ │ └─Bottleneck: 3-15 [65, 1024, 16, 16] 1,183,104 

│ │ └─Conv2d: 3-1 [65, 64, 64, 64] 36,864 │ │ └─Bottleneck: 3-16 [65, 1024, 16, 16] 1,183,104 

│ │ └─InPlaceABN: 3-2 [65, 64, 64, 64] 128 │ │ └─Bottleneck: 3-17 [65, 1024, 16, 16] 1,183,104 

│ └─Sequential: 2-3 [65, 64, 64, 64] -- │ │ └─Bottleneck: 3-18 [65, 1024, 16, 16] 1,183,104 

│ │ └─BasicBlock: 3-3 [65, 64, 64, 64] 82,304 │ │ └─Bottleneck: 3-19 [65, 1024, 16, 16] 1,183,104 

│ │ └─BasicBlock: 3-4 [65, 64, 64, 64] 82,304 │ │ └─Bottleneck: 3-20 [65, 1024, 16, 16] 1,183,104 

│ │ └─BasicBlock: 3-5 [65, 64, 64, 64] 82,304 │ └─Sequential: 2-6 [65, 2048, 8, 8] -- 

│ └─Sequential: 2-4 [65, 128, 32, 32] -- │ │ └─Bottleneck: 3-21 [65, 2048, 8, 8] 6,039,552 

│ │ └─BasicBlock: 3-6 [65, 128, 32, 32] 246,720 │ │ └─Bottleneck: 3-22 [65, 2048, 8, 8] 4,462,592 

│ │ └─BasicBlock: 3-7 [65, 128, 32, 32] 312,000 │ │ └─Bottleneck: 3-23 [65, 2048, 8, 8] 4,462,592 

│ │ └─BasicBlock: 3-8 [65, 128, 32, 32] 312,000 ├─Sequential: 1-2 [65, 2048] -- 

│ │ └─BasicBlock: 3-9 [65, 128, 32, 32] 312,000 │ └─FastAvgPool2d: 2-7 [65, 2048] -- 

│ └─Sequential: 2-5 [65, 1024, 16, 16] -- ├─Linear: 1-3 [65, 2221] 4,550,829 

│ │ └─Bottleneck: 3-10 [65, 1024, 16, 16] 1,086,848 ├─Linear: 1-4 [65, 878] 1,799,022 

│ │ └─Bottleneck: 3-11 [65, 1024, 16, 16] 1,183,104 ├─Linear: 1-5 [65, 153] 313,497 

│ │ └─Bottleneck: 3-12 [65, 1024, 16, 16] 1,183,104    

Total params: 36,012,596 

Batch size: 150 images 

Input size (MB):157.29 

Forward/backward pass size (MB) :22,343.79 

Params size (MB): 135.60 

Estimated Total Size (MB): 22,636.67 

GPU: NVIDIA P100 GPU 

Table S2 | Model summary of TResNet architecture 
Summary of training statistics and parameters of the modified TResNet CNN architecture. The right-hand side columns are the 
continuation of the model summary. Summary generated using torchinfo version 1.7.0 (63). 
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Layer (type:depth-idx) Output Shape # Params Layers Cont’d Output Shape Cont’d # Params Cont’d 

├─Sequential: 1-1 [150, 2048, 8, 8] -- │ │ └─Bottleneck: 3-22 [150, 2048, 8, 8] 4,462,592 

│ └─SpaceToDepthModule: 2-1 [150, 64, 64, 64] -- │ │ └─Bottleneck: 3-23 [150, 2048, 8, 8] 4,462,592 

│ └─Sequential: 2-2 [150, 64, 64, 64] -- ├─Sequential: 1-2 [150, 2048] -- 

│ │ └─Conv2d: 3-1 [150, 64, 64, 64] 36,864 │ └─FastAvgPool2d: 2-7 [150, 2048] -- 

│ │ └─InPlaceABN: 3-2 [150, 64, 64, 64] 128 ├─Sequential: 1-3 [150, 2048] -- 

│ └─Sequential: 2-3 [150, 64, 64, 64] -- │ └─Linear: 2-8 [150, 2048] 4,196,352 

│ │ └─BasicBlock: 3-3 [150, 64, 64, 64] 82,304 │ └─BatchNorm1d: 2-9 [150, 2048] 4,096 

│ │ └─BasicBlock: 3-4 [150, 64, 64, 64] 82,304 │ └─ReLU: 2-10 [150, 2048] -- 

│ │ └─BasicBlock: 3-5 [150, 64, 64, 64] 82,304 ├─Sequential: 1-4 [150, 2048] -- 

│ └─Sequential: 2-4 [150, 128, 32, 32] -- │ └─Linear: 2-11 [150, 1000] 20,000 

│ │ └─BasicBlock: 3-6 [150, 128, 32, 32] 246,720 │ └─ELU: 2-12 [150, 1000] -- 

│ │ └─BasicBlock: 3-7 [150, 128, 32, 32] 312,000 │ └─Linear: 2-13 [150, 1000] 1,001,000 

│ │ └─BasicBlock: 3-8 [150, 128, 32, 32] 312,000 │ └─ELU: 2-14 [150, 1000] -- 

│ │ └─BasicBlock: 3-9 [150, 128, 32, 32] 312,000 │ └─Linear: 2-15 [150, 2000] 2,002,000 

│ └─Sequential: 2-5 [150, 1024, 16, 16] -- │ └─ELU: 2-16 [150, 2000] -- 

│ │ └─Bottleneck: 3-10 [150, 1024, 16, 16] 1,086,848 │ └─Dropout: 2-17 [150, 2000] -- 

│ │ └─Bottleneck: 3-11 [150, 1024, 16, 16] 1,183,104 │ └─Linear: 2-18 [150, 2000] 4,002,000 

│ │ └─Bottleneck: 3-12 [150, 1024, 16, 16] 1,183,104 │ └─ELU: 2-19 [150, 2000] -- 

│ │ └─Bottleneck: 3-13 [150, 1024, 16, 16] 1,183,104 │ └─Linear: 2-20 [150, 2048] 4,098,048 

│ │ └─Bottleneck: 3-14 [150, 1024, 16, 16] 1,183,104 │ └─BatchNorm1d: 2-21 [150, 2048] 4,096 

│ │ └─Bottleneck: 3-15 [150, 1024, 16, 16] 1,183,104 │ └─ELU: 2-22 [150, 2048] -- 

│ │ └─Bottleneck: 3-16 [150, 1024, 16, 16] 1,183,104 ├─Sequential: 1-5 [150, 2048] -- 

│ │ └─Bottleneck: 3-17 [150, 1024, 16, 16] 1,183,104 │ └─Linear: 2-23 [150, 2048] 8,390,656 

│ │ └─Bottleneck: 3-18 [150, 1024, 16, 16] 1,183,104 │ └─ReLU: 2-24 [150, 2048] -- 

│ │ └─Bottleneck: 3-19 [150, 1024, 16, 16] 1,183,104 ├─Linear: 1-6 [150, 2221] 4,550,829 

│ │ └─Bottleneck: 3-20 [150, 1024, 16, 16] 1,183,104 ├─Linear: 1-7 [150, 878] 1,799,022 

│ └─Sequential: 2-6 [150, 2048, 8, 8] -- ├─Linear: 1-8 [150, 153] 313,497 

│ │ └─Bottleneck: 3-21 [150, 2048, 8, 8] 6,039,552    

Total params: 59,730,844 

Batch size: 150 images 

Input size (MB): 157.30 

Forward/backward pass size (MB): 22,364.51 

Params size (MB): 238.92 

Estimated Total Size (MB): 22,760.73 

GPU: NVIDIA A100 

Table S3 | Model summary of Deepbiosphere architecture 
Summary of training statistics and parameters of the Deepbiosphere remote sensing + climate architecture. The right-hand side 
columns are the continuation of the model summary. Summary generated using torchinfo version 1.7.0 (63). 
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Layer (type:depth-idx) Output Shape # Params Layers Cont’d Output Shape Cont’d # Params Cont’d 

├─BasicConv2d: 1-1 [100, 32, 254, 254] -- │ │ └─Conv2d: 3-87 [100, 192, 30, 30] 215,040 
│ └─Conv2d: 2-1 [100, 32, 254, 254] 1,152 │ │ └─BatchNorm2d: 3-88 [100, 192, 30, 30] 384 
│ └─BatchNorm2d: 2-2 [100, 32, 254, 254] 64 │ └─BasicConv2d: 2-55 [100, 192, 30, 30] -- 
├─BasicConv2d: 1-2 [100, 32, 252, 252] -- │ │ └─Conv2d: 3-89 [100, 192, 30, 30] 147,456 
│ └─Conv2d: 2-3 [100, 32, 252, 252] 9,216 │ │ └─BatchNorm2d: 3-90 [100, 192, 30, 30] 384 
│ └─BatchNorm2d: 2-4 [100, 32, 252, 252] 64 ├─InceptionC: 1-14 [100, 768, 30, 30] -- 
├─BasicConv2d: 1-3 [100, 64, 252, 252] -- │ └─BasicConv2d: 2-56 [100, 192, 30, 30] -- 
│ └─Conv2d: 2-5 [100, 64, 252, 252] 18,432 │ │ └─Conv2d: 3-91 [100, 192, 30, 30] 147,456 
│ └─BatchNorm2d: 2-6 [100, 64, 252, 252] 128 │ │ └─BatchNorm2d: 3-92 [100, 192, 30, 30] 384 
├─MaxPool2d: 1-4 [100, 64, 125, 125] -- │ └─BasicConv2d: 2-57 [100, 160, 30, 30] -- 
├─BasicConv2d: 1-5 [100, 80, 125, 125] -- │ │ └─Conv2d: 3-93 [100, 160, 30, 30] 122,880 
│ └─Conv2d: 2-7 [100, 80, 125, 125] 5,120 │ │ └─BatchNorm2d: 3-94 [100, 160, 30, 30] 320 
│ └─BatchNorm2d: 2-8 [100, 80, 125, 125] 160 │ └─BasicConv2d: 2-58 [100, 160, 30, 30] -- 
├─BasicConv2d: 1-6 [100, 192, 123, 123] -- │ │ └─Conv2d: 3-95 [100, 160, 30, 30] 179,200 

