
1 
 

Supplemental file for “A high-dimensional omnibus test for set-based 

association analysis” 

Haitao Yang1,2,3, Xin Wang1, Zechen Zhang1,2, Fuzhao Chen1, Hongyan Cao4, Lina Yan1,2, Xia 

Gao1,2, Hui Dong5, and Yuehua Cui6* 

1Division of Health Statistics, School of Public Health, Hebei Medical University, 

Shijiazhuang, PR China  
2Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 

050017, P.R. China 
3Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, P.R. 

China 
4Division of Mathematics and Health Statistics, Shanxi Medical University, Taiyuan, PR 

China. 
5Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 

P.R. China 
6Department of Statistics and Probability, Michigan State University, East Lansing, MI, 

USA 

*Corresponding author: cuiy@msu.edu 
 

This supplemental file includes details about the method (Section I) along with additional 
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Section I 

A brief summary of the p-value combination methods 

Fisher’s product test may lose power when there are correlated or large p-values. Zaykin et al. 

(2002) developed the TPM method, which combines p-values from all tests whose significance 

exceeds some specified threshold τ, commonly set as 0.05 (Zaykin et al. 2002), thus provides more 

power. However, choosing an appropriate threshold for the TPM is challenging due to its 

sensitivity to sample size and the number of tests. As a complementary method to TPM, RTP is 

calculated as the product of the k most significant p-values from all L hypothesis tests and is 

suitable for detecting a small set of fixed effects among many nulls. This makes RTP particularly 

useful for genome-wide association scans, as it often has greater power than the TPM by focusing 

on the combined evidence from a fixed-size subset of hypotheses. Additionally, RTP is suitable for 

detecting the combined weak effects of minor loci (Dudbridge et al. 2003); but analytic expressions 

for combined top p-values is usually cumbersome, which makes interpretation and practical 

implementation complicated and limits its further development. The ART method retains main 

characteristics of the RTP and is at least as powerful as RTP. ART is substantially simpler to 

implement than RTP, but requires to choose k beforehand. ART-A is the adaptive version of ART, 

which searches through a number of candidate values of truncation points and finds an optimal 

number in terms of combined p-value (Vsevolozhskaya et al., 2019). However, the number of 

candidate values also needs to be prespecified. Our simulation found that different numbers of 
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candidate values of truncation points have substantial effect on type I error and power. All these 

motivate us to propose an improved version of ART-A, termed iART-A, by using the Cauchy 

combination test (Liu and Xie, 2019). 

A brief review of the omnibus test application 

Barnett et al. (2017) proposed an omnibus test that integrates the MinP, SKAT, and generalized 

higher criticism (GHC) methods, each of which works well under certain disease assumptions. By 

aggregating the three testing results, the omnibus test gives robust results without knowing the true 

gene action mode. Similar omnibus tests have also been proposed by Liu and Lin (2019) and Cai 

et al. (2012). Note that these candidate tests are correlated as they are calculated using the same 

data, making the p-values correlated. Thus, calculating the p-value of an omnibus test statistic must 

take the correlations into account (Liu and Lin, 2019). Obtaining the exact or asymptotic 

distribution of an omnibus test statistic is difficult in practice, so permutation or bootstrap methods 

are typically used to simulate the null distribution from which an empirical p-value can be obtained. 

However, obtaining the correlation matrix of candidate test statistics under the null distribution 

can be challenging, and resampling methods can be time-consuming. To overcome these 

challenges, Liu and Xie (2019) proposed a powerful p-value combination test, termed Cauchy 

combination test, which works well under any arbitrary dependency structures. The method was 

later applied to combine p-values in rare-variant analysis in sequencing studies and was termed as 

ACAT (Liu et al. 2019). 

A brief introduction of the HOLP procedure 

Here we briefly introduce the HOLP procedure (Wang and Leng, 2016). Let 𝑌𝑖  be a disease 

response and 𝑋𝑖  be a p dimension vector of SNP variables for individual 𝑖(𝑖 = 1,⋯ , 𝑛) . For a 

regression model 𝑌=𝑋𝛽 + 𝜖 , one can compute the regression coefficient estimates by 𝛽̂ = 𝐴𝑌. 

This gives 𝛽̂ = 𝐴𝑌 = 𝐴(𝑋𝛽 + 𝜖) = (𝐴𝑋)𝛽 + 𝐴𝜖, where 𝑋 is an n × p SNP matrix. It is clear that 

𝛽̂  can be decomposed into two parts, the signal part (𝐴𝑋)𝛽  and the noise part 𝐴𝜖 . In order to 

preserve the rank order of 𝛽, one would like to have 𝐴𝑋 = 𝐼 or 𝐴𝑋 ≈ 𝐼, where 𝐼 is the identity 

matrix. To find A, an intuitive way is to find some inverse of X. For the 𝑝 < 𝑛  case, 𝐴 =

(𝑋𝑇𝑋)−1𝑋𝑇 gives the OLS estimator. For the 𝑝 > 𝑛 case, the Moore-Penrose inverse of X gives 

𝐴 = 𝑋𝑇(𝑋𝑋𝑇)−1 which is unique to high-dimensional data. This leads to the high-dimensional 

OLS projection (HOLP) estimator as 𝛽̂ = 𝑋𝑇(𝑋𝑋𝑇)−1𝑌. Write,  

𝛽̂ = 𝑋𝑇(𝑋𝑋𝑇)−1𝑌=𝑋𝑇(𝑋𝑋𝑇)−1𝑋𝛽 + 𝑋𝑇(𝑋𝑋𝑇)−1𝜖,   (1) 

where 𝑋𝑇(𝑋𝑋𝑇)−1𝑋𝛽 can be seen as a projection of 𝛽 in which HOLP projects 𝛽 onto the row 

space of X (in contrast, OLS projects 𝛽 onto the column space of X). Although 𝐴𝑋 is not an identity 

matrix (for OLS estimate, 𝐴𝑋 = (𝑋𝑇𝑋)−1𝑋𝑇𝑋 = 𝐼 ),  𝐴𝑋  is diagonally dominant. Thus,  𝛽̂𝑖(𝑖 ∈

