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Supplementary Method 1: Model Structure and Description of Deterministic Scenarios 

Description of the main constraints: Our optimization model is constructed as a linear program 

in Temoa.1 Four main equations govern the flow of energy through the model network. The 

Demand_Constrant (Supplementary Equation 1) ensures that the supply meets demand in all 

time intervals. For each process, the Capacity_Constraint (Supplementary Equation 2) ensures 

sufficient capacity to meet the commodity flows in all time intervals. Between processes, the 

CommodityBalance_Constraint (Supplementary Equation 3) ensures that global commodity 

production across the energy system is sufficient to meet the endogenous demands for that 

commodity. Finally, the objective function (Supplementary Equation 4) drives the model to 

minimize the system-wide cost of energy supply by optimizing the deployment and utilization of 

energy technologies across the system. 

Demand_Constrant: 

       ∑ 𝐹𝑂𝑟,𝑝,𝑠,𝑑,𝑖,𝑡𝐼,𝑇−𝑇𝑎,𝑉 + 𝑆𝐸𝐺𝑠,𝑑 ⋅ ∑ 𝐹𝑂𝐴𝑟,𝑝,𝑖,𝑡𝐼,𝑇𝑎,𝑉 = 𝐷𝐸𝑀𝑟,𝑝,𝑑𝑒𝑚 ⋅ 𝐷𝑆𝐷𝑟,𝑠,𝑑,𝑑𝑒𝑚 

 (1) 

Where 𝐹𝑂𝑟,𝑝,𝑠,𝑑,𝑖,𝑡 is the commodity flow by time slice out of a technology based on a given 

input, 𝑆𝐸𝐺𝑠,𝑑 is the fraction of year represented by each (season (s), day (d)) tuple, 𝐹𝑂𝐴𝑟,𝑝,𝑖,𝑡 is 

the annual commodity flow out of a technology based on a given input, 𝐷𝐸𝑀𝑟,𝑝,𝑑𝑒𝑚 is the end-

use demands, by period (p) and 𝐷𝑆𝐷𝑟,𝑠,𝑑,𝑑𝑒𝑚 is the demand-specific distribution. The subscripts 

𝑟, 𝑝, 𝑠, 𝑑, 𝑖, 𝑡, 𝑜 belong to sets defined on the regions in the model (𝑟), the time periods in the 

model (𝑝), the season (𝑠), time of day (𝑑), input commodity (𝑖), technology (𝑡) and output 

commodity (𝑜). 

 

Capacity_Constraint: 

(CFP𝑟,𝑡,𝑣 ⋅ C2A𝑟,𝑡 ⋅ SEG𝑠,𝑑 ⋅ PLF𝑟,𝑝,𝑡,𝑣) ⋅ 𝐶𝐴𝑃𝑟,𝑡,𝑣 = ∑ 𝐹𝑂𝑟,𝑝,𝑠,𝑑,𝑖,𝑡,𝑣,𝑜

𝐼,𝑂

+ ∑ 𝐶𝑈𝑅𝑟,𝑝,𝑠,𝑑,𝑖,𝑡,𝑣,𝑜

𝐼,𝑂

 

 (2) 

Where CFP𝑟,𝑡,𝑣 is the process-specific capacity factor, C2A𝑟,𝑡 converts from capacity to activity 

units, 𝑆𝐸𝐺𝑠,𝑑 like in Supplementary Equation 1 is the fraction of year represented by each 

(season (s), day (d)) tuple, PLF𝑟,𝑝,𝑡,𝑣 is the process life fraction active in a time period, 

𝐹𝑂𝑟,𝑝,𝑠,𝑑,𝑖,𝑡,𝑣,𝑜 is defined in Supplementary Equation 1 and 𝐶𝑈𝑅𝑟,𝑝,𝑠,𝑑,𝑖,𝑡,𝑣,𝑜 is the commodity flow 

out of a technology that is curtailed. 