│ └─Conv2d: 2-9 [100, 192, 123, 123] 138,240 │ │ └─BatchNorm2d: 3-96 [100, 160, 30, 30] 320 
│ └─BatchNorm2d: 2-10 [100, 192, 123, 123] 384 │ └─BasicConv2d: 2-59 [100, 192, 30, 30] -- 
├─MaxPool2d: 1-7 [100, 192, 61, 61] -- │ │ └─Conv2d: 3-97 [100, 192, 30, 30] 215,040 
├─InceptionA: 1-8 [100, 256, 61, 61] -- │ │ └─BatchNorm2d: 3-98 [100, 192, 30, 30] 384 
│ └─BasicConv2d: 2-11 [100, 64, 61, 61] -- │ └─BasicConv2d: 2-60 [100, 160, 30, 30] -- 
│ │ └─Conv2d: 3-1 [100, 64, 61, 61] 12,288 │ │ └─Conv2d: 3-99 [100, 160, 30, 30] 122,880 
│ │ └─BatchNorm2d: 3-2 [100, 64, 61, 61] 128 │ │ └─BatchNorm2d: 3-100 [100, 160, 30, 30] 320 
│ └─BasicConv2d: 2-12 [100, 48, 61, 61] -- │ └─BasicConv2d: 2-61 [100, 160, 30, 30] -- 
│ │ └─Conv2d: 3-3 [100, 48, 61, 61] 9,216 │ │ └─Conv2d: 3-101 [100, 160, 30, 30] 179,200 
│ │ └─BatchNorm2d: 3-4 [100, 48, 61, 61] 96 │ │ └─BatchNorm2d: 3-102 [100, 160, 30, 30] 320 
│ └─BasicConv2d: 2-13 [100, 64, 61, 61] -- │ └─BasicConv2d: 2-62 [100, 160, 30, 30] -- 
│ │ └─Conv2d: 3-5 [100, 64, 61, 61] 76,800 │ │ └─Conv2d: 3-103 [100, 160, 30, 30] 179,200 
│ │ └─BatchNorm2d: 3-6 [100, 64, 61, 61] 128 │ │ └─BatchNorm2d: 3-104 [100, 160, 30, 30] 320 

│ └─BasicConv2d: 2-14 [100, 64, 61, 61] -- │ └─BasicConv2d: 2-63 [100, 160, 30, 30] -- 
│ │ └─Conv2d: 3-7 [100, 64, 61, 61] 12,288 │ │ └─Conv2d: 3-105 [100, 160, 30, 30] 179,200 
│ │ └─BatchNorm2d: 3-8 [100, 64, 61, 61] 128 │ │ └─BatchNorm2d: 3-106 [100, 160, 30, 30] 320 
│ └─BasicConv2d: 2-15 [100, 96, 61, 61] -- │ └─BasicConv2d: 2-64 [100, 192, 30, 30] -- 
│ │ └─Conv2d: 3-9 [100, 96, 61, 61] 55,296 │ │ └─Conv2d: 3-107 [100, 192, 30, 30] 215,040 
│ │ └─BatchNorm2d: 3-10 [100, 96, 61, 61] 192 │ │ └─BatchNorm2d: 3-108 [100, 192, 30, 30] 384 
│ └─BasicConv2d: 2-16 [100, 96, 61, 61] -- │ └─BasicConv2d: 2-65 [100, 192, 30, 30] -- 

│ │ └─Conv2d: 3-11 [100, 96, 61, 61] 82,944 │ │ └─Conv2d: 3-109 [100, 192, 30, 30] 147,456 
│ │ └─BatchNorm2d: 3-12 [100, 96, 61, 61] 192 │ │ └─BatchNorm2d: 3-110 [100, 192, 30, 30] 384 
│ └─BasicConv2d: 2-17 [100, 32, 61, 61] -- ├─InceptionC: 1-15 [100, 768, 30, 30] -- 
│ │ └─Conv2d: 3-13 [100, 32, 61, 61] 6,144 │ └─BasicConv2d: 2-66 [100, 192, 30, 30] -- 
│ │ └─BatchNorm2d: 3-14 [100, 32, 61, 61] 64 │ │ └─Conv2d: 3-111 [100, 192, 30, 30] 147,456 
├─InceptionA: 1-9 [100, 288, 61, 61] -- │ │ └─BatchNorm2d: 3-112 [100, 192, 30, 30] 384 
│ └─BasicConv2d: 2-18 [100, 64, 61, 61] -- │ └─BasicConv2d: 2-67 [100, 192, 30, 30] -- 
│ │ └─Conv2d: 3-15 [100, 64, 61, 61] 16,384 │ │ └─Conv2d: 3-113 [100, 192, 30, 30] 147,456 
│ │ └─BatchNorm2d: 3-16 [100, 64, 61, 61] 128 │ │ └─BatchNorm2d: 3-114 [100, 192, 30, 30] 384 
│ └─BasicConv2d: 2-19 [100, 48, 61, 61] -- │ └─BasicConv2d: 2-68 [100, 192, 30, 30] -- 
│ │ └─Conv2d: 3-17 [100, 48, 61, 61] 12,288 │ │ └─Conv2d: 3-115 [100, 192, 30, 30] 258,048 
│ │ └─BatchNorm2d: 3-18 [100, 48, 61, 61] 96 │ │ └─BatchNorm2d: 3-116 [100, 192, 30, 30] 384 

│ └─BasicConv2d: 2-20 [100, 64, 61, 61] -- │ └─BasicConv2d: 2-69 [100, 192, 30, 30] -- 
│ │ └─Conv2d: 3-19 [100, 64, 61, 61] 76,800 │ │ └─Conv2d: 3-117 [100, 192, 30, 30] 258,048 
│ │ └─BatchNorm2d: 3-20 [100, 64, 61, 61] 128 │ │ └─BatchNorm2d: 3-118 [100, 192, 30, 30] 384 
│ └─BasicConv2d: 2-21 [100, 64, 61, 61] -- │ └─BasicConv2d: 2-70 [100, 192, 30, 30] -- 
│ │ └─Conv2d: 3-21 [100, 64, 61, 61] 16,384 │ │ └─Conv2d: 3-119 [100, 192, 30, 30] 147,456 
│ │ └─BatchNorm2d: 3-22 [100, 64, 61, 61] 128 │ │ └─BatchNorm2d: 3-120 [100, 192, 30, 30] 384 
│ └─BasicConv2d: 2-22 [100, 96, 61, 61] -- │ └─BasicConv2d: 2-71 [100, 192, 30, 30] -- 
│ │ └─Conv2d: 3-23 [100, 96, 61, 61] 55,296 │ │ └─Conv2d: 3-121 [100, 192, 30, 30] 258,048 
│ │ └─BatchNorm2d: 3-24 [100, 96, 61, 61] 192 │ │ └─BatchNorm2d: 3-122 [100, 192, 30, 30] 384 
│ └─BasicConv2d: 2-23 [100, 96, 61, 61] -- │ └─BasicConv2d: 2-72 [100, 192, 30, 30] -- 
│ │ └─Conv2d: 3-25 [100, 96, 61, 61] 82,944 │ │ └─Conv2d: 3-123 [100, 192, 30, 30] 258,048 
│ │ └─BatchNorm2d: 3-26 [100, 96, 61, 61] 192 │ │ └─BatchNorm2d: 3-124 [100, 192, 30, 30] 384 
│ └─BasicConv2d: 2-24 [100, 64, 61, 61] -- │ └─BasicConv2d: 2-73 [100, 192, 30, 30] -- 
│ │ └─Conv2d: 3-27 [100, 64, 61, 61] 16,384 │ │ └─Conv2d: 3-125 [100, 192, 30, 30] 258,048 
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│ │ └─BatchNorm2d: 3-28 [100, 64, 61, 61] 128 │ │ └─BatchNorm2d: 3-126 [100, 192, 30, 30] 384 
├─InceptionA: 1-10 [100, 288, 61, 61] -- │ └─BasicConv2d: 2-74 [100, 192, 30, 30] -- 
│ └─BasicConv2d: 2-25 [100, 64, 61, 61] -- │ │ └─Conv2d: 3-127 [100, 192, 30, 30] 258,048 
│ │ └─Conv2d: 3-29 [100, 64, 61, 61] 18,432 │ │ └─BatchNorm2d: 3-128 [100, 192, 30, 30] 384 
│ │ └─BatchNorm2d: 3-30 [100, 64, 61, 61] 128 │ └─BasicConv2d: 2-75 [100, 192, 30, 30] -- 
│ └─BasicConv2d: 2-26 [100, 48, 61, 61] -- │ │ └─Conv2d: 3-129 [100, 192, 30, 30] 147,456 
│ │ └─Conv2d: 3-31 [100, 48, 61, 61] 13,824 │ │ └─BatchNorm2d: 3-130 [100, 192, 30, 30] 384 
│ │ └─BatchNorm2d: 3-32 [100, 48, 61, 61] 96 ├─InceptionAux: 1-16 -- -- 
│ └─BasicConv2d: 2-27 [100, 64, 61, 61] -- │ └─BasicConv2d: 2-76 -- -- 
│ │ └─Conv2d: 3-33 [100, 64, 61, 61] 76,800 │ │ └─Conv2d: 3-131 -- 98,304 
│ │ └─BatchNorm2d: 3-34 [100, 64, 61, 61] 128 │ │ └─BatchNorm2d: 3-132 -- 256 
│ └─BasicConv2d: 2-28 [100, 64, 61, 61] -- │ └─BasicConv2d: 2-77 -- -- 
│ │ └─Conv2d: 3-35 [100, 64, 61, 61] 18,432 │ │ └─Conv2d: 3-133 -- 2,457,600 
│ │ └─BatchNorm2d: 3-36 [100, 64, 61, 61] 128 │ │ └─BatchNorm2d: 3-134 -- 1,536 
│ └─BasicConv2d: 2-29 [100, 96, 61, 61] -- │ └─Linear: 2-78 -- 1,707,949 
│ │ └─Conv2d: 3-37 [100, 96, 61, 61] 55,296 ├─InceptionD: 1-17 [100, 1280, 14, 14] -- 
│ │ └─BatchNorm2d: 3-38 [100, 96, 61, 61] 192 │ └─BasicConv2d: 2-79 [100, 192, 30, 30] -- 
│ └─BasicConv2d: 2-30 [100, 96, 61, 61] -- │ │ └─Conv2d: 3-135 [100, 192, 30, 30] 147,456 
│ │ └─Conv2d: 3-39 [100, 96, 61, 61] 82,944 │ │ └─BatchNorm2d: 3-136 [100, 192, 30, 30] 384 
│ │ └─BatchNorm2d: 3-40 [100, 96, 61, 61] 192 │ └─BasicConv2d: 2-80 [100, 320, 14, 14] -- 
│ └─BasicConv2d: 2-31 [100, 64, 61, 61] -- │ │ └─Conv2d: 3-137 [100, 320, 14, 14] 552,960 
│ │ └─Conv2d: 3-41 [100, 64, 61, 61] 18,432 │ │ └─BatchNorm2d: 3-138 [100, 320, 14, 14] 640 
│ │ └─BatchNorm2d: 3-42 [100, 64, 61, 61] 128 │ └─BasicConv2d: 2-81 [100, 192, 30, 30] -- 
├─InceptionB: 1-11 [100, 768, 30, 30] -- │ │ └─Conv2d: 3-139 [100, 192, 30, 30] 147,456 
│ └─BasicConv2d: 2-32 [100, 384, 30, 30] -- │ │ └─BatchNorm2d: 3-140 [100, 192, 30, 30] 384 
│ │ └─Conv2d: 3-43 [100, 384, 30, 30] 995,328 │ └─BasicConv2d: 2-82 [100, 192, 30, 30] -- 
│ │ └─BatchNorm2d: 3-44 [100, 384, 30, 30] 768 │ │ └─Conv2d: 3-141 [100, 192, 30, 30] 258,048 
│ └─BasicConv2d: 2-33 [100, 64, 61, 61] -- │ │ └─BatchNorm2d: 3-142 [100, 192, 30, 30] 384 
│ │ └─Conv2d: 3-45 [100, 64, 61, 61] 18,432 │ └─BasicConv2d: 2-83 [100, 192, 30, 30] -- 
│ │ └─BatchNorm2d: 3-46 [100, 64, 61, 61] 128 │ │ └─Conv2d: 3-143 [100, 192, 30, 30] 258,048 