𝑆,where 𝑆 = {𝑗: 𝛽𝑗 ≠ 0, 𝑗 = 1, … , 𝑝})  can take advantage of the large diagonal terms of 𝐴𝑋  to 

dominate those zero 𝛽̂𝑖
′𝑠(𝑖 ∉ 𝑆). Therefore, HOLP gives a diagonally dominant projection matrix, 

such that the product of this matrix and 𝛽 would be more likely to preserve the rank order of the 

entries in β. Moreover, 𝑋𝑋𝑇is of full rank for 𝑝 > 𝑛. Thus, HOLP estimator is unique to high-

dimensional data from this viewpoint. 
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A brief introduction of the de-sparsified LASSO procedure 
In a low-dimensional case (i.e., 𝑑 ≪ 𝑛), the jth ordinary least square estimator 𝛽̂j can be obtained 

from the projection of Y onto the residuals 𝑍𝑗 = 𝑋𝑗 − 𝑋−𝑗𝛾𝑂𝐿𝑆
(𝑗)

, where 𝛾𝑂𝐿𝑆
(𝑗)

 is the coefficients of 

𝑋−𝑗 by regression 𝑋𝑗 on the rest of the 𝑋 variables, 𝑋−𝑗. Multiplying 𝑍𝑗
𝑇 on both sides of equation 

(1) shown in the main context, we get 

𝑍𝑗
𝑇𝑌 = 𝑍𝑗

𝑇𝑋𝑗𝛽𝑗
0 + ∑ 𝑍𝑗

𝑇𝑋𝑘𝛽𝑘
0

𝑘≠𝑗 + 𝑍𝑗
𝑇𝜖.                                       (2) 

where 𝛽𝑗
0 refers to the true parameter. Dividing by 𝑍𝑗

𝑇𝑋𝑗 in both sides of equation (2), we get, 

𝑍𝑗
𝑇𝑌

𝑍𝑗
𝑇𝑋𝑗

= 𝛽𝑗
0 + ∑

𝑍𝑗
𝑇𝑋𝑘

𝑍𝑗
𝑇𝑋𝑗
𝛽𝑘
0

𝑘≠𝑗 +
𝑍𝑗
𝑇𝜖

𝑍𝑗
𝑇𝑋𝑗
,                                                (3) 

𝛽̂𝑗
0 =

𝑍𝑗
𝑇𝒀

𝑍𝑗
𝑇𝑋𝑗
− ∑

𝑍𝑗
𝑇𝑋𝑘

𝑍𝑗
𝑇𝑋𝑗
𝛽𝑘
0

𝑘≠𝑗 .                                                         (4) 

In equation (4), the estimator 𝛽̂𝑗
0 is called the low dimensional projection estimator (LDPE) 

(Zhang and Zhang, 2014). In a low-dimensional case, the residual 𝑍𝑗 is obtained from the OLS 

estimator, thus ∑
𝑍𝑗
𝑇𝑋𝑘

𝑍𝑗
𝑇𝑋𝑗

𝑘≠𝑗 = 0 due to orthogonality, hence the estimator 𝛽𝑗
0 has the form, 

𝛽̂𝑗 =
𝑍𝑗
𝑇𝑌

𝑍𝑗
𝑇𝑋𝑗
                                                                          (5) 

In equation (5), 𝑍𝑗
𝑇𝑌 and 𝑍𝑗

𝑇𝑋𝑗 are the projection of Y and Xj onto Zj, respectively. Thus, 𝛽̂𝑗 is 

the regression coefficient (partial effect) of Xj after eliminating the effects of 𝑋−𝑗. 

In a high-dimensional situation (i.e., 𝑑 > 𝑛 ), we can use the LASSO residuals (𝑋𝑗 −

𝑋−𝑗𝛾𝐿𝐴𝑆𝑆𝑂
(𝑗)

 ) as 𝑍𝑗 . When using the LASSO residuals, we do not have exact orthogonality and 

∑
𝑍𝑗
𝑇𝑋𝑘

𝑍𝑗
𝑇𝑋𝑗

𝑘≠𝑗 ≠ 0, hence a bias arises. Thus 𝛽̂𝑗 needs a bias correction by plugging in the LASSO 

estimator 𝛽̂𝐿𝐴𝑆𝑆𝑂. This gives the de-sparsified LASSO estimator as,  

𝛽̂𝑗 =
𝑍𝑗
𝑇𝒀

𝑍𝑗
𝑇𝑋𝑗
− ∑

𝑍𝑗
𝑇𝑋𝑘

𝑍𝑗
𝑇𝑋𝑗
𝛽̂𝐿𝐴𝑆𝑆𝑂,𝑘𝑘≠𝑗                                               (6) 

Subtracting equation (6) from equation (3) and multiplying √n on both sides, we can get, 

√𝑛(𝛽̂𝑗 − 𝛽𝑗
0) =

𝑛−1/2𝜖𝑇𝑍𝑗

𝑛−1/2𝑋𝑇𝑍𝑗
 + ∑ √𝑛

𝑍𝑗
𝑇𝑋𝑘

𝑍𝑗
𝑇𝑋𝑗

𝑘≠𝑗  (𝛽𝑘
0 − 𝛽̂𝐿𝐴𝑆𝑆𝑂,𝑘)                           (7) 

In equation (7), the first term on the right-hand side follows a Gaussian distribution and the 

second item is negligible (Dezeure et al. 2015). Asymptotic normality was established (Zhang and 

Zhang, 2014; Van de Geer et al. 2014) as,  

√𝑛(𝛽̂𝑗−𝛽𝑗
0)

𝜎𝜖√Ω𝑗𝑗
→N(0,1) as 𝑑 ≥ 𝑛 → ∞,                                                     (8) 

where Ω𝑗𝑗 =
𝑛𝑍𝑗

𝑇𝑍𝑗

(𝑋𝑗
𝑇𝑍𝑗)(𝑋𝑗

𝑇𝑍𝑗)
 , which is exploited in order to address the potential loss of power from 

avoiding conservative adjustment due to the dependence between the variables (Bühlmann et al., 

2014), and Ω𝑗𝑗 can be computed from the data. From (8), we can easily conduct hypothesis testing 

by plugging in an estimator σϵ which can be obtained based on the scaled LASSO (Van de Geer et 

al. 2014). In short, the aforementioned de-sparsifying LASSO estimator is based on regular 
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LASSO, and yields a non-sparse estimator which follows a Gaussian distribution. The asymptotic 

normality distribution allows us to assess the significance of each coefficient 𝛽𝑗, and compute p-

values for testing the null, i.e., 𝐻0: 𝛽𝑗 = 0 in a high-dimensional regression setup(Javanmard and 

Montanari, 2014). 
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Section II 

Simulation studies 

We followed the ADEMP scheme (Morris et al. 2019) for the simulation scenarios. The following 

three steps are common to all scenarios, 

(1) Target of analysis: testing the null hypothesis that the given group or gene is not associated 

with the phenotype, and assessing the power of testing under the alternative that a gene or 

a group is associated with a disease outcome. 