 

CommodityBalance_Constraint: 

 

(CFP𝑟,𝑡,𝑣 ⋅ C2A𝑟,𝑡 ⋅ SEG𝑠,𝑑 ⋅ PLF𝑟,𝑝,𝑡,𝑣) ⋅ 𝐶𝐴𝑃𝑟,𝑡,𝑣 = ∑ 𝐹𝑂𝑟,𝑝,𝑠,𝑑,𝑖,𝑡,𝑣,𝑜

𝐼,𝑂

+ ∑ 𝐶𝑈𝑅𝑟,𝑝,𝑠,𝑑,𝑖,𝑡,𝑣,𝑜

𝐼,𝑂

 

 (3) 
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Where CFPr,t,v, C2Ar,t, SEGs,d, PLFr,p,t,v, 𝐹𝑂𝑟,𝑝,𝑠,𝑑,𝑖,𝑡,𝑣,𝑜 and ∑ 𝐶𝑈𝑅𝑟,𝑝,𝑠,𝑑,𝑖,𝑡,𝑣,𝑜𝐼,𝑂  have been 

defined above in Supplementary Equation 1 and Supplementary Equation 2. 𝐶𝐴𝑃𝑟,𝑡,𝑣 refers to the 

required tech capacity to support associated activity. 

Objective Function: 

𝑀𝑖𝑛 𝐶𝑡𝑜𝑡 = 𝑀𝑖𝑛 (𝐶𝑙𝑜𝑎𝑛𝑠 + 𝐶𝑓𝑖𝑥𝑒𝑑 + 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

(4) 

Where Ctot refers to the total system cost, which is made up of the investment costs converted 

into loans (Cloans), the fixed costs (Cfixed), and the variable costs (Cvariable). 

𝐶𝑓𝑖𝑥𝑒𝑑 = ∑ ([𝐶𝐹𝑟,𝑝,𝑡,𝑣 ⋅
(1 + 𝐺𝐷𝑅)𝑃0−𝑝+1 ⋅ (1 − (1 + 𝐺𝐷𝑅)−𝑀𝑃𝐿𝑟,𝑡,𝑣)

𝐺𝐷𝑅
] ⋅ 𝐶𝐴𝑃𝑟,𝑡,𝑣)

𝑟,𝑝,𝑡,𝑣

 

(5) 

𝐶𝑙𝑜𝑎𝑛𝑠 = ∑ ([𝐶𝐼𝑟,𝑡,𝑣 ⋅ 𝐿𝐴𝑟,𝑡,𝑣

𝑟,𝑡,𝑣

⋅
(1 + 𝐺𝐷𝑅)𝑃0−𝑣+1 ⋅ (1 − (1 + 𝐺𝐷𝑅)−𝐿𝐿𝑃𝑟,𝑡,𝑣)

𝐺𝐷𝑅
⋅

1 − (1 + 𝐺𝐷𝑅)−𝐿𝑃𝐴𝑟,𝑡,𝑣

1 − (1 + 𝐺𝐷𝑅)−𝐿𝑇𝑃𝑟,𝑡,𝑣
]

⋅ 𝐶𝐴𝑃𝑟,𝑡,𝑣) 

(6) 

𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = ∑ (𝐶𝑉𝑟,𝑝,𝑡,𝑣 ⋅
(1 + 𝐺𝐷𝑅)𝑃0−𝑝+1 ⋅ (1 − (1 + 𝐺𝐷𝑅)−𝑀𝑃𝐿𝑟,𝑝,𝑡,𝑣)

𝐺𝐷𝑅
𝑟,𝑝,𝑡,𝑣

⋅ ∑ 𝐹𝑂𝑟,𝑝,𝑠,𝑑,𝑖,𝑡,𝑣,𝑜

𝑆,𝐷,𝐼,𝑂

)

+ ∑ (𝐶𝑉𝑟,𝑝,𝑡,𝑣 ⋅
(1 + 𝐺𝐷𝑅)𝑃0−𝑝+1 ⋅ (1 − (1 + 𝐺𝐷𝑅)−𝑀𝑃𝐿𝑟,𝑝,𝑡,𝑣)

𝐺𝐷𝑅
𝑟,𝑝,𝑡,𝑣

⋅ ∑ 𝐹𝑂𝐴𝑟,𝑝,𝑖,𝑡∈𝑇𝑎,𝑣,𝑜

𝐼,𝑂

) 

(7) 