│ └─BasicConv2d: 2-34 [100, 96, 61, 61] -- │ │ └─BatchNorm2d: 3-144 [100, 192, 30, 30] 384 
│ │ └─Conv2d: 3-47 [100, 96, 61, 61] 55,296 │ └─BasicConv2d: 2-84 [100, 192, 14, 14] -- 
│ │ └─BatchNorm2d: 3-48 [100, 96, 61, 61] 192 │ │ └─Conv2d: 3-145 [100, 192, 14, 14] 331,776 
│ └─BasicConv2d: 2-35 [100, 96, 30, 30] -- │ │ └─BatchNorm2d: 3-146 [100, 192, 14, 14] 384 
│ │ └─Conv2d: 3-49 [100, 96, 30, 30] 82,944 ├─InceptionE: 1-18 [100, 2048, 14, 14] -- 
│ │ └─BatchNorm2d: 3-50 [100, 96, 30, 30] 192 │ └─BasicConv2d: 2-85 [100, 320, 14, 14] -- 
├─InceptionC: 1-12 [100, 768, 30, 30] -- │ │ └─Conv2d: 3-147 [100, 320, 14, 14] 409,600 
│ └─BasicConv2d: 2-36 [100, 192, 30, 30] -- │ │ └─BatchNorm2d: 3-148 [100, 320, 14, 14] 640 
│ │ └─Conv2d: 3-51 [100, 192, 30, 30] 147,456 │ └─BasicConv2d: 2-86 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-52 [100, 192, 30, 30] 384 │ │ └─Conv2d: 3-149 [100, 384, 14, 14] 491,520 
│ └─BasicConv2d: 2-37 [100, 128, 30, 30] -- │ │ └─BatchNorm2d: 3-150 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-53 [100, 128, 30, 30] 98,304 │ └─BasicConv2d: 2-87 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-54 [100, 128, 30, 30] 256 │ │ └─Conv2d: 3-151 [100, 384, 14, 14] 442,368 
│ └─BasicConv2d: 2-38 [100, 128, 30, 30] -- │ │ └─BatchNorm2d: 3-152 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-55 [100, 128, 30, 30] 114,688 │ └─BasicConv2d: 2-88 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-56 [100, 128, 30, 30] 256 │ │ └─Conv2d: 3-153 [100, 384, 14, 14] 442,368 
│ └─BasicConv2d: 2-39 [100, 192, 30, 30] -- │ │ └─BatchNorm2d: 3-154 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-57 [100, 192, 30, 30] 172,032 │ └─BasicConv2d: 2-89 [100, 448, 14, 14] -- 
│ │ └─BatchNorm2d: 3-58 [100, 192, 30, 30] 384 │ │ └─Conv2d: 3-155 [100, 448, 14, 14] 573,440 
│ └─BasicConv2d: 2-40 [100, 128, 30, 30] -- │ │ └─BatchNorm2d: 3-156 [100, 448, 14, 14] 896 
│ │ └─Conv2d: 3-59 [100, 128, 30, 30] 98,304 │ └─BasicConv2d: 2-90 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-60 [100, 128, 30, 30] 256 │ │ └─Conv2d: 3-157 [100, 384, 14, 14] 1,548,288 
│ └─BasicConv2d: 2-41 [100, 128, 30, 30] -- │ │ └─BatchNorm2d: 3-158 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-61 [100, 128, 30, 30] 114,688 │ └─BasicConv2d: 2-91 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-62 [100, 128, 30, 30] 256 │ │ └─Conv2d: 3-159 [100, 384, 14, 14] 442,368 
│ └─BasicConv2d: 2-42 [100, 128, 30, 30] -- │ │ └─BatchNorm2d: 3-160 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-63 [100, 128, 30, 30] 114,688 │ └─BasicConv2d: 2-92 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-64 [100, 128, 30, 30] 256 │ │ └─Conv2d: 3-161 [100, 384, 14, 14] 442,368 
│ └─BasicConv2d: 2-43 [100, 128, 30, 30] -- │ │ └─BatchNorm2d: 3-162 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-65 [100, 128, 30, 30] 114,688 │ └─BasicConv2d: 2-93 [100, 192, 14, 14] -- 
│ │ └─BatchNorm2d: 3-66 [100, 128, 30, 30] 256 │ │ └─Conv2d: 3-163 [100, 192, 14, 14] 245,760 
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│ └─BasicConv2d: 2-44 [100, 192, 30, 30] -- │ │ └─BatchNorm2d: 3-164 [100, 192, 14, 14] 384 
│ │ └─Conv2d: 3-67 [100, 192, 30, 30] 172,032 ├─InceptionE: 1-19 [100, 2048, 14, 14] -- 
│ │ └─BatchNorm2d: 3-68 [100, 192, 30, 30] 384 │ └─BasicConv2d: 2-94 [100, 320, 14, 14] -- 
│ └─BasicConv2d: 2-45 [100, 192, 30, 30] -- │ │ └─Conv2d: 3-165 [100, 320, 14, 14] 655,360 
│ │ └─Conv2d: 3-69 [100, 192, 30, 30] 147,456 │ │ └─BatchNorm2d: 3-166 [100, 320, 14, 14] 640 

│ │ └─BatchNorm2d: 3-70 [100, 192, 30, 30] 384 │ └─BasicConv2d: 2-95 [100, 384, 14, 14] -- 
├─InceptionC: 1-13 [100, 768, 30, 30] -- │ │ └─Conv2d: 3-167 [100, 384, 14, 14] 786,432 
│ └─BasicConv2d: 2-46 [100, 192, 30, 30] -- │ │ └─BatchNorm2d: 3-168 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-71 [100, 192, 30, 30] 147,456 │ └─BasicConv2d: 2-96 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-72 [100, 192, 30, 30] 384 │ │ └─Conv2d: 3-169 [100, 384, 14, 14] 442,368 
│ └─BasicConv2d: 2-47 [100, 160, 30, 30] -- │ │ └─BatchNorm2d: 3-170 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-73 [100, 160, 30, 30] 122,880 │ └─BasicConv2d: 2-97 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-74 [100, 160, 30, 30] 320 │ │ └─Conv2d: 3-171 [100, 384, 14, 14] 442,368 
│ └─BasicConv2d: 2-48 [100, 160, 30, 30] -- │ │ └─BatchNorm2d: 3-172 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-75 [100, 160, 30, 30] 179,200 │ └─BasicConv2d: 2-98 [100, 448, 14, 14] -- 
│ │ └─BatchNorm2d: 3-76 [100, 160, 30, 30] 320 │ │ └─Conv2d: 3-173 [100, 448, 14, 14] 917,504 
│ └─BasicConv2d: 2-49 [100, 192, 30, 30] -- │ │ └─BatchNorm2d: 3-174 [100, 448, 14, 14] 896 
│ │ └─Conv2d: 3-77 [100, 192, 30, 30] 215,040 │ └─BasicConv2d: 2-99 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-78 [100, 192, 30, 30] 384 │ │ └─Conv2d: 3-175 [100, 384, 14, 14] 1,548,288 
│ └─BasicConv2d: 2-50 [100, 160, 30, 30] -- │ │ └─BatchNorm2d: 3-176 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-79 [100, 160, 30, 30] 122,880 │ └─BasicConv2d: 2-100 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-80 [100, 160, 30, 30] 320 │ │ └─Conv2d: 3-177 [100, 384, 14, 14] 442,368 
│ └─BasicConv2d: 2-51 [100, 160, 30, 30] -- │ │ └─BatchNorm2d: 3-178 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-81 [100, 160, 30, 30] 179,200 │ └─BasicConv2d: 2-101 [100, 384, 14, 14] -- 
│ │ └─BatchNorm2d: 3-82 [100, 160, 30, 30] 320 │ │ └─Conv2d: 3-179 [100, 384, 14, 14] 442,368 
│ └─BasicConv2d: 2-52 [100, 160, 30, 30] -- │ │ └─BatchNorm2d: 3-180 [100, 384, 14, 14] 768 
│ │ └─Conv2d: 3-83 [100, 160, 30, 30] 179,200 │ └─BasicConv2d: 2-102 [100, 192, 14, 14] -- 
│ │ └─BatchNorm2d: 3-84 [100, 160, 30, 30] 320 │ │ └─Conv2d: 3-181 [100, 192, 14, 14] 393,216 
│ └─BasicConv2d: 2-53 [100, 160, 30, 30] -- │ │ └─BatchNorm2d: 3-182 [100, 192, 14, 14] 384 
│ │ └─Conv2d: 3-85 [100, 160, 30, 30] 179,200 ├─AdaptiveAvgPool2d: 1-20 [100, 2048, 1, 1] -- 
│ │ └─BatchNorm2d: 3-86 [100, 160, 30, 30] 320 ├─Dropout: 1-21 [100, 2048, 1, 1] -- 
│ └─BasicConv2d: 2-54 [100, 192, 30, 30] -- ├─Linear: 1-22 [100, 2221] 4,550,829 
Total params: 30,602,330 
Batch size: 100 images 
Input size (MB): 104.86 
Forward/backward pass size (MB): 43,286.00 
Params size (MB): 122.41 
Estimated Total Size (MB): 43,513.27 
GPU: NVIDIA A100 