(2) Method implemented: the proposed high-dimensional statistical inference framework. 

(3) Performance measures: type I error and power of the given group or gene in different 

scenarios, such as different sample sizes, different within-group correlations, different 
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numbers of predictors in a group, and different disease models (CWSM and DSSM).  

Case I: simulation for the small-scale discrete predictors 

Data-generating mechanisms 

In this simulation, we evaluated the performance of statistical inference for groups consisting of 

discrete predictors (e.g., SNP genotypes). To borrow the linkage disequilibrium (LD) information 

from real data, real SNP genotype data from Alzheimer's disease was used to assess the inference 

performance of the methods at the gene level. The original genotype data was obtained from the 

ADNI project for the Alzheimer's Disease Neuroimaging Initiative1 and can be accessed through 

their website https://adni.loni.usc.edu/.  

In the ADNI data, SNP genotypes are coded as 0, 1, or 2 based on minor allele frequency. In 

this simulation study, we selected SNP data from two genes, CAMTA1 and CSMD1, which have 

similar sizes to those in the previous simulation. CAMTA1 has 168 SNPs, and CSMD1 contains 

823 SNPs. CAMTA1 is located from 6785454 to 7769706 on chromosome 1, while CSMD1 is 

located from 2935353 to 4994972 on chromosome 8. We obtained a population of 1,511 

individuals with genotype data for both CAMTA1 and CSMD1 (human genome assembly- 

GRCh37). We then randomly sampled 𝑛 = 600  and 800 individuals out of the 1,511 samples 

without replacement to form the simulation sample. The empirical type I error rate was calculated 

using the model Y=μ+𝜀, where 𝜀~𝑁(0,1). The powers of CAMTA1 and CSMD1 were calculated 

from the model 𝑌 = 𝜇 + 𝑿𝑔𝜷𝑔+𝜀. The details of the two scenarios, CWSM and DSSM, are as 

follows:  

(a) In CWSM, we set 𝜷CAMTA1 = (𝑐,… , 𝑐⏟  
15

, 0, … ,0⏟  
153

)  and 𝜷CSMD1 = (𝑐,… , 𝑐⏟  
50

, 0, … ,0⏟  
773

) , where 

c=(0.1, 0.15, 0.20).  

(b) In DSSM, we set 𝜷CAMTA1 = (c, 0, … ,0⏟  
167

) and 𝜷CSMD1 = (c, 0, … ,0⏟  
822

), where c=(0.5, 0.6, 0.7).  

We set the number of variables selected in the HOLP procedure as 𝑑 =
𝑛/2

log(𝑛/2)
.  

Case II: simulation with the large-scale genome-wide SNP data 

Data-generating mechanisms 

In this simulation, we evaluated the performance of statistical inference for groups consisting of 

discrete predictors (e.g., SNP genotypes) on a genome-wide scale. To borrow the LD information 

from real data, real SNP genotype data from Alzheimer's disease were used to assess the inference 

performance of the methods at the gene level. The original genotype data were obtained from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) study and can be accessed through their 

website https://adni.loni.usc.edu/.  

 
1Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation 

of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of 

ADNI investigators can be found at:  
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
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In the ADNI data, SNP genotypes are coded as 0, 1, or 2 based on minor allele frequency. In 

this simulation study, we selected a total of 17,477 genes which include 196,998 SNPs. We focused 

on evaluating the power of two genes, namely SGCZ and CSMD1. Gene SGCZ has 254 SNPs, and 

CSMD1 contains 895 SNPs, both are located on chromosome 8. Similar to what we did before 

with only two genes, we randomly sampled n=600 individuals without replacement to form the 

simulation sample. The empirical power of CSMD1 and SGCZ was calculated using the model,  

𝑌 = 𝑋𝐶𝑆𝑀𝐷1𝜷𝐶𝑆𝑀𝐷1 + 𝑋𝑆𝐺𝐶𝑍𝜷𝑆𝐺𝐶𝑍 + 𝑋𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠𝜷𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝜖, 

controlling for covariates, where 𝜷CSMD1 = (c1, 0, … ,0⏟  
894

) assuming a DSSM model and 𝜷𝑆𝐺𝐶𝑍 =

(c2, … , c2⏟    
15

, 0, … ,0⏟  
239

)  assuming a CWSM model and 𝜷𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 = (c3, c4, c5, c6)  and 𝜖~𝑁(0,1). 

we set c1 = (0.7,1.0,1.5), c2 = (0.2,0.3,0.5) and we selected four covariates including age (c3), 

gender(c4), education(c5), and APOE4(c6) (c3 = c4 = c5 = c6 = 0.1). The remaining genes serve 

as null genes (i.e., no association with the response). All the 17,477 genes were then subjected to 

genomewide testing.  