Where 𝐶𝐹𝑟,𝑝,𝑡,𝑣 represents the fixed operations & maintenance cost, 𝐺𝐷𝑅 is the global discount 

rate used to calculate present cost, 𝑃0 is the start of the time horizon, 𝑀𝑃𝐿𝑟,𝑡,𝑣 is the smaller of 

the remaining model horizon or process technology life, 𝐶𝐴𝑃𝑟,𝑡,𝑣 has been defined in 

Supplementary Equation 3, 𝐶𝐼𝑟,𝑡,𝑣 represents the technology-specific investment cost, 𝐿𝐴𝑟,𝑡,𝑣 is 
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the loan amortization by technology and vintage based on the discount rate of the technology, 

and 𝐶𝑉𝑟,𝑝,𝑡,𝑣 refers to the variable operations & maintenance cost.  

Along with these constraints, other constraints are also imposed in the model structure. These are 

network-related constraints (for example, ensuring commodity balances throughout the model), 

physical and operational constraints (for example, storage, firm generation, ramping, and reserve 

margins in the power sector). 

Scenario Descriptions: The deterministic least-cost pathway provides solutions minimizing the 

total system cost of the linear program. The analysis spans 2020 to 2050 in 5-year increments. 

All years within a given 5-year time period are assumed to be identical; thus, the optimal results 

represent an indicative year within the five years. The United States is represented according to 

the regions shown in Supplementary Figure 1. These regions were chosen as they represent 

aggregations of United States electric balancing authorities and follow U.S. state boundaries.  
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Supplementary Figure 1: Overview of research methodology. A flow diagram showing the 

inputs from the major end-use sectors, some characteristics of the database used, 

application of the Temoa model, and type of runs conducted (deterministic and modeling to 

generate alternatives). The major outputs analyzed in the current work are also included. 

A nine-region description is used to represent the U.S., with the regions corresponding to 

combinations of several states in most cases. Northwest (NW): Washington, Oregon, Idaho, 

Montana, and Wyoming; North Central (N_CEN): Iowa, Wisconsin, Michigan, Illinois, 

Minnesota, Indiana, North Dakota; Northeast (NE): New York, Massachusetts, Vermont, 

Connecticut, Maine, New Hampshire, Rhode Island; Southwest (SW): Net Mexico, Nevada, 

Utah, Colorado and Arizona, Central (CEN): Nebraska, Arkansas, Missouri, Louisiana, 

Kansas, South Dakota and Oklahoma; Southeast (SE): Alabama, Kentucky, Georgia, 

Tennessee, Florida, North Carolina, South Carolina, Mississippi; Mid-Atlantic (MID_AT): 

Maryland, Delaware, Ohio, Pennsylvania, Virginia, New Jersey, District of Columbia, West 

Virginia; California (CA) and Texas (TX). Data sources in figure: Energy Information 

Administration (EIA)2; Billion Ton Report3; Annual Technology Baseline (ATB)4; National 

Renewable Labs Electrification Futures Study (NREL EFS)5; Manufacturing Energy 

Consumption Survey (MECS)6; MARKAL database.7,8 

Current-Policy scenario: This scenario assumes that all existing policies as of the end of 2022 

remain in their current form and no new federal or state policies are implemented. These results 

indicate how projected fuel prices and technology costs will shape the energy system in the 

absence of additional climate policies. The policies included in this scenario are state-level 
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Renewable Portfolio Standards (RPS), the Cross-State Air Pollution Rule (CSAPR), the 

California Cap and Trade program, the federal Investment Tax Credit (ITC), and the provisions 

of the Inflation Reduction Act (also detailed in Supplementary Method 4). Note that these 

policies are also included in the Net-Zero deterministic run as well as the modeling to generate 

alternatives (MGA) runs. Unlike in the net-zero pathways, there are no additional policies to 

constrain CO2 emissions or support mitigation efforts after the provisions in the policies listed 

above expire. In this Current-Policy scenario, exogenous fuel prices are based on the Energy 

Information Administration (EIA) Annual Energy Outlook (AEO) 2022 ‘Reference’ case. 