Table S4 | Model summary of Inception V3 architecture 
Summary of training statistics and parameters of the Inception V3 architecture baseline from ref. (42). The right-hand side columns are 
the continuation of the model summary. Summary generated using torchinfo version 1.7.0 (63). 
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Layer (type:depth-idx) Output Shape # Params 

Bioclim_MLP [1000, 2221] -- 

├─Sequential: 1-1 [1000, 2000] -- 

│ └─Linear: 2-1 [1000, 1000] 20,000 

│ └─ELU: 2-2 [1000, 1000] -- 

│ └─Linear: 2-3 [1000, 1000] 1,001,000 

│ └─ELU: 2-4 [1000, 1000] -- 

│ └─Linear: 2-5 [1000, 2000] 2,002,000 

│ └─ELU: 2-6 [1000, 2000] -- 

│ └─Dropout: 2-7 [1000, 2000] -- 

│ └─Linear: 2-8 [1000, 2000] 4,002,000 

│ └─ELU: 2-9 [1000, 2000] -- 

├─Linear: 1-2 [1000, 153] 306,153 

├─Linear: 1-3 [1000, 878] 1,756,878 

├─Linear: 1-4 [1000, 2221] 4,444,221 

Total params: 13,532,252 

Batch size: 1,000 

Input size (MB): 0.08 

Forward/backward pass size (MB): 65.77 

Params size (MB): 45.88 

Estimated Total Size (MB): 111.72 

GPU: NVIDIA GRID M60-8Q  

Table S5 | Model summary of Bioclim MLP architecture 
Summary of training statistics and parameters of the Bioclim MLP architecture inspired by ref (50). Summary generated using 
torchinfo version 1.7.0 (63). 
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model loss LR BS epoch Precision per-species Precision per-image Recall  per-species Recall per-image 

+ taxonomy  
+ nearby species 

Sampling- 
aware BCE 

1x10-5 150 12 0.01 [0.0025-0.025] 0.0091 [0.0044-0.0238] 0.8958 [0.4667-1.0] 1.0 [0.8286-1.0] 

+ taxonomy  
- nearby species 

Sampling- 
aware BCE 1x10-5 150 11 0.009 [0.0023-0.0224] 0.0082 [0.004-0.0216] 0.9062 [0.4762-1.0] 1.0 [0.825-1.0] 

- taxonomy  
+ nearby species 

Sampling- 
aware BCE 1x10-5 150 13 0.01 [0.0027-0.0252] 0.0089 [0.0043-0.0227] 0.9028 [0.5-1.0] 1.0 [0.8333-1.0] 

model cont'd loss LR BS epoch F1 per-species F1 per-image mAP Presence accuracy 

+ taxonomy  
+ nearby species 

Sampling- 
aware BCE 

1x10-5 150 12 0.0198 [0.0051-0.0479] 0.018 [0.0088-0.0463] 0.1426 0.8645 

+ taxonomy  
- nearby species 

Sampling- 
aware BCE 

1x10-5 150 11 0.0178 [0.0046-0.0435] 0.0162 [0.008-0.0423] 0.1378 0.863 

- taxonomy  
+ nearby species 

Sampling- 
aware BCE 1x10-5 150 13 0.0195 [0.0054-0.0491] 0.0177 [0.0085-0.0444] 0.1420 0.8673 

model cont'd loss LR BS epoch Top 1 per-image Top 5 per-image Top 30 per-image Top 100 per-image 

+ taxonomy  
+ nearby species 

Sampling- 
aware BCE 

1x10-5 150 12 0.0366 0.1281 0.3975 0.6779 

+ taxonomy  
- nearby species 

Sampling- 
aware BCE 

1x10-5 150 11 0.0362 0.1183 0.3752 0.6509 

- taxonomy  
+ nearby species 

Sampling- 
aware BCE 1x10-5 150 13 0.0348 0.1241 0.3896 0.6772 

model cont'd loss LR BS epoch Top 1 per-species Top 5 per-species Top 30 per-species Top 100 per-species 

+ taxonomy  
+ nearby species 

Sampling- 
aware BCE 

1x10-5 150 12 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.3889] 0.5 [0.0-0.8] 

+ taxonomy  
- nearby species 

Sampling- 
aware BCE 

1x10-5 150 11 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.3158] 0.4 [0.0-0.7647] 

- taxonomy  
+ nearby species 

Sampling- 
aware BCE 1x10-5 150 13 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.3478] 0.5 [0.0-0.8] 

model cont'd loss LR BS epoch AUCROC AUCPRC calibrated AUCROC calibrated AUCPRC 

+ taxonomy  
+ nearby species 

Sampling- 
aware BCE 

1x10-5 150 12 0.9268 [0.8627-0.9671] 0.0265 [0.0072-0.0787] 0.9247 [0.8579-0.965] 0.0224 [0.0072-0.0588] 

+ taxonomy  
- nearby species 

Sampling- 
aware BCE 

1x10-5 150 11 0.923 [0.853-0.9639] 0.0224 [0.0065-0.0678] 0.9212 [0.8512-0.9617] 0.0193 [0.0063-0.0558] 

- taxonomy  
+ nearby species 

Sampling- 
aware BCE 1x10-5 150 13 0.9265 [0.858-0.9665] 0.0262 [0.0072-0.0767] 0.9213 [0.8533-0.9634] 0.0222 [0.0071-0.056] 

Table S6 | Including species co-occurrence and taxonomic information improves species-level prediction 
Ablation comparison for including co-occurring species and higher taxonomic information during model training. Using the 
modified TResNet architecture (Table S2), when co-occurring species information (+ nearby species) and when higher taxonomic 
information (+ taxonomy) is provided during training, model performance is higher on 13/20 metrics (bolded entries), indicating 
that both species co-occurrence signal (from the nearby species) and phylogenetic signal (from the higher taxonomic information) 
provides increased predictive power for species distribution modeling. Accuracies are reported for held-out observations from the 
uniform split of the dataset (Fig. S4A). Reported statistics are median [1st quartile - 3rd quartile] calculated for the epoch of 
evaluation determined using early stopping from AUCROC. Abbreviations: LR = learning rate; BS = batch size; mAP = mean 
average precision; ROC = receiver operating characteristic curve; AUC = area under the curve; PRC = precision-recall curve; 
Sampling-aware BCE = sampling-aware binary cross-entropy loss.  
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model loss LR BS epoch Precision per-species Precision per-image Recall  per-species Recall per-image 

TResNet Sampling- 
aware BCE 

1x10-5 150 12 0.01 
 [0.0025-0.025] 

0.0091 
 [0.0044-0.0238] 

0.8958  
[0.4667-1.0] 

1.0  
[0.8286-1.0] 

TResNet CE 1x10-5 150 12 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 

TResNet BCE 1x10-5 150 13 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 

TResNet ASL 1x10-5 150 10 0.0 [0.0-0.0337] 0.0 [0.0-0.0833] 0.0 [0.0-0.0549] 0.0 [0.0-0.2] 

model cont'd loss LR BS epoch F1 per-species F1 per-image mAP Presence accuracy 

TResNet 
Sampling- 
aware BCE 1x10-5 150 12 

0.0198  
[0.0051-0.0479] 

0.018  
[0.0088-0.0463] 0.1426 0.8645 

TResNet CE 1x10-5 150 12 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.145 0 

TResNet BCE 1x10-5 150 13 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.1255 0.0116 

TResNet ASL 1x10-5 150 10 0.0 [0.0-0.0396] 0.0 [0.0-0.1111] 0.1217 0.1533 

model cont'd loss LR BS epoch Top 1 per-image Top 5 per-image Top 30 per-image Top 100 per-image 

TResNet Sampling- 
aware BCE 1x10-5 150 12 0.0366 0.1281 0.3975 0.6779 

TResNet CE 1x10-5 150 12 0.0391 0.1306 0.3938 0.6682 

TResNet BCE 1x10-5 150 13 0.0305 0.1042 0.3357 0.602 

TResNet ASL 1x10-5 150 10 0.0289 0.0981 0.3202 0.5824 

model cont'd loss LR BS epoch Top 1 per-species Top 5 per-species Top 30 per-species Top 100 per-species 

TResNet 
Sampling- 
aware BCE 1x10-5 150 12 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.3889] 0.5 [0.0-0.8] 

TResNet CE 1x10-5 150 12 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.3571] 0.4706 [0.0-0.8] 

TResNet BCE 1x10-5 150 13 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.2667] 0.3333 [0.0-0.6923] 

TResNet ASL 1x10-5 150 10 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.2857] 0.3333 [0.0-0.6667] 

model cont'd loss LR BS epoch AUCROC AUCPRC calibrated AUCROC calibrated AUCPRC 

TResNet Sampling- 
aware BCE 1x10-5 150 12 0.9268  

[0.8627-0.9671] 
0.0265 

 [0.0072-0.0787] 
0.9247  

[0.8579-0.965] 
0.0224  

[0.0072-0.0588] 

TResNet CE 1x10-5 150 12 0.9248 [0.8543-0.966] 0.0241 [0.0069-0.0703] 0.5 [0.5-0.5] 0.0011 [0.0004-0.0088] 

TResNet BCE 1x10-5 150 13 0.907 [0.828-0.9589] 0.0194 [0.0046-0.0696] 0.6586 [0.4991-0.8485] 0.0129 [0.0009-0.059] 

TResNet ASL 1x10-5 150 10 0.9056 [0.8142-0.9577] 0.0192 [0.0041-0.0728] 0.9039 [0.8131-0.9546] 0.0182 [0.0043-0.0664] 