We set the number of variables selected in the HOLP procedure as 𝑑 = 𝑛/2. We conducted 

500 replications and the power is calculated based on the FDR-corrected p-values after HOLP 

screening. The power for SKAT was based on the FDR-corrected p-value of all 17,477 genes since 

no screening was applied. For SKAT, we used two kernel functions, namely the linear and the IBS 

kernel. We used the default parameter settings in the SKAT function as follows,  

▪ kernel="linear.weighted" 

▪ method="davies" 

▪ weights.beta=c(1,25) 

▪ weights=NULL 

▪ impute.method="fixed" 

▪ r.corr=0 

▪ is_check_genotype=TRUE 

▪ is dosage = FALSE 

▪ missing cutoff=0.15 

▪ max maf=1 

▪ estimate MAF=1 

Case Ⅲ: simulation with quantitative predictors  

Data-generating mechanisms 

Data were generated from a linear mode, i.e., 𝑌 = 𝑋𝛽 + 𝜖 , where 𝑋 = (XG1, XG2)  represent 

predictors in two groups (G1 with 100 predictors and G2 with 700 predictors), and each follows a 

multivariate normal distribution with mean 0 and covariance Σ=(σij) with σij=ρ|i-j|. 𝜖~N (0, 1). In 

each group, there are signals and noises. Let β
G
= (c,…,c,0,…,0) be the effect coefficient vector in 

group G, and c represents the non-zero coefficient.  
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In Scenario 1, we assume the CWSM model and let 𝑐 = 0.1, i.e. βG1=(0.1,…,0.1⏟      
15

, 0,…,0⏟  
85

) and 

βG2=(0.1,…,0.1⏟      
50

, 0,…,0⏟  
650

). In Scenario 2, we assume the DSSM model and further assume only one 

dominated signal (𝑐 = 0.25) in both G1 and G2, that is βG1=(0.25⏟
1

, 0,…,0⏟  
99

) and βG2=(0.25⏟
1

, 0,…,0⏟  
699

) . 

In all the scenarios, we varied the sample size from n=600 to 800 and the correlations within the 

predictors (ρ=0.3, 0.6 and 0.9). In addition, the number of variables to keep after screening via 

HOLP was set as 𝑑 =
𝑛

log(𝑛)
 (Wang and Leng, 2016). 

Performance measure 

Empirical type I error and power comparison between iART-A and ART-A in Case I 

Figure S1(A) shows the type I error control of iART-A and ART-A. The two methods can 

reasonably control the type I error under different sample sizes. The power results under the DSSM 

and CWSM model are shown in Figures S1(B) and (C), respectively. We can see that the power 

of iART-A is always higher than that of ART-A when k=L. The power also increases as the effect 

size increases. In summary, our proposed iART-A controls the type I error well and has higher 

power than ART-A under different scenarios and disease model assumptions.  

 
Figure S1. Case I: Empirical type I error and power comparison between iART-A and ART-A. (A) the type 

I error comparison between iART-A and ART-A; (B) the power comparison between iART-A and ART-A 

under the DSSM model; (C) the power comparison between iART-A and ART-A under the CWSM model. 

Empirical type I error and power comparison between iART-A and ART-A in Case III 

We also evaluated the type I error control of iART-A and ART-A (Figure S2(A)). The two methods 

can reasonably control the type I error under different sample sizes and different correlations. 

When the sample size increases from 600 to 800, ART-A is a little conservative compared to iART-

A, especially under high correlation (=0.9).  
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Figure S2. Case III: Empirical type I error and power comparison between iART-A and ART-A. (A) the 

type I error comparison between iART-A and ART-A; (B) the power comparison between iART-A and ART-

A under the DSSM model; (C) the power comparison between iART-A and ART-A under the CWSM model. 

Figure S2 (B) shows the power results under the DSSM model. We can see that the power of 

iART-A is much higher than that of ART-A when k=L. In addition, the power of G1 is higher than 

that of G2 under the same sample size and correlation, which could be due to the high percentage 

of noise variables in G2. Within each group, the power decreases as the within-group correlation 

increases. This could be due to the fact that more noise variables were left after screening due to 

high correlation, leading to diluted signal within each group and hence low power. 

The power results under the CWSM model are shown in Figure S2 (C). The proposed iART-

A performs similarly or better than the ART-A method does, especially when the correlation is low. 

In contrast to the DSSM model results, the power increases as the within-group correlation 

increases under the CWSM model, indicating the effect of correlations on the power under 

different model assumptions. This further highlights the importance of proposing different models 

under different model assumptions and further integrating different results to obtain a more robust 

conclusion.  

In summary, our proposed iART-A can control the type I error well and has higher power than 

ART-A under different scenarios and disease model assumptions. It is safe to apply iART-A in real 

application and next, we evaluate the performance of the omnibus test approach. 

Empirical type I error and power comparison between MinP, iART-A and Min-O in Case III 

Figure S3 (A) shows the type I error control under the three methods MinP, iART-A and Min-O. 

Overall, the type I error can be reasonably controlled under different scenarios in different groups 

for the three methods.   
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Figure S3. Case III: empirical type I error and power comparison between iART-A, ART-A and Min-O 

(omnibus test based on ART.A and MinP). (A) the type I error comparison between iART-A, ART-A and 

Min-O; (B) the power comparison between iART-A, ART-A and Min-O under the DSSM model; (C) the 

power comparison between iART-A, ART-A and Min-O under the CWSM model. 

The power comparison results are presented in Figure S3(B) and Figure S3(C), corresponding 

to the DSSM and CWSM models, respectively. It is expected that MinP and iART-A would achieve 

the highest power under the DSSW and CWSM models, respectively. Remarkably, the omnibus 

test consistently demonstrates comparable or even superior power to the best-performing 

individual method under the corresponding model (especially when the within-group correlation 

is high, e.g., ρ=0.9). These findings from the power simulation suggest that the omnibus approach 

can be safely applied in practice, irrespective of the underlying disease model. 

 

The numerical results shown in the figures of Case I and Case III in both the 

main text and the supplemental file 

Table S1. The type I error comparison between different methods in Case I. 

Methods 
n=600  n=800 

G1  G2  G1  G2 

MinP 0.045  0.044  0.052  0.053 

iART.A 0.049  0.060  0.050  0.054 

Min-O 0.047  0.057  0.049  0.056 

ART.A 0.055  0.051  0.048  0.051 

Table S2. The power comparison between different methods under the DSSM model in Case I. 

Methods 

n=600  n=800 

G1  G2  G1  G2 

c=0.5 c=0.6 c=0.7  c=0.5 c=0.6 c=0.7  c=0.5 c=0.6 c=0.7  c=0.5 c=0.6 c=0.7 

MinP 0.759 0.877 0.940  0.615 0.783 0.882  0.820 0.915 0.970  0.679 0.835 0.907 

iART.A 0.758 0.882 0.932  0.544 0.723 0.841  0.818 0.908 0.960  0.622 0.789 0.878 

Min-O 0.794 0.902 0.958  0.647 0.793 0.897  0.845 0.924 0.973  0.696 0.847 0.916 
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ART.A 0.607 0.747 0.851  0.297 0.428 0.557  0.673 0.812 0.876  0.358 0.499 0.664 

Table S3. The power comparison between different methods under the CWSM model in Case I. 

