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SI-1. Moran’s I 

To quantify the spatial coherence of PPs, we used Moran’s I statistic (1). It was originally used in 
geostatistics and has more recently been used in spatial gene expression literature (2). Moran’s I 
ranges in value from -1 to 1. A value close to -1 indicates little spatial organization, similar to a 
chess board with black and white squares distributed across the board. A value close to 1 
indicates a clear spatially distinct pattern, such as if all the black squares in a chess board were 
on one side and all white squares on the other. We calculated Moran’s I as follows (2): 
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Here, xi and xj represent the PP coefficient at voxel locations i and j, respectively. 𝑥 is the mean 
gene expression level of each PP. N is the total number of voxel locations, wij is the spatial 
adjacency relationship (based on the adjacency matrix, w) between voxels i and j. W is the sum 
of all entries in w, which represents the cumulative total adjacencies. We mask the dataset to only 
include the brain region. Then, for each voxel, we select up to 6 voxels for determining adjacency 
(up, down, left, right, forward, background, where available), following the “rook” definition of 
neighborhood. We assign wij=1 if voxel j is adjacent to 𝑖, and wij=0 otherwise. Given the large size 
of the adjacency matrix (159,326 x 159,326), we downsampled the PPs by removing every other 
row in each of the three dimensions to improve computational efficiency. Given certain voxels had 
multiple PPs with small but non-zero coefficients, we assigned each voxel in the brain map to the 
PP with the highest coefficient for that voxel. This ensures that unique voxels are not represented 
by multiple PPs. 

 

SI-2. 3D visualizations of PPs 

The 3D gene visualizations were performed using Napari viewer, a multi-dimensional image 
viewer for Python (3). Key settings in Napari for PPs included: opacity=1, gamma=1, 
blending='additive', depiction='volume', and rendering=’attenuated MIP’. MIP stands for maximum 
intensity projection, which enhances the 3D representation of objects. We moved the slide bar to 
20% from the left side for ‘attenuated MIP.’  
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SI-3. Algorithm 1: Spatial neighborhood query (pairwise in 3D) 
 

Algorithm 1 Spatial neighborhood query (pairwise in 3D) 
 

1:    function  PairwiseNeighbors (atlas) 
2: # Calculate the number of brain regions 
3: n = Unique (atlas) 
4: adjacency_list = [] 
5: all pairs = Combinations (Range (1,n)) 
6: # Check the overlap between each pair 
7: for (i, j) in all pairs do 
8: # Mask normalization (by the index i or j), then dilate the brain regions 
9: DB_i = BinaryDilate (B_i / i) 
10: DB_j = BinaryDilate (B_j / j) 
11: # Test of spatial contiguity 
12: if Sum (DB_i == DB_j) > 0) then 
13: # The ith and jth regions are neighbors (their dilated versions 
14: have non-vanishing overlap) 
15: Append (adjacency_list, (i, j)) 
16: return adjacency_list 
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SI-4. Supporting Figures 

 

Figure S1: Stability analysis with Amari-type error function. Instability score of staNMF PPs 
and PCA PPs across 100 runs for each 𝐾 value, from 8 to 30 for ABA dataset. The error bars are 
the standard deviation. This figure uses Amari-type error (4), while Fig. 1B uses the Hungarian 
matching method (5). Both approaches identify 𝐾 = 11 for the minimum instability score (and thus 
most stability) for staNMF PPs. 

 

 

 

Figure S2: Moran’s I per PP from staNMF and PCA. The plot uses data from 20 bootstrap 
simulations for each PP, for a total of 220 simulations for staNMF PPs and 220 simulations for 
PCA PPs. The mean Moran’s I was 0.58 ± 0.12 for staNMF and 0.47 ± 0.15 for PCA. The p-value 
between the two samples was <0.001. The PPs from staNMF show greater spatial coherence, or 
higher Moran’s I (1), than those from PCA for all but one case (PP8). 
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Figure S3: Similarity of PCA PPs to the expert-annotated brain regions. A. 11 PPs 
generated by PCA, ordered based on highest coarse region correlation to the CCFv3 ontology (6) 
in 3D and projected on the coronal plane. B. Heat map of the correlation coefficient between PCA 
PPs and the most similar combination of CCF regions (with the highest correlation coefficient).  
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Figure S4: Metrics for region-level comparison between staNMF PPs and the CCF. The PPs 
from staNMF and CCF regions (6) are compared using the Dice similarity (top) and the Pearson 
correlation (bottom) visualized as the size of the filled circle. The PPs and CCF regions are 
arranged the same way as in Fig. 2 and Fig. S5. 