Table S7 | Comparing the performance of different loss functions on uniform data split 
Comparison of a variety of common loss functions to novel sampling-aware binary cross-entropy loss function. The remote sensing-
only modified TResNet trained with our novel sampling-aware loss had the highest accuracy on 14/20 metrics, while the remote 
sensing-only modified TResNet trained with the classic single-label cross-entropy (CE) loss had the highest accuracy on 3/20 
metrics. While the CE loss performed slightly better on ranking metrics than our sampling-aware loss, it had very low performance 
on the binary accuracy metrics, a consequence of the single-label target loss which optimizes the model to predict only one species 
at a time. Accuracies are reported for held-out observations from the uniform split of the dataset (Fig. S4A). Reported statistics are 
median [1st quartile - 3rd quartile] calculated for the epoch of evaluation determined using early stopping from AUCROC.  
Abbreviations: LR = learning rate; BS = batch size; mAP = mean average precision; ROC = receiver operating characteristic curve; 
AUC = area under the curve; PRC = precision-recall curve; Sampling-aware BCE = Sampling-aware binary cross-entropy loss; 
BCE = binary cross-entropy loss; CE = cross-entropy loss; ASL = asymmetric focal loss. 
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model loss LR BS epoch Precision per-species Precision per-image Recall  per-species Recall per-image 

Deepbiosphere Sampling- 
aware BCE 1x10-5 150 8 0.0131  

[0.0036-0.0355] 
0.0116 

 [0.0055-0.0294] 
0.9583 

 [0.5-1.0] 
1.0  

[0.8889-1.0] 

Bioclim MLP Sampling- 
aware BCE 

1x10-5 1,000 61 0.0111  
[0.0023-0.0305] 

0.0103  
[0.0047-0.0265] 

0.9643 
 [0.4286-1.0] 

1.0  
[0.8627-1.0] 

TResNet 
Sampling- 
aware BCE 1x10-5 150 12 

0.01 
 [0.0025-0.025] 

0.0091 
 [0.0044-0.0238] 

0.8958  
[0.4667-1.0] 

1.0  
[0.8286-1.0] 

Inception V3 CE 1x10-4 100 11 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 
Maxent N/A N/A N/A N/A 0.0048 [0.0-0.0323] 0.0 [0.0-0.0238] 0.1348 [0.0-0.566] 0.0 [0.0-0.5] 

Random Forest N/A N/A N/A N/A 0.0086 [0.0-0.04] 0.0076 [0.0-0.0317] 0.3684 [0.0-0.8182] 0.2821 [0.0-0.875] 
random N/A N/A N/A N/A 0.0016 [0.0005-0.0052] 0.0016 [0.0008-0.0039] 0.5 [0.4667-0.5333] 0.5 [0.4-0.6] 

frequency  N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 
model loss LR BS epoch F1 per-species F1 per-image mAP Presence accuracy 

Deepbiosphere Sampling- 
aware BCE 

1x10-5 150 8 0.0258  
[0.0071-0.0685] 

0.0229  
[0.0109-0.0569] 

0.1721 0.8918 

Bioclim MLP 
Sampling- 
aware BCE 1x10-5 1,000 61 

0.0218  
[0.0045-0.0592 ] 

0.0203 
 [0.0094-0.0515] 0.1421 0.882 

TResNet Sampling- 
aware BCE 1x10-5 150 12 0.0198  

[0.0051-0.0479] 
0.018  

[0.0088-0.0463] 0.1426 0.8645 

Inception V3 CE 1x10-4 100 11 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.173 0.0013 
Maxent N/A N/A N/A N/A 0.0089 [0.0-0.059] 0.0 [0.0-0.0426] 0.0366 0.2761 

Random Forest N/A N/A N/A N/A 0.0166 [0.0-0.0721] 0.0152 [0.0-0.0588] 0.0642 0.3943 
random N/A N/A N/A N/A 0.0031 [0.001-0.0102] 0.0031 [0.0016-0.0077] 0.0093 0.5005 

frequency  N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0389 0.0656 
model loss LR BS epoch Top 1 per-image Top 5 per-image Top 30 per-image Top 100 per-image 

Deepbiosphere 
Sampling- 
aware BCE 1x10-5 150 8 0.044 0.1536 0.4651 0.7613 

Bioclim MLP Sampling- 
aware BCE 1x10-5 1,000 61 0.034 0.1168 0.391 0.7035 

TResNet Sampling- 
aware BCE 1x10-5 150 12 0.0366 0.1281 0.3975 0.6779 

Inception V3 CE 1x10-4 100 11 0.0525 0.1663 0.4683 0.7533 
Maxent N/A N/A N/A N/A 0.0004 0.0053 0.0815 0.291 

Random Forest N/A N/A N/A N/A 0.0138 0.046 0.184 0.3709 
random N/A N/A N/A N/A 0.0006 0.0022 0.0142 0.0451 

frequency  N/A N/A N/A N/A 0.0066 0.0274 0.0846 0.1952 
model loss LR BS epoch Top 1 per-species Top 5 per-species Top 30 per-species Top 100 per-species 

Deepbiosphere 
Sampling- 
aware BCE 1x10-5 150 8 0.0 [0.0-0.0] 0.0 [0.0-0.0] 

0.0833  
[0.0-0.5] 

0.6667 
 [0.0-0.9333] 

Bioclim MLP Sampling- 
aware BCE 1x10-5 1,000 61 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.375] 0.5 [0.0-0.8571] 

TResNet Sampling- 
aware BCE 

1x10-5 150 12 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.3889] 0.5 [0.0-0.8] 

Inception V3 CE 1x10-4 100 11 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.1111 [0.0-0.5] 0.625 [0.0-0.9167] 
Maxent N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0417 [0.0-0.5] 

Random Forest N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.25] 0.2857 [0.0-0.6129] 
random N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.016] 0.0333 [0.0-0.0667] 

frequency  N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 
model loss LR BS epoch AUCROC AUCPRC calibrated AUCROC calibrated AUCPRC 

Deepbiosphere Sampling- 
aware BCE 1x10-5 150 8 0.9496  

[0.8896-0.9815] 
0.0398  

[0.0102-0.1074] 
0.9452 

 [0.8847-0.9798] 
0.0322  

[0.0094-0.0733] 

Bioclim MLP Sampling- 
aware BCE 1x10-5 1,000 61 0.9346  

[0.8579-0.9739] 
0.0346 

 [0.0088-0.0979] 
0.9311  

[0.8483-0.972] 
0.0219 

 [0.0064-0.0536] 

TResNet Sampling- 
aware BCE 

1x10-5 150 12 0.9268  
[0.8627-0.9671] 

0.0265 
 [0.0072-0.0787] 

0.9247  
[0.8579-0.965] 

0.0224  
[0.0072-0.0588] 

Inception V3 CE 0.0001 100 11 0.9391 [0.8753-0.9755] 0.0359 [0.0098-0.0998] 0.5 [0.5-0.5366] 0.0015 [0.0004-0.0429] 
Maxent N/A N/A N/A N/A 0.8825 [0.7754-0.9505] 0.018 [0.0039-0.0725] 0.8701 [0.7471-0.9455] 0.0125 [0.0031-0.051] 

Random Forest N/A N/A N/A N/A 0.882 [0.7639-0.9515] 0.0237 [0.0044-0.0925] 0.8797 [0.7623-0.9493] 0.0176 [0.0035-0.0631] 
random N/A N/A N/A N/A 0.4995 [0.4815-0.5174] 0.0022 [0.001-0.0064] 0.4997 [0.4834-0.5165] 0.002 [0.0009-0.0061] 

frequency  N/A N/A N/A N/A 0.5 [0.5-0.5] 0.0016 [0.0005-0.0052] 0.5 [0.5-0.5] 0.0009 [0.0003-0.0029] 

Table S8 | Comparison of Deepbiosphere to baseline SDMs and previous deep-learning-based approaches 
Comparison of Deepbiosphere to previous approaches using held-out observations uniformly sampled from across California 
across twenty different accuracy metrics. Cumulatively, Deepbiosphere had the highest accuracy on 11/20 metrics (bolded entries), 



66 

BioClim MLP on 1/20 metrics, and Inception V3 on 5/20 metrics. Accuracies are reported for held-out observations from the 
uniform split of the dataset (Fig. S4A). Reported statistics are median [1st quartile - 3rd quartile] calculated for the epoch of 
evaluation determined using early stopping on AUCROC. Abbreviations: LR = learning rate; BS = batch size; MLP = multilayer 
perceptron; mAP = mean average precision; ROC = receiver operating characteristic curve; AUC = area under the curve; PRC = 
precision-recall curve; Sampling-aware BCE = Sampling-aware binary cross-entropy loss; CE = cross-entropy loss.      
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model loss LR BS epoch AUCROC AUCPRC calibrated AUCROC calibrated AUCPRC 

Deepbiosphere 
Sampling- 
aware BCE 1x10-5 150 8 

0.9612  
[0.8964-0.9877] 

0.0172 
 [0.004-0.058] 

0.9563  
[0.8792-0.9849] 

0.0146 
 [0.004-0.0449] 

Bioclim MLP Sampling- 
aware BCE 

1x10-5 1,000 61 0.9487  
[0.8654-0.9814] 

0.016 
 [0.0034-0.0516] 

0.9425  
[0.8295-0.9794] 

0.0101 
 [0.003-0.0288] 

TResNet Sampling- 
aware BCE 1x10-5 150 12 

0.9413 [0.8732-
0.9754] 

0.0111 [0.0033-
0.0443] 

0.9382 [0.8624-
0.9726] 

0.0111 [0.003-0.033] 

Inception V3 CE 1x10-4 100 11 0.9566 [0.8964-0.985] 0.0152 [0.0045-0.0571] 0.5 [0.5-0.5] 0.0004 [0.0002-0.001] 
Maxent N/A N/A N/A N/A 0.8861 [0.7502-0.9581] 0.0067 [0.0017-0.0259] 0.8695 [0.7259-0.955] 0.0046 [0.0013-0.0176] 

Random Forest N/A N/A N/A N/A 0.8886 [0.7194-0.965] 0.0079 [0.0017-0.0338] 0.8858 [0.7298-0.9621] 0.0055 [0.0016-0.0225] 
model loss LR BS epoch Top 1 per-species Top 5 per-species Top 30 per-species Top 100 per-species 

Deepbiosphere Sampling- 
aware BCE 

1x10-5 150 8 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 
0.0 [0.0-0.8] 