Methods 

n=600  n=800 

G1  G2  G1  G2 

c=0.1 c=0.15 c=0.2  c=0.1 c=0.15 c=0.2  c=0.1 c=0.15 c=0.2  c=0.1 c=0.15 c=0.2 

MinP 0.173 0.370 0.638  0.161 0.408 0.671  0.225 0.500 0.761  0.236 0.536 0.815 

iART.A 0.220 0.514 0.813  0.262 0.675 0.916  0.295 0.662 0.915  0.441 0.873 0.984 

Min-O 0.225 0.506 0.796  0.242 0.645 0.891  0.284 0.639 0.903  0.402 0.825 0.972 

ART.A 0.191 0.451 0.755  0.236 0.603 0.870  0.258 0.585 0.867  0.363 0.801 0.956 

Table S4. The type I error comparison between different methods in Case III. 

Methods 

n=600  n=800 

G1  G2  G1  G2 

ρ=0.3 ρ=0.6 ρ=0.9  ρ=0.3 ρ=0.6 ρ=0.9  ρ=0.3 ρ=0.6 ρ=0.9  ρ=0.3 ρ=0.6 ρ=0.9 

MinP 0.045 0.065 0.050  0.049 0.053 0.050  0.052 0.057 0.048  0.053 0.053 0.038 

iART.A 0.041 0.064 0.040  0.043 0.043 0.045  0.053 0.055 0.043  0.055 0.043 0.042 

Min-O 0.038 0.069 0.051  0.044 0.045 0.053  0.055 0.059 0.048  0.058 0.045 0.042 

ART.A 0.039 0.052 0.045  0.046 0.044 0.052  0.045 0.056 0.042  0.047 0.044 0.036 

Table S5. The power comparison between different methods under the DSSM model in Case III. 

Methods 

n=600  n=800 

G1  G2  G1  G2 

ρ=0.3 ρ=0.6 ρ=0.9  ρ=0.3 ρ=0.6 ρ=0.9  ρ=0.3 ρ=0.6 ρ=0.9  ρ=0.3 ρ=0.6 ρ=0.9 

MinP 0.862 0.791 0.526  0.780 0.658 0.328  0.933 0.860 0.606  0.890 0.792 0.447 

iART.A 0.755 0.716 0.600  0.494 0.455 0.330  0.861 0.819 0.689  0.643 0.599 0.412 

Min-O 0.857 0.803 0.629  0.765 0.651 0.389  0.929 0.870 0.715  0.880 0.783 0.502 

ART.A 0.571 0.550 0.481  0.264 0.247 0.191  0.644 0.620 0.557  0.298 0.275 0.221 

 

Table S6. The power comparison between different methods under the CWSM model in Case III. 

Methods 

n=600  n=800 

G1  G2  G1  G2 

ρ=0.3 ρ=0.6 ρ=0.9  ρ=0.3 ρ=0.6 ρ=0.9  ρ=0.3 ρ=0.6 ρ=0.9  ρ=0.3 ρ=0.6 ρ=0.9 

MinP 0.544 0.714 0.987  0.412 0.528 0.938  0.694 0.852 0.995  0.536 0.701 0.984 

iART.A 0.716 0.894 0.996  0.688 0.864 1.000  0.861 0.958 1.000  0.868 0.954 1.000 

Min-O 0.697 0.875 0.997  0.635 0.818 0.999  0.843 0.948 1.000  0.829 0.934 1.000 

ART.A 0.665 0.872 0.998  0.611 0.768 1.000  0.821 0.933 1.000  0.792 0.906 1.000 

 

Table S7. Properties of the cohort used for method validation. 

Covariates Statistical Description 

age (years; mean ± SD) 74.6 ± 6.8 

gender (male/female (%)) 34.5/65.5(%) 

education (Year; min/median (IQR)/max) 6/16 (4)/20 

APOE4（copy number, 1/2/3 (%)） 50.7/37.9/11.4 (%) 
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The analysis results of the other three brain volume traits 

This supplemental file contains the analysis of the other three brain volume traits. For the volume 

of Fusiform, we identified two genes (see Table S8). MinP cannot detect LSAMP, while iART-A 

and Min-O can identify the two.  

Table S8. List of covariates, genes, and SNPs associated with the volume of Fusiform. 

Gene (Ensemble ID) SNP ID PDS-LASSO PDOT 

LSAMP 

(ENSG00000185565) 

rs1401069 0.1956 0.2430 

rs1518343 0.5008 0.4292 

rs1523262 0.7308 0.2885 

rs1619470 0.5584 0.6085 

rs2030230 0.3965 0.7935 

rs1910044 0.0039 0.0213 

rs1914812 0.2375 0.4584 

rs1920363 0.0039 0.0213 

rs1980081 0.9103 1e-16 

rs1712999 0.1879 1e-16 

rs2869501 0.0253 1e-16 

rs2869787 0.5437 1e-16 

rs2927271 0.3452 0.2600 

rs4305418 0.1825 0.2451 

rs4405915 0.5204 0.3688 

rs4855941 0.6247 0.5774 

rs6771286 0.1511 0.0820 

rs6797385 0.5133 0.5422 

rs6805241 0.0705 0.0593 

rs6806238 0.9769 0.9095 

rs6782605 0.3392 0.4172 

rs7612435 0.2101 0.3129 

rs7621196 0.4869 0.5903 

rs9842731 0.4715 0.3863 

rs10934370 0.9707 0.9952 

rs11921574 0.5733 0.4812 

rs11929035 0.7978 0.8490 

rs13077308 0.2577 0.2411 

ILRUN 

(ENSG00000196821) 

rs2744943 0.6517 8.57e-01 

rs2744949 0.4089 2.89e-13 

rs2744974 0.9273 0.1755 

rs2814945 0.3618 0.6219 

rs2814992 0.4166 1.24e-07 

PDS-LASSO: p-values of SNPs inferred via the desparsified-LASSO. 