Net-Zero scenario: This scenario assumes that the U.S. energy system will reach net-zero CO2 

emissions by 2050. A constraint in the optimization caps CO2 emissions across the energy 

system to achieve this objective. The CO2 cap is defined as a linear reduction in annual CO2 

emission beginning in the 2020 model period and reaching net-zero by 2050. In this scenario, 

exogenous fuel prices are based on the EIA AEO 2022 ‘Low Oil Price’ case. 

Emissions Accounting: The model specifies technology-specific pollutant emission factors for 

all relevant processes in the energy system network. If the model selects a certain process, it 

incurs emissions proportional to the “emission activity” associated with that process. For 

example, consider the transportation sector in two scenarios: one with an emissions limit and 

another without restrictions. In the unrestricted scenario, the model will choose to deploy fossil 

fuel-based vehicles, which have emission factors measured in ‘kt of pollutant/vehicle miles 

traveled.’ The model captures the pollutant burden from using these vehicles, including the 

upstream emissions associated with the fuel supply for fossil fuel-based vehicles. In the 

alternative scenario with an emissions limit, the model is likely to select electric vehicles to meet 

transportation demand. Although the use of electric vehicles results in no tailpipe emissions, the 

production of electricity may generate carbon emissions. The model accounts for these emissions 

as well. 
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Supplementary Method 2: Application of k-means clustering to select illustrative pathways 

To highlight the diverse ways in which net-zero CO2 emissions can be achieved across the U.S. 

energy system, Figure 5 of the main manuscript highlights a set of illustrative pathways. We first 

create a feature matrix for the 2050 model year, incorporating all relevant parameters (such as 

hydrogen, electricity, or natural gas use) for the 2050 model year. Subsequently, we normalized 

the feature matrix to consider parameters spanning multiple orders of magnitude, ensuring equal 

weight for each parameter. We then applied k-means clustering and tested for clusters between 2 

and 10, ranking our findings based on a silhouette score and a Calinski-Harabasz score. We 

found that three clustering parameters best represented the set of 1,100 decarbonization 

pathways. Out of the set of parameters initially introduced, the combination of hydrogen, 

synthetic liquids, and petroleum use was associated with the most favorable scores. Next, we 

divided the 1,100 decarbonization runs into low/high hydrogen, low/high direct air capture, and 

low/high electricity use. Low and high were defined as the lowest 25th percentile or higher than 

the 75th percentile of the 1,110 decarbonization runs. The features we identified above were then 

used to find the cluster centers in each of these low/high groups. We identified the nearest 

decarbonization pathways to the cluster center based on the Euclidean distance and presented 

these as the illustrative pathways in Figure 5 in the main manuscript. 
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Supplementary Method 3: Sectoral details 

The energy system representation includes the electric, buildings (residential and commercial), 

industrial, and transportation sectors.  

Electric sector: 

The electric sector includes representations of existing and new generation technologies indexed 

by the region in which they are located. Thermal power plants include coal-fired steam with and 

without CCS, natural gas steam plants, open-cycle, and combined-cycle natural gas turbines with 

and without CCS, and light-water nuclear reactors. Renewable sources include conventional 

hydro, centralized solar photovoltaics (PV), centralized solar thermal, distributed solar, onshore 

and offshore wind, biomass, and geothermal technologies. Data for the electric sector are 

compiled using PowerGenome, an open-source tool that allows users to create input datasets for 

power system capacity expansion models.16 PowerGenome primarily uses data from the National 

Renewable Energy Laboratory (NREL), the U.S. Energy Information Administration (EIA), and 

the US Environmental Protection Agency (EPA). The Catalyst Cooperative’s Public Utility Data 

Liberation Project compiled much of these underlying data into a single SQLite database that 

PowerGenome uses. Using PowerGenome, we aggregated balancing authorities (as defined by 

EPA’s Integrated Planning Model17 regions) into nine OEO regions to develop the spatial 

representation for the electric sector shown in Supplementary Figure 1.  