Bioclim MLP Sampling- 
aware BCE 1x10-5 1,000 61 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.75] 

TResNet Sampling- 
aware BCE 1x10-5 150 12 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.5] 

Inception V3 CE 1x10-4 100 11 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.75] 
Maxent N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.125] 0.0 [0.0-0.6667] 

Random Forest N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.5] 0.3333 [0.0-1.0] 
model loss LR BS epoch Precision per-species Recall  per-species F1 per-species  

Deepbiosphere 
Sampling- 
aware BCE 1x10-5 150 8 

0.0054 
 [0.0-0.0168] 

0.6111 
 [0.0-1.0] 

0.0108 
 [0.0-0.0325]  

Bioclim MLP Sampling- 
aware BCE 

1x10-5 1,000 61 0.0039 
 [0.0-0.0141] 

0.6667  
[0.0-1.0] 

0.0078 
 [0.0-0.0278] 

 

TResNet Sampling- 
aware BCE 

1x10-5 150 12 0.0039 [0.0-0.0121] 0.5294 [0.0-0.9722] 0.0076 [0.0-0.024]  

Inception V3 CE 1x10-4 100 11 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0]  
Maxent N/A N/A N/A N/A 0.0 [0.0-0.007] 0.0 [0.0-0.6667] 0.0 [0.0-0.0139]  

Random Forest N/A N/A N/A N/A 0.0022 [0.0-0.0102] 0.2727 [0.0-1.0] 0.0041 [0.0-0.0201]  

Table S9 | Comparison of Deepbiosphere to baseline SDMs on rarest species 
Comparison of Deepbiosphere to previous approaches for species with fewer than 100 observations in the original dataset before 
neighbor imputation (529 out of 2,221 species), using held-out observations uniformly sampled from across California (Fig S4A) 
across eleven different accuracy metrics. Cumulatively, Deepbiosphere had the highest accuracy on all but two metrics (bolded 
entries), BioClim MLP on 1/11 metrics, and Random Forest on 1/11 metrics. While for most metrics accuracy is lower, intriguingly 
AUCROC increased for the deep learning-based models (Deepbiosphere, Bioclim MLP, Inception V3) compared to the entire dataset. 
Reported statistics are median [1st quartile - 3rd quartile] calculated for the epoch of evaluation determined using early stopping 
on AUCROC. Abbreviations: LR = learning rate; BS = batch size; MLP = multilayer perceptron; mAP = mean average precision; 
ROC = receiver operating characteristic curve; AUC = area under the curve; PRC = precision-recall curve; Sampling-aware BCE 
= sampling-aware binary cross-entropy loss; CE = cross-entropy loss.   



68 

 
model loss LR BS epoch Precision per-species Precision per-image Recall  per-species Recall per-image 

Deepbiosphere 
Sampling- 
aware BCE 1x10-5 150 8 

0.0219 
 [0.0183-0.0287] 

0.0554 
 [0.037-0.0739] 

0.5865  
[0.5377-0.6388] 

0.8571  
[0.8237-0.8785] 

Bioclim MLP Sampling- 
aware BCE 

1x10-5 1,000 61 0.0129 
 [0.0102-0.0169] 

0.0451 
 [0.0306-0.0637] 

0.4536  
[0.381-0.496] 

0.8091  
[0.756-0.8512] 

Maxent N/A N/A N/A N/A 0.0045 [0.0002-0.0108] 0.0237 [0.0221-0.0318] 0.1541 [0.0034-0.5063] 0.4273 [0.3202-0.6838] 
Random Forest N/A N/A N/A N/A 0.0073 [0.0034-0.0121] 0.0231 [0.0192-0.0283] 0.4129 [0.0908-0.6874] 0.5714 [0.4023-0.7447] 

Frequency N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0526 [0.0125-0.0937] 0.0 [0.0-0.0] 0.0801 [0.0069-0.0933] 
model cont'd loss LR BS epoch F1 per-species F1 per-image mAP Presence accuracy 

Deepbiosphere 
Sampling- 
aware BCE 1x10-5 150 8 

0.0414  
[0.0348-0.0513] 

0.1034 
 [0.0703-0.1359] 

0.2181 
 [0.1934-0.2558] 

0.8425 [ 
0.8262-0.8706] 

Bioclim MLP Sampling- 
aware BCE 

1x10-5 1,000 61 0.0242  
[0.0196-0.0302] 

0.0849 
 [0.059-0.1181] 

0.1596  
[0.1357-0.1838] 

0.7856  
[0.753-0.8179] 

Maxent N/A N/A N/A N/A 0.0088 [0.0003-0.0207] 0.0439 [0.0387-0.0604] 0.055 [0.0515-0.0595] 0.4268 [0.3619-0.6443] 
Random Forest N/A N/A N/A N/A 0.0137 [0.0064-0.0232] 0.0435 [0.0361-0.0541] 0.0636 [0.0533-0.0731] 0.5113 [0.4369-0.6873] 

Frequency N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0739 [0.0096-0.0899] 0.0994 [0.0626-0.1042] 0.103 [0.0701-0.1158] 
model cont'd loss LR BS epoch Top 1 per-image Top 5 per-image Top 30 per-image Top 100 per-image 

Deepbiosphere 
Sampling- 
aware BCE 1x10-5 150 8 

0.0262  
[0.0237-0.0296] 

0.1051  
[0.1013-0.1106] 

0.3771 
 [0.3721-0.3902] 

0.6803  
[0.6693-0.691] 

Bioclim MLP Sampling- 
aware BCE 

1x10-5 1,000 61 0.0152  
[0.0129-0.0192] 

0.0667  
[0.0631-0.0716] 

0.2789 
 [0.2665-0.2866] 

0.5482 
 [0.5313-0.5803] 

Maxent N/A N/A N/A N/A 0.0004 [0.0001-0.0018] 0.0037 [0.0019-0.0073] 0.0455 [0.04-0.06] 0.1862 [0.1582-0.1942] 
Random Forest N/A N/A N/A N/A 0.0036 [0.0025-0.0047] 0.0209 [0.0128-0.023] 0.0974 [0.0747-0.1096] 0.2234 [0.2013-0.282] 

Frequency N/A N/A N/A N/A 0.0091 [0.005-0.0111] 0.036 [0.0297-0.0429] 0.133 [0.0995-0.1495] 0.3008 [0.2161-0.3123] 
model cont'd loss LR BS epoch Top 1 per-species Top 5 per-species Top 30 per-species Top 100 per-species 

Deepbiosphere 
Sampling- 
aware BCE 1x10-5 150 8 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 

0.2242 
 [0.1613-0.292] 

Bioclim MLP Sampling- 
aware BCE 

1x10-5 1,000 61 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0378  
[0.0-0.07] 

Maxent N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 
Random Forest N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0288 [0.0-0.058] 

Frequency N/A N/A N/A N/A 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 
model cont'd loss LR BS epoch AUCROC AUCPRC calibrated AUCROC calibrated AUCPRC 

Deepbiosphere 
Sampling- 
aware BCE 1x10-5 150 8 

0.8682  
[0.8388-0.8839] 

0.0365 
 [0.0339-0.0421] 

0.8425  
[0.8164-0.8718] 

0.0338 
 [0.0302-0.0387] 

Bioclim MLP Sampling- 
aware BCE 

1x10-5 1,000 61 0.8025 
 [0.7722-0.8214] 

0.0279  
[0.0261-0.0307] 

0.7645 
 [0.7259-0.7901] 

0.0196  
[0.0171-0.0222] 

Maxent N/A N/A N/A N/A 0.7339 [0.7071-0.7713] 0.0207 [0.0195-0.0235] 0.7223 [0.6932-0.7525] 0.0146 [0.0132-0.0174] 
Random Forest N/A N/A N/A N/A 0.7056 [0.6945-0.7576] 0.0219 [0.0182-0.0251] 0.7072 [0.6957-0.76] 0.0166 [0.0131-0.0196] 

Frequency N/A N/A N/A N/A 0.5 [0.5-0.5] 0.0045 [0.0038-0.0052] 0.5 [0.5-0.5] 0.0023 [0.0019-0.0028] 

Table S10 | Comparison of Deepbiosphere to baseline SDMs across spatial cross-validation bands. 
Comparison of Deepbiosphere to baseline SDMs using a ten-fold spatial cross-validation approach across twenty different accuracy 
metrics. Deepbiosphere exhibited superior performance on all metrics (bolded entries). Furthermore, while all approaches in 
general see a reduction in performance compared to the uniform data split (Table S8), in general Deepbiosphere exhibits a less 
steep drop in accuracy, and even improves for some metrics. Reported statistics are median [1st quartile - 3rd quartile] for the 
median value of each band from the ten-fold spatial cross-validation (Fig. S4B). Accuracies were calculated using the early stopping 
epoch on AUCROC from the uniform test split. MLP = multilayer perceptron; LR = learning rate; BS = batch size; Sampling-aware 
BCE = Sampling-aware binary cross-entropy loss; mAP = mean average precision; ROC = receiver operating characteristic curve; 
AUC = area under the curve; PRC = precision-recall curve.  
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Redwoods case study location: (41.209, -124.01) Oaks case study location: (34.533, -120.17) 

Redwoods example locations Grove – Park Oaks example locations Species Calflora ID 
(40.3527, -123.9894) 

 
Bull Creek Flats – 

Humboldt Redwoods 
 (36.108322, -120.561226) Quercus lobata po68973 

(41.7564, -124.1087) 
 

Grove of Titans – Jedediah 
Smith Redwoods State Park 

(36.151438, -120.770939) Quercus lobata po68984 

(40.6554, -124.0998) Elk River Trail Grove – 
Headwaters Preserve 

(36.635690, -121.242532) Quercus lobata po122185 

Table S11 | Site details for individual species case studies and human annotation experiments 
Two locations within both species’ predicted range on Calscape (https://calscape.org) were selected as case studies. For the 
redwoods case study (left-hand side), example locations were chosen from Calflora (64) based on known remaining old-growth 
redwood groves and Tall Trees Grove in Redwoods National and State Parks was selected as the case study location, including a 
known Calflora redwood observation (first row). For the oaks case study (right-hand side), a list of candidate locations was 
generated from Calflora (64) Quercus lobata occurrence records, with the ultimate case study site being selected from a region 
with multiple observed oaks from an undersampled region in the uniform dataset. For each site, the most centered NAIP imagery 
tile was selected as the extent of the case study. Each NAIP imagery tile is approximately 5 x 6 km in extent.  