PDOT: p-values of SNPs after decorrelation with the orthogonal transformation. 

The significant covariates include age (p=2.18e-05), gender (p=5.64e-12), and education (p=4.76e-05). 

 

For the volume of Entorhinal, we identified four genes (see Table S9). MinP cannot detect 

AMPH, KCNQ3, and ABCG1 and iART-A cannot identify BCL2, while Min-O can identify the 

four.  

Table S9. List of covariates, genes, and SNPs associated with the volume of Entorhinal. 
Gene (Ensemble ID) SNP ID PDS-LASSO PDOT 

AMPH 

(ENSG00000078053) 

rs2028209 0.2139  0.2308  

rs2028210 0.4009  1e-16 

rs2043260 0.6826  1e-16 

rs2043786 0.2822  1e-16 

https://asia.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000185565&db=core
https://asia.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000196821&db=core
https://asia.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000078053&db=core
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rs2043787 0.8150  1e-16 

rs2267809 0.1974  1e-16 

rs2284248 0.3774  1e-16 

rs2215955 0.6406  1e-16 

rs4720279 0.3951  1e-16 

rs4427071 0.2205  0.2583  

rs3778878 0.6328  1e-16 

rs3778880 0.0235  1e-16 

rs3800795 0.2363  1e-16 

rs10248732 0.6472  1e-16 

rs10233502 0.2606  1e-16 

rs10263645 0.7663  0.0076  

rs10265223 0.4632  0.0490  

rs10464364 0.5259  0.5237  

rs10499602 0.5335  0.5327  

rs17500182 0.3524  0.2308  

rs973527 0.0026  0.0031  

KCNQ3 

(ENSG00000184156) 

rs1457785 0.2454  0.2704  

rs1457788 0.2876  1e-16 

rs2469510 0.4568  0.3495  

rs2469520 0.0225  1e-16 

rs2469522 0.9268  0.4332  

rs2198985 0.8888  1e-16 

rs2673567 0.1346  1e-16 

rs2721905 0.1079  0.0561  

rs1864772 0.9460  0.7063  

rs1864773 0.6614  0.4905  

rs6471065 0.5121  0.4440  

rs6471070 0.8647  0.6380  

rs6984395 0.0752  0.0142  

rs6993047 0.9744  0.4235  

rs7007544 0.0496  0.0405  

rs9643288 0.1562  0.2977  

rs9693071 0.7077  0.7240  

rs10094856 0.4872  0.7574  

rs10956658 0.7210  0.9687  

rs17659499 0.6875  0.7438  

ABCG1 

(ENSG00000160179) 

rs915842 0.4455  1e-16 

rs915843 0.4455  1e-16 

rs3787986 0.9041  1e-16 

rs3788005 0.5771  1e-16 

rs4148120 0.5201  1e-16 

rs4148125 0.4028  0.0270  

rs4148134 0.9236  1e-16 

rs2839482 0.1254  1e-16 

rs7281345 0.3480  2.62E-06 

BCL2 

(ENSG00000171791) 

rs1982673 0.9672  0.8046  

rs4987852 0.9912  0.8560  

rs7236090 0.2534  0.3195  

rs12958785 1.64E-05 1.70E-05 
The significant covariates include age (p=7.05e-06), gender (p=2.34e-04), education (p=1.90e-06), 

and APOE4 (p=3.30e-06). 

For the volume of the Middle Temporal Gyrus, we identified three genes (see Table S10). MinP 

cannot detect any, while iART-A and Min-O can identify all.  

https://asia.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000184156&db=core
https://asia.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000160179&db=core
https://asia.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000171791&db=core
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Table S10. List of covariates, genes, and SNPs associated with the volume of Middle Temporal Gyrus. 
Gene (Ensemble ID) SNP ID PDS-LASSO PDOT 

SLCO1B1 

(ENSG00000134538) 

rs981262 0.1016  0.1897  

rs987839 0.1603  0.2425  

rs2100996 0.9981  0.9372  

rs2169970 0.7133  0.9195  

rs2291076 0.1619  0.4756  

rs2306283 0.1021  1e-16 

rs4149026 0.0481  1e-16 

rs4149029 0.0279  1e-16 

rs4149030 0.7168  0.8959  

rs4149036 0.0951  0.0094  

rs4149038 0.0771  1e-16 

rs4149042 0.0157  0.1943  

rs4149046 0.5843  0.3780  

rs4149050 0.0738  1e-16 

rs4149056 0.5528  0.0349  

rs4149058 0.0746  0.3231  

rs4149059 0.0738  1e-16 

rs4149062 0.5499  0.6336  

rs4149076 0.0861  0.0403  

rs4149078 0.1813  0.1108  

rs6487213 0.6969  0.6748  

rs7966613 0.3943  0.0597  

rs11045812 0.7740  0.9373  

rs10841763 0.8120  0.6378  

rs12317268 0.8120  0.6378  

KLC1 

(ENSG00000126214) 

rs861547 0.4803  0.5480  

rs1078756 0.9474  0.5881  

rs729438 0.8076  0.3863  

rs2296482 0.8830  0.8607  

rs2896489 0.2098  1.11E-16 

rs11850979 0.2893  0.4975  

rs11160755 0.1178  0.1521  

rs11160756 0.2101  6.52E-13 

GRIK1 

(ENSG00000171189) 

rs363512 0.7537  6.98E-09 

rs363514 0.0282  1e-16 

rs363518 0.0411  1e-16 

rs363522 0.0551  1e-16 

rs363582 0.0556  1e-16 

rs363598 0.3872  3.33E-16 

rs408302 0.5345  0.4365  

rs459617 0.1445  0.0037  

rs2251036 0.7530  0.9307  

rs2832438 0.0199  0.0672  

rs16985084 0.0133  0.0566  
The  significant covariates include age (p=6.46e-03), gender 7.10e-13) and education (p=1.30e-03) 

 

  

https://asia.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000134538&db=core
https://asia.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000126214&db=core
https://asia.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000171189&db=core
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Q-Q plots of the gene-level p-values using the three methods (Min-O, iART.A, 

and MinP) 

 
Figure S4. The Q-Q plot of gene p-values with the Min-O method. 