 

Figure S5: Summary of staNMF PPs linked to the best-fit combination of Allen CCF 
regions. The 10 PPs from main text Fig. 3 mapped to their best-fit combinations of CCF regions 

(6).  
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Figure S6: Putative spatial gene co-expression network construction, continued. Extension 
of Fig. 6 of the main text, the sGCNs from PPs 8-11 and their associated brain regions from the 
CCFv3 (6) are shown. The node color presents the selectivity of the gene to the PP associated 
with the brain region. An edge is drawn between genes if the similarity score is among the top 5% 
of all similarity scores for that gene subset. The edge color is proportional to the Pearson 
correlation of the reconstructed gene expression images of the two co-expressed genes.  
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Table S1: Region-specific marker genes from ISH and scRNA-seq data. Comparison of the 
PP-level (from ISH data) (7) and cell type-specific (from scRNA-seq data) (8) marker genes in the 

same spatial region of the adult mouse brain. The cell types subclass labels are from the 
Common Cell Type Nomenclature (CCN) (9). 

PP index Subclass of cell type in CCN Marker gene 
1 005 L5 IT CTX Glut Arhgap25 
1 034 NP PPP Glut Rxfp1 
1 274 PDTg Otp Shroom3 Gaba Rxfp1 
2 103 PVHd-DMH Lhx6 Gaba Glra1 
2 156 MB-ant-ve Dmrta2 Glut Glra1 
2 243 PGRN-PARN-MDRN Hoxb5 Glut Sncg 
2 261 HB Calcb Chol Calcb 
3 062 STR D2 Gaba Adora2a 
3 292 MV Nkx6-1 Gly-Gaba Serpina9 
4 072 LSX Sall3 Lmo1 Gaba Ptprm 
4 313 CBX Purkinje Gaba Pcp2 
4 314 CB Granule Glut Gabra6 
5 077 CEA-BST Gal Avp Gaba Avp 
5 107 DMH Hmx2 Gaba Dlk1 
5 108 ARH-PVp Tbx3 Gaba Dlk1 
5 222 PB Evx2 Glut Gabrq 
5 226 PRNc-PARN Tlx1 Glut Dlk1 
5 296 RPA Pax6 Hoxb5 Gly-Gaba Dlk1 
6 007 L2/3 IT CTX Glut Stard8 
6 009 L2/3 IT PIR-ENTl Glut Igfn1 
6 122 LHA-MEA Otp Glut Lhx2 
6 219 PB-SUT Tlx3 Lhx2 Glut Lhx2 
6 319 Astro-TE NN Lhx2 
8 016 CA1-ProS Glut Spink8 
8 037 DG Glut Prox1 
8 097 PVHd-SBPV Six3 Prox1 Gaba Prox1 
8 102 DMH-LHA Gsx1 Gaba Prox1 
8 147 AD Serpinb7 Glut C1ql2 
8 163 APN C1ql2 Glut C1ql2 
9 011 L2 IT ENT-po Glut Lef1 
9 107 DMH Hmx2 Gaba Lef1 
9 125 DMH Hmx2 Glut Lef1 
9 130 LHA Pmch Glut Pmch 
9 152 RE-Xi Nox4 Glut Rgs16 
9 187 SCsg Pde5a Glut Lef1 
9 205 SC-PAG Lef1 Emx2 Gaba Lef1 
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9 206 SCm-PAG Cdh23 Gaba Lef1 
9 208 SC Lef1 Otx2 Gaba Lef1 
10 035 OB Eomes Ms4a15 Glut Eomes 
10 045 OB-STR-CTX Inh IMN Dlx1 
10 098 AHN-SBPV-PVHd Pdrm12 Gaba Dlx1 
10 105 TMd-DMH Foxd2 Gaba Dlx1 
10 107 DMH Hmx2 Gaba Dlx1 
10 260 MDRNv Crp Glut Sp8 
10 289 MDRNd Prox1 Pax6 Gly-Gaba Sp8 
11 137 PH-an Pitx2 Glut Pax7 
11 192 PPN-CUN-PCG Otp En1 Gaba Pax7 
11 204 SC Otx2 Gcnt4 Gaba Pax7 
11 205 SC-PAG Lef1 Emx2 Gaba Pax7 
11 208 SC Lef1 Otx2 Gaba Pax7 
11 209 SCs Pax7 Nfia Gaba Pax7 
11 212 SCs Lef1 Gli3 Gaba Pax7 
11 277 DTN-LDT-IPN Otp Pax3 Gaba Pax7 
11 280 NLL-po Pax7 Gaba Pax7 
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