https://calscape.org/
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Sequoia sempervirens - tested with 1,292 observations        

model LR BS epoch AUCPRC AUCROC Recall F1 Top 100spp       
Deepbiosphere10 1x10-4 150 5 0.3832 0.857 0.7957 0.4855 0.9771       
Bioclim MLP10 1x10-5 1000 61 0.1939 0.6814 0.0426 0.0545 0.0534       

Maxent10 N/A N/A N/A 0.3283 0.8258 0.0108 0.0182 0.0       
Random Forest10 N/A N/A N/A 0.3384 0.8437 0.0 0.0 0.0       

Species associated with mature redwood forest 
Oxalis oregana - tested with 1,680 observations  Struthiopteris spicant- tested with 1,157 observations 

model LR BS epoch AUCPRC AUCROC Recall F1 Top 100spp  AUCPRC AUCROC Recall F1 Top 100spp 

Deepbiosphere10 1x10-4 150 5 0.4125 0.8286 0.6863 0.4989 0.8947  0.3507 0.8625 0.7373 0.7373 0.9277 
Bioclim MLP10 1x10-5 1000 61 0.3297 0.7852 0.8083 0.4957 0.5639  0.2633 0.7816 0.6612 0.6612 0.4337 

Maxent10 N/A N/A N/A 0.3783 0.7871 0.0345 0.0514 0.0  0.2777 0.7468 0.2377 0.2377 0.0241 
Random Forest10 N/A N/A N/A 0.3631 0.7749 0.0083 0.0164 0.0  0.2842 0.7517 0.8211 0.8211 0.7711 

Species associated with secondary growth redwood forest 
Rubus ursinus - tested with 687 observations  Viola sempervirens - tested with 1,309 observations 

model LR BS epoch AUCPRC AUCROC Recall F1 Top 100spp  AUCPRC AUCROC Recall F1 Top 100spp 
Deepbiosphere10 1x10-4 150 5 0.1857 0.7866 0.9185 0.2099 0.8077  0.3783 0.8421 0.8648 0.4587 0.8875 
Bioclim MLP10 1x10-5 1000 61 0.1467 0.72 0.9753 0.1897 0.6923  0.2074 0.6504 0.3759 0.274 0.2875 

Maxent10 N/A N/A N/A 0.0947 0.4853 0.0146 0.0215 0.0  0.3124 0.6792 0.5286 0.4671 0.2375 
Random Forest10 N/A N/A N/A 0.089 0.4857 0.0 0.0 0.0  0.2682 0.6641 0.1467 0.1829 0.05 

Species associated both with mature redwood forest 
Polystichum munitum - tested with 1,804 observations  Vaccinium ovatum - tested with 1,771 observations 

model LR BS epoch AUCPRC AUCROC Recall F1 Top 100spp  AUCPRC AUCROC Recall F1 Top 100spp 
Deepbiosphere10 1x10-4 150 5 0.5717 0.8866 0.9429 0.5325 0.96  0.5137 0.8635 0.9989 0.5441 0.9802 
Bioclim MLP10 1x10-5 1000 61 0.3603 0.7846 0.9191 0.5296 0.63  0.3731 0.8113 1 0.5234 0.9901 

Maxent10 N/A N/A N/A 0.3623 0.6771 0.1142 0.1758 0  0.3521 0.6798 0.2778 0.3386 0 
Random Forest10 N/A N/A N/A 0.3613 0.6838 0.1258 0.1891 0  0.3273 0.6985 0.122 0.1788 0.0099 

 
Table S12 | Accuracy of various SDMs on redwood + understory species in northern California 
Five accuracy metrics for the seven species from the Redwoods National and State Parks case study using held-out dataset 
observations from inside the tenth spatial cross-validation block (Fig. S4B). While accuracy varies across species, Deepbiosphere 
exhibits superior performance for all species and all metrics save three (R. ursinus recall, V. sempervirens F1, V. ovatum Top 100), 
highlighting how including remote sensing as a predictor improves performance of species distribution models in unseen regions. 
The Inceptionunif SDM baseline was left out from this analysis as the model was trained using anywhere from 95% to 100% of all 
held-out test observations in this spatial band. The number of neighbor-imputed observations used to calculate the accuracies is 
denoted alongside the species name. Reported statistics were calculated for the epoch of evaluation determined using early stopping 
on AUCROC using the uniform data split. MLP = multilayer perceptron; ROC = receiver operating characteristic curve; AUC = area 
under the curve; spp = per-species.   
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Ceanothus cuneatus - tested with 1,682 observations  Quercus lobata - tested with 4,460 observations 

model LR BS epoch % seen AUCPRC AUCROC Recall F1 Top 100spp  % seen AUCPRC AUCROC Recall F1 Top 100spp 

Deepbiosphere3 1x10-4 150 5 0.0% 0.0396 0.7287 0.1843 0.0509 0.4821  0.0% 0.1163 0.7893 0.6415 0.2062 0.7626 
Bioclim MLP3 1x10-5 1000 61 0.0% 0.0275 0.6622 0.1379 0.0263 0.3036  0.0% 0.0673 0.6951 0.92 0.1245 0.7071 

Maxent3 N/A N/A N/A 0.0% 0.0222 0.6028 0.201 0.0371 0  0.0% 0.0812 0.7092 0.5511 0.1541 0.1313 
Random Forest3 N/A N/A N/A 0.0% 0.0279 0.6949 0.085 0.0406 0.0357  0.0% 0.0413 0.5154 0.0397 0.0228 0.0051 

 

Adenostoma fasciculatum - tested with 16,680 observations  Bromus diandrus - tested with 8,793 observations 

model LR BS epoch % seen AUCPRC AUCROC Recall F1 Top 100spp  % seen AUCPRC AUCROC Recall F1 Top 100spp 
Deepbiosphere3 1x10-4 150 5 0.0% 0.2855 0.7243 0.6472 0.3934 0.7147  0.0% 0.1338 0.637 0.5169 0.2206 0.3946 
Bioclim MLP3 1x10-5 1000 61 0.0% 0.2717 0.7083 0.8438 0.379 0.6006  0.0% 0.122 0.6693 0.9883 0.1843 0.2378 

Maxent3 N/A N/A N/A 0.0% 0.2829 0.6992 0.3058 0.3088 0.0157  0.0% 0.1331 0.6716 0.6659 0.2211 0.0 
Random Forest3 N/A N/A N/A 0.0% 0.2273 0.6332 0.2974 0.2304 0.0713  0.0% 0.1097 0.6351 0.9377 0.203 0.1189 

 

Quercus berberidifolia - tested with 5,034 observations  Arctostaphylos glandulosa - tested with 2,091 observations 

model LR BS epoch % seen AUCPRC AUCROC Recall F1 Top 100spp  % seen AUCPRC AUCROC Recall F1 Top 100spp 
Deepbiosphere3 1x10-4 150 5 0.0% 0.0936 0.7301 0.2978 0.1298 0.3871  0.0% 0.0711 0.79 0.197 0.1328 0.3644 
Bioclim MLP3 1x10-5 1000 61 0.0% 0.0674 0.6376 0.4543 0.1246 0.1774  0.0% 0.0603 0.7816 0.133 0.0761 0.1695 

Maxent3 N/A N/A N/A 0.0% 0.0671 0.6231 0.2086 0.1036 0.1371  0.0% 0.07 0.7129 0.2195 0.1587 0.0339 
Random Forest3 N/A N/A N/A 0.0% 0.0876 0.7255 0.4994 0.136 0.1935  0.0% 0.0452 0.6102 0.3046 0.0982 0.1102 

 
Table S13 | Accuracy of various SDMs on chaparral indicator species in southern California 
Five accuracy metrics for the six species from the chaparral case study using held-out dataset observations from inside the third 
spatial cross-validation block (Fig. S4B). While the accuracy varies across species, Deepbiosphere still exhibits superior 
performance on at least two metrics for all species. Climate-based SDMs performed best for B. diandrus,—a wind-dispersed 
invasive annual grass—and A. glandulosa, an chaparral endemic shrub. Deepbiosphere’s performance was likely lower on average 
for chaparral species compared to redwoods-associated species because the third spatial cross-validation block has nearly 100,000 
fewer training examples than the tenth (546,621 vs. 642,661 observations), leaving fewer observations to sufficiently extract 
patterns of chaparral species’ distributions from Deepbiosphere’s remote sensing data.The Inceptionunif SDM baseline was left out 
from this analysis as the model was trained using anywhere from 98% to 100% of all held-out test observations in this spatial band. 
The number of neighbor-imputed observations used to calculate the accuracies is denoted alongside the species name. Reported 
statistics were calculated for the epoch of evaluation determined using early stopping on AUCROC using the uniform data split. 
MLP = multilayer perceptron; ROC = receiver operating characteristic curve; AUC = area under the curve; spp = per-species.  
 
 
 
  



72 

Supplemental References 

1.  E. Cole, et al., The GeoLifeCLEF 2020 Dataset. arXiv [cs.CV] (2020). 

2.  Global Biodiversity Information Facility, GBIF Occurrence Download (2022) 
https:/doi.org/10.15468/dl.gt624q (July 30, 2022). 

3.  K. A. Uyeda, D. A. Stow, C. H. Richart, Assessment of volunteered geographic information for 
vegetation mapping. Environ. Monit. Assess. 192, 554 (2020). 

4.  S. Gaiji, et al., Content assessment of the primary biodiversity data published through GBIF 
network: Status, challenges and potentials. Biodivers. Inf. 8 (2013). 

5.  Y. L. Dupont, K. Trøjelsgaard, J. M. Olesen, Scaling down from species to individuals: a flower-
visitation network between individual honeybees and thistle plants. Oikos 120, 170–177 (2011). 

6.  M. S. Wisz, et al., The role of biotic interactions in shaping distributions and realised assemblages of 
species: implications for species distribution modelling. Biol. Rev. Camb. Philos. Soc. 88, 15–30 
(2013). 

7.  R. G. Pearson, T. P. Dawson, Predicting the impacts of climate change on the distribution of species: 
are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003). 

8.  Earth Resources Observation and Science (EROS) Center, National Agriculture Imagery Program 
(NAIP) (2012) https:/doi.org/10.5066/F7QN651G (2022). 