 
Figure S5. The Q-Q plot of gene p-values with the iART-A method. 

 
Figure S6. The Q-Q plot of gene p-values with the MinP method. 
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Q-Q plots of the gene-level p-values of ADNI data using the MAGMA software   

 
Figure S7. The Q-Q plot of gene-level p-values of ADNI data with the MAGMA software. 

 

Real data analysis II: gene-level analysis of the human birth weight dataset 

The birth weight data 

We compared the performance of the omnibus test with the SKAT method by analyzing a human 

birth weight dataset in the Thai population from the Gene Environment Association Studies 

initiative GENEVA founded by the trans-NIH (National Institute of Health) Genes, Environment, 

and Health Initiative (GEI). The dataset was obtained from dbGaP at 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap through dbGaP accession number 

phs000096.v4.p1.  

The pre-processing of the data 

There are a total of 590,913 SNPs after removing SNPs with minor allele frequency (MAF)<0.05, 

missing rate <0.05, and those deviating from Hardy-Weinberg equilibrium (p-value < 0.001). We 

only focused on genes containing three or more SNPs in our analysis and the missing SNP 

genotypes were imputed by using the KNNcatImpute R package. This ended up with 251,816 SNPs 

mapped to 12,001 genes based on the human genome assembly 37 (GRCh37). The final sample 

size is 1,090. Gene-level FDR-adjusted p-values were reported. We also included the covariates in 

the proposed high-dimensional inference framework. The covariates considered in the analysis are 

listed in Table S11. 

Table S11. Covariates included in the analysis. 

Names of covariates Description 

m_Age_OGTT Mother's age at OGTT 

b_CordCP_ug Baby's cord C-peptide 

b_CordPGC_mg Baby's cord glucose 

m_DBPM_OGTT Mother's mean OGTT diastolic blood pressure 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap
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m_FCP_ug Mother's fasting C-peptide at OGTT 

m_FH_DM_Any Mother's family history of diabetes 

m_FH_HBP_Any Mother's family history of hypertension 

m_FPG_CLC_mg Mother's fasting glucose at OGTT 

b_Gestage Baby's gestational age at delivery 

m_HbA1c_percent Mother's HbA1c percent 

m_HtM_OGTT Mother's mean OGTT height 

b_NN_Gender Baby's gender 

m_OneHrPG_CLC_mg Mother's one hour OGTT glucose 

m_SBPM_OGTT Mother's mean OGTT systolic blood pressure 

m_TwoHrPG_CLC_mg Mother's two hour OGTT glucose 

m_WtM_OGTT Mother's pre-pregnancy weight 

m_BMI_OGTT Mother's BMI 

 

Results of real data analysis II 

In our study, we took the baby’s birth weight as the response variable to demonstrate the 

implementation of our method. Firstly, we conducted the HOLP screening procedure to keep the 

top 20,000 most significant SNPs, where 9 covariates and 19, 991 SNPs mapping to 4,730 genes 

were included.  

(i) Results obtained using the proposed method: We identified four covariates 

(b_CordCP_ug, m_WtM_OGTT, b_NN_Gender, and b_Gestage) and five genes (ANTXR1, 

KCTD16, C4orf54, PPARG, and RNGTT) after the FDR correction. The detailed results are 

summarized in Tables S12. The Q-Q plots of the gene-level p-values for the three methods are 

given in Figures S7-9. The MinP method is very conservative and the results of the omnibus test 

are mainly contributed by the iART-A method.  

Table S12. List of covariates, genes, and SNPs associated with baby’s birth weight. 

Covariates 

(p-value) 

Gene Name 

(Gene ID) 
SNP ID PDS-LASSO PDOT 

False Discovery Rate 

PMinP PiART.A POmnibus 

 

 

 

 

 

b_CordCP_ug 

(1.6676e-04) 

 

 

 

b_Gestage 

(3.0429e-03) 

 

 

 

 

 m_WtM_OGTT 

(7.8093e-07) 

 

 

 

 

b_NN_Gender 

(1.9258e-02) 

 rs10164798 0.4817  1.20e-05    

 rs10167510 0.0919  0.9707     

 rs10176087 0.5570  0.9684     
 rs10185336 0.1293  3.00e-15    

 rs11126223 0.7071  0.9937     

 rs11126231 0.0065  0.9313     

ANTXR1 rs11683511 0.8129  0.9900     

(Gene ID: 84168) rs11687792 0.2469  0.9767  0.9739  9.99e-17 2.00e-16 

 rs13422656 0.7505  2.40e-04    

 rs2667 0.3661  0.9447     

 rs3923626 0.4952  0.9562     
 rs4416261 0.2246  0.9709     

 rs5017686 0.8823  0.9909     

 rs6546497 0.2244  0.3824     

 rs6546503 0.1539  3.37e-04    

 rs6709954 0.3707  0.9668     

 rs6722492 0.1539  3.37e-04    
 rs6732795 0.0396  0.9421     

 rs7422275 0.1858  0.9732     

 rs7564412 0.2687  0.9657     
 rs7565538 0.2713  0.9649     

 rs7585658 0.6558  0.9912     

 rs1154456 0.3528  1.00e-16     
 rs1154457 0.8883  1.00e-16     
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  rs1154459 0.4116  1.00e-16     