9.  A. E. Maxwell, T. A. Warner, B. C. Vanderbilt, C. A. Ramezan, Land cover classification and 
feature extraction from national agriculture imagery program (NAIP) orthoimagery: A review. 
Photogramm. Eng. Remote Sensing 83, 737–747 (2017). 

10.  Y. Zhang, et al., Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the 
Jianghan Plain in Hubei Province, China. Remote Sensing 11, 1683 (2019). 

11.  S. E. Fick, R. J. Hijmans, WorldClim 2: new 1‐km spatial resolution climate surfaces for global land 
areas. Int. J. Climatol. 37, 4302–4315 (2017). 

12.  A. Cotrina Sánchez, et al., Biogeographic Distribution of Cedrela spp. Genus in Peru Using MaxEnt 
Modeling: A Conservation and Restoration Approach. Diversity  13, 261 (2021). 

13.  L. Poggio, E. Simonetti, A. Gimona, Enhancing the WorldClim data set for national and regional 
applications. Sci. Total Environ. 625, 1628–1643 (2018). 

14.  R. Benestad, Downscaling climate information. Oxford research encyclopedia of climate science 
https:/doi.org/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-27. 

15.  M. R. Trivedi, P. M. Berry, M. D. Morecroft, T. P. Dawson, Spatial scale affects bioclimate model 
projections of climate change impacts on mountain plants. Glob. Chang. Biol. 14, 1089–1103 (2008). 

16.  B. J. Enquist, et al., The commonness of rarity: Global and future distribution of rarity across land 
plants. Sci Adv 5, eaaz0414 (2019). 

17.  N. Japkowicz, S. Stephen, The class imbalance problem: A systematic study1. Intell. Data Anal. 6, 
429–449 (2002). 

http://dx.doi.org/10.15468/dl.gt624q
http://dx.doi.org/10.5066/F7QN651G
http://dx.doi.org/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-27


73 

18.  M. Zhu, et al., Class Weights Random Forest Algorithm for Processing Class Imbalanced Medical 
Data. IEEE Access 6, 4641–4652 (2018). 

19.  P. Chu, X. Bian, S. Liu, H. Ling, Feature Space Augmentation for Long-Tailed Data. arXiv [cs.CV] 
(2020). 

20.  A. T. Taylor, T. Hafen, C. T. Holley, A. González, J. M. Long, Spatial sampling bias and model 
complexity in stream-based species distribution models: A case study of Paddlefish (Polyodon 
spathula) in the Arkansas River basin, USA. Ecol. Evol. 10, 705–717 (2020). 

21.  E. A. Freeman, G. G. Moisen, A comparison of the performance of threshold criteria for binary 
classification in terms of predicted prevalence and kappa. Ecol. Modell. 217, 48–58 (2008). 

22.  C. R. Lawson, J. A. Hodgson, R. J. Wilson, S. A. Richards, Prevalence, thresholds and the 
performance of presence-absence models. Methods Ecol. Evol. 5, 54–64 (2014). 

23.  F. Pedregosa, et al., “ Scikit-learn: Machine Learning in Python,” Journal of Machine Learning 
Research, vol. 12, p (2011). 

24.  A. Kubany, et al., Comparison of state-of-the-art deep learning APIs for image multi-label 
classification using semantic metrics. Expert Syst. Appl. 161, 113656 (2020). 

25.  A. Jiménez-Valverde, J. M. Lobo, Threshold criteria for conversion of probability of species 
presence to either–or presence–absence. Acta Oecol. 31, 361–369 (2007). 

26.  C. F. Dormann, et al., Correlation and process in species distribution models: bridging a dichotomy. 
J. Biogeogr. 39, 2119–2131 (2012). 

27.  H. Hamilton, et al., Increasing taxonomic diversity and spatial resolution clarifies opportunities for 
protecting US imperiled species. Ecol. Appl. 32, e2534 (2022). 

28.  M. W. Tobler, et al., Joint species distribution models with species correlations and imperfect 
detection. Ecology 100, e02754 (2019). 

29.  J. Roughgarden, The Fundamental and Realized Niche of a Solitary Population. Am. Nat. 108, 232–
235 (1974). 

30.  W. Godsoe, J. Jankowski, R. D. Holt, D. Gravel, Integrating Biogeography with Contemporary 
Niche Theory. Trends Ecol. Evol. 32, 488–499 (2017). 

31.  K. C. Rosenblad, D. L. Perret, D. F. Sax, Niche syndromes reveal climate-driven extinction threat to 
island endemic conifers. Nat. Clim. Chang. 9, 627–631 (2019). 

32.  E. A. Beever, et al., Improving Conservation Outcomes with a New Paradigm for Understanding 
Species’ Fundamental and Realized Adaptive Capacity. Conserv. Lett. 9, 131–137 (2016). 

33.  B. G. Baldwin, et al., Species richness and endemism in the native flora of California. Am. J. Bot. 
104, 487–501 (2017). 

34.  Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document 
recognition. Proc. IEEE 86, 2278–2324 (1998). 

35.  A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural 



74 

networks. Commun. ACM 60, 84–90 (2017). 

36.  O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image 
Segmentation in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 
(Springer International Publishing, 2015), pp. 234–241. 

37.  N. Jean, et al., Combining satellite imagery and machine learning to predict poverty. Science 353, 
790–794 (2016). 

38.  T. Ridnik, et al., TResNet: High Performance GPU-Dedicated Architecture. arXiv [cs.CV] (2020). 

39.  T. Ridnik, et al., TResNet: High Performance GPU-Dedicated Architecture in 2021 IEEE Winter 
Conference on Applications of Computer Vision (WACV), (IEEE, 2021), pp. 1400–1409. 

40.  M. Seeland, M. Rzanny, D. Boho, J. Wäldchen, P. Mäder, Image-based classification of plant genus 
and family for trained and untrained plant species. BMC Bioinformatics 20, 1–13 (2019). 

41.  E. Cole, et al., Spatial Implicit Neural Representations for Global-Scale Species Mapping in 
International Conference on Machine Learning, (2023). 

42.  B. Deneu, M. Servajean, P. Bonnet, F. Munoz, A. Joly, Participation of LIRMM/Inria to the 
GeoLifeCLEF 2020 challenge (2020). 

43.  E. Ben-Baruch, et al., Asymmetric Loss For Multi-Label Classification. arXiv [cs.CV] (2020). 

44.  C. Botella, A. Joly, P. Monestiez, P. Bonnet, F. Munoz, Bias in presence-only niche models related 
to sampling effort and species niches: Lessons for background point selection. PLoS One 15, 
e0232078 (2020). 

45.  B. Deneu, et al., Convolutional neural networks improve species distribution modelling by capturing 
the spatial structure of the environment. PLoS Comput. Biol. 17, e1008856 (2021). 

46.  B. Deneu, M. Servajean, P. Bonnet, F. Munoz, A. Joly, Participation of LIRMM / Inria to the 
GeoLifeCLEF 2020 challenge (2020) (February 22, 2022). 

47.  A. Norberg, et al., A comprehensive evaluation of predictive performance of 33 species distribution 
models at species and community levels. Ecol. Monogr. 89, e01370 (2019). 

48.  R. J. Hijmans, S. Phillips, J. Leathwick, J. Elith, dismo: Species distribution modeling. R package 
version 1, 1–1 (2017). 

49.  R. Valavi, G. Guillera‐Arroita, J. J. Lahoz‐Monfort, J. Elith, Predictive performance of presence‐only 
species distribution models: a benchmark study with reproducible code. Ecological Monographs 92 
(2022). 

50.  C. J. Battey, P. L. Ralph, A. D. Kern, Predicting geographic location from genetic variation with 
deep neural networks. Elife 9 (2020). 

51.  K. A. Stumpf, Cogan Technology, and Kier Associates, “Vegetation mapping and classification 
project: Redwood National and State Parks, California” (National Park Service, 2017). 

52.  C. R. Keyes, E. K. Teraoka, Structure and Composition of Old-Growth and Unmanaged Second-
Growth Riparian Forests at Redwood National Park, USA. For. Trees Livelihoods 5, 256–268 



75 

(2014). 

53.  U.S. Forest Service, Existing Vegetation: Region 5 -Zone 7, South Coast (2018) 
https:/doi.org/https://data.fs.usda.gov/geodata/edw/datasets.php (2023). 

54.  M. Slaton, “South Coast and Montane Ecological Province CALVEG Zone 7 Vegetation 
Description” (USDA Forest Service, Pacific Southwest, 2009) (March 13, 2023). 

55.  A. Siefert, C. Ravenscroft, M. D. Weiser, N. G. Swenson, Functional beta-diversity patterns reveal 
deterministic community assembly processes in eastern North American trees. Glob. Ecol. Biogeogr. 
22, 682–691 (2013). 

56.  M. Večeřa, et al., Alpha diversity of vascular plants in European forests. J. Biogeogr. 46, 1919–1935 
(2019). 

57.  Golden Gate National Parks Conservancy, Tamalpais Lands Collaborative (One Tam), Aerial 
Information Systems, Tukman Geospatial LLC, Marin County Fine Scale Vegetation Map (2021) 
(August 15, 2022). 

58.  K. Jordahl, GeoPandas: Python tools for geographic data. URL: https://github. 
com/geopandas/geopandas. 

59.  F. Osorio, R. Vallejos, F. Cuevas, SpatialPack: Package for analysis of spatial data. R package 
version 0.2–3. 

60.  E. N. Stavros, et al., Unprecedented remote sensing data over King and Rim megafires in the Sierra 
Nevada Mountains of California. Ecology 97, 3244 (2016). 

61.  J. E. Keeley, Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. 
Wildland Fire 18, 116–126 (2009). 

62.  P. Dutilleul, P. Clifford, S. Richardson, D. Hemon, Modifying the t Test for Assessing the 
Correlation Between Two Spatial Processes. Biometrics 49, 305–314 (1993). 

63.  T. Yep, torchinfo (2022) (April 17, 2023). 

64. Calflora: Information on California plants for education, research and conservation. [web application]. 
2024. Berkeley, California: The Calflora Database [a non-profit organization]. Available: 
https://www.calflora.org/ (Accessed: Mar 14, 2024). 

65. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. 
U.S. General Soil Map (STATSGO2). Available online. Accessed (March/10/2024). 

66. H. Safford, J. Miller. An updated database of serpentine endemism in the California flora. Madroño 
(January 10, 2020). 

 

http://dx.doi.org/https://data.fs.usda.gov/geodata/edw/datasets.php