C4orf54 rs1154460 0.7751  1.00e-16     

(Gene ID: 285556) rs1154469 0.1901  0.2751  0.9893  1.00e-16  1.00e-16  

 rs12504511 0.5914  1.00e-16     
 rs4147549 0.4921  1.00e-16     

 rs930478 0.5133  1.00e-16     

 rs971074 0.3627  1.00e-16     

 rs10037551 0.8337  0.1814     
 rs10515538 0.3250  0.0019     

 rs10515542 0.4000  1.11e-16    

 rs13182980 0.7708  0.9666     
 rs13357117 0.9582  0.9555     

 rs1422708 0.9725  0.8464     

 rs2080991 0.5361  0.0269     
 rs2112157 0.4978  0.8932     

KCTD16 rs244524 0.7715  3.55e-06 0.9966  1.00e-16  1.00e-16  

(Gene ID: 57528) rs244537 0.7315 1.00e-16     
 rs29893 0.9387  0.0387     

 rs29894 0.3479  6.36e-11    

 rs29900 0.4000  1.11e-16    

 rs3095960 0.3251  1.00e-16     

 rs4912969 0.8337  0.1814     

 rs831419 0.3399  1.00e-16     

  rs1152002 0.0305  0.9529     

  rs1175541 0.6650  0.9552     

  rs1175542 0.7371  0.9441     

  rs1175543 0.1421  0.9537     

  rs1175544 0.5257  0.9806     

  rs12497191 0.0307  0.9490     
  rs1875796 0.6108  0.7302     

 PPARG  rs2028759 0.1182  3.77e-05 0.9739  3.89e-24  7.77e-24 

 GeneID:5468 rs2921190 0.2105  2.22e-16    
  rs2921193 0.4413  5.86e-14    

  rs2938387 0.5261  0.0161     

  rs2938392 0.4086  1.49e-11    
  rs2938394 0.1884  6.82e-07    

  rs2938395 0.1884  6.82e-07    

  rs2938397 0.8446  0.3972     
  rs2959268 0.5012  1.22e-15    

  rs2972162 0.8701  7.52e-11    

  rs709158 0.3658  0.9600     
  rs796313 0.6248  0.8572     

  rs9809905 0.3771  0.9914     

  rs9855622 0.1212  0.9424     

  rs1040676 0.6396  0.5620     

  rs12174206 0.3316  9.30e-05    

  rs2757728 0.5694  0.9872     
  rs6922340 0.9963  0.7010     

 RNGTT rs7747355 0.7697  0.1807     

 GeneID:8732 rs9342152 0.5471  1.35e-04 0.9966  2.45e-06  4.90e-06 

  rs9344870 0.4936  7.53e-05    

  rs9351179 0.7079  0.5421     

  rs9353592 0.7337  0.6272     
  rs9362566 0.4885  1.00e-16     

  rs9362583 0.5006  0.7799     

The significant SNPs are shown in bold font. 

PDS-lasso:  p-values of SNPs inferred via desparsifying-lasso, a high-dimensional inference approach. 

PDOT:  decorrelated PDS-lasso by orthogonal transformation. 

PMinP:  p-values of SNPs inferred via minimum p-value distribution. 

PiART.A: p-values of SNPs inferred via our proposed improved ART.A approach. 

POmnibus:  p-values of SNPs inferred via omnibus test, Min-O, based on MinP and iART.A. 
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Figure S8. The Q-Q plot of gene-level p-values with the Min-O method. 

 

 
Figure S9. The Q-Q plot of gene-level p-values with the iART.A method. 

 

 

Figure S10. The Q-Q plot of gene-level p-values with the MinP method. 

(ii) Results obtained using other methods (e.g., SKAT and MAGMA): The SKAT method 

did not identify any significant genes after the FDR control after adjusting for the effects of the 

covariates. For the MAGMA method using summary statistics, we obtained the gene-level p-
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values of the 11,114 genes mapped by 251,816 SNPs (following the same procedure as described 

in the main text for the ADNI data anlaysis). After the gene-level FDR control, no significant gene 

was identified by the MAGMA package. The Q-Q plot of the gene-level p-values by the MAGMA 

software can be found in Figure S11. 

 
Figure S11. The Q-Q plot of gene-level p-values of birthweight data with the MAGMA software. 

(iii) A brief description of genes identified: It is well known that the baby's gender, the 

mother's pre-pregnancy weight, and the baby's gestational age at delivery were associated with the 

baby’s birthweight[1-5].  Elevated cord C-peptide is significantly associated with increasing 

birthweight and Cord blood C-peptide is an important mediator of the association between 

maternal and infant adiposity, across the spectrum of maternal glucose tolerance[6, 7]. 

We found literature reports for four of the five significant genes, indicating the clinical 

significance of the method. Mutations in ANTXR1 can cause GAPO syndrome, a condition 

characterized by growth retardation, alopecia, pseudoanodontia, and progressive visual 

impairment[8]. Many studies have shown that children born with low birth weight are associated 

with an increased risk of developing type 2 diabetes (T2D) in adulthood [9]. Several GWAS studies 

have identified genetic factors associated with T2D and birth weight (e.g., [10]). PPARG is a 

member of the nuclear receptor superfamily of transcription factors and regulates the gene 

expression involved in lipid metabolism within adipocytes. Its pivotal role in adipose tissue 

differentiation and susceptibility to type 2 diabetes[4] in humans has been well-established. 

Numerous studies have substantiated a significant association between PPARG and birth 

weight[11-13]. The proximal small intestine GABABR signaling is disrupted in prediabetes 

independent of age, with possible involvement of decreased KCTD16, which implies KCTD16 is 

a potential pharmacological target to study prediabetes prevention[14]. C4orf54, also known as 
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Chromosome 4 Open Reading Frame 54, is a gene located on chromosome 4. It is a relatively less 

studied gene, and its exact function and role in biological processes are still not fully understood. 

Currently, proteins with C4orf54 have defective phosphosites, representing opportunities to further 

expand our knowledge of the insulin signaling network and how it goes awry in insulin 

resistance[15]. RNGTT is also a less studied gene and the direct relationship between the gene and 

birth weight or T2D has not been reported. 

We also examined the LD structure of the SNPs in the five significant genes, ANTXR1, 

KCTD16, C4orf54, PPARG, and RNGTT. As shown in Figure S12-S16, all the LD plots revealed 

strong correlations between SNPs in the corresponding gene. In addition, all significant SNPs in 

each gene belong to the same block. The strong LD between the SNPs may explain why SNPs are 

significant after applying decorrelation by the orthogonal transformation.  

 
Figure S12. The LD plot of SNPs in gene ANTXR1. SNPs showing significance are highlighted with red 

rectangles. 
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Figure S13. The LD plot of SNPs in gene KCTD16. SNPs showing significance are highlighted with red 

rectangles. 
 

  
Figure S14. The LD plot of SNPs in gene C4orf54. SNPs showing significance are highlighted with red 

rectangles. 
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Figure S15. The LD plot of SNPs in gene PPARG. SNPs showing significance are highlighted with red 

rectangles. 

 

Figure S16. The LD plot of SNPs in gene RNGTT. SNPs showing significance are highlighted with red 

rectangles. 
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