Existing generators: Due to computational limitations, the electricity sector operations in the 

modeled regions cannot be represented by individual generator operations. To develop a 

reduced-order representation of these generators that is computationally tractable, PowerGenome 

uses k-means clustering techniques to aggregate existing generators into groups or clusters. The 

generators are clustered using four generator characteristics: nameplate capacity, heat rate, 

installation year, and fixed O&M costs. In each region, existing conventional coal-fired steam 

and natural gas combined cycle plants are represented by 4 clusters each; natural gas combustion 

turbine, natural gas steam turbine, nuclear, and conventional hydroelectric plants are represented 

by 2 clusters each, while all other technology types – biomass, geothermal, centralized solar 

photovoltaic, onshore wind – are represented by a single cluster each. 

New thermal generators: New thermal generators are represented by a single cluster for every 

modeled year and include natural gas combined cycle (NGCC), natural gas combustion turbine, 

NGCC with 90% efficient carbon capture and storage (CCS), NGCC with 100% efficient CCS, 

geothermal (hydro binary and hydro flash technologies), coal integrated gasification combined 

cycle (IGCC), ultra-supercritical pulverized coal with 90% efficient CCS, biomass combined-

cycle, and hydrogen combined-cycle. Data for these technologies are derived from the NREL 

Annual Technology Baseline (ATB) via PowerGenome, except for items listed below:  

- Hydrogen combined-cycle turbines: Hydrogen at 100 bar pressure can be burned new in 

combined-cycle turbines to produce electricity, which is assumed to have the same 

techno-economic characteristics as NGCC generators but without any combustion 

emissions.  
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- Bio-energy with carbon capture and storage: This technology representation comes from 

the U.S. EPA MARKAL database7,8.  

- Hydrogen storage: This technology representation comes from the literature.18 

New renewable generator clusters: In all model regions, new utility solar photovoltaics (PV) and 

onshore wind capacities are represented by three clusters each, while offshore wind is 

represented by a single cluster in each of three regions with offshore potential (CA, NW, NE 

regions in Supplementary Fig. 1). Within a region, techno-economic data for all renewable 

clusters of a single technology type are identical except for capacity factor and maximum 

available capacity. These techno-economic characteristics are derived from the NREL ATB via 

PowerGenome. Further, PowerGenome uses k-means clustering to develop these groups, which 

differ by capacity factor and maximum available capacity in each region. Although 

PowerGenome does not explicitly develop technology clusters for new residential-scale PV, we 

use the tool to develop cost estimates (investment and O&M costs) for a single representative 

cluster with underlying data from the NREL ATB. As an approximation, we also use the 

capacity factors developed for the three utility PV clusters in each region to represent residential 

PV generation. Each cluster has the same cost estimates as developed through PowerGenome. 

Residential PV annual generation is specified exogenously, with data from the NREL dGen19 

model’s Mid (PV cost) scenario – data available at the state level is aggregated to each of the 

nine OEO regions. This technology is assumed to have no other resource constraints. We also 

developed a single cluster of concentrating solar thermal technologies in the California and 

Southwestern US regions. In the NREL ATB, the representative technology is assumed to be a 

100 MW molten salt power tower with 10 hours of thermal energy storage driven by Class 5 

(excellent) resources.  

Buildings sector: 

The buildings sector is divided into the residential and commercial sectors. The main 

components used to represent these sectors are 1) end-use service demands, 2) the techno-

economic characteristics of the technologies used to meet those demands, and 3) the existing 

capacity of technologies currently in service.  

The service demands are derived from the NREL Electrification Futures Study5 and consist of 

two components: 1) the region-specific annual demands projected to 2050 and 2) the 

apportionment of these annual demands at the hourly level. The demand technologies are 

characterized by their capital costs, fixed and variable operation and maintenance costs, 

efficiencies, capacity factors, existing capacity, and fuel inputs. 

Service Demands: The service demands represented in the residential sector include space 

cooling, space heating, refrigeration, freezing, lighting, water heating, cooking, clothes drying, 

and dishwashing. In the commercial sector, we model space cooling, space heating, water 

heating, refrigeration, cooking, lighting, and ventilation. The NREL Electrification Futures Study 

(EFS) provides annual projections for these end-use demands in the United States through 2050. 

These annual projections are available at the state level for each end-use demand in 

Supplementary Table 1.  
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We use the estimates of buildings-related service demands for the end-use demands listed above. 

In certain cases, external data was required to spatially allocate the demands reported from the 

EFS. For example, residential space heating service demands were downscaled using the product 

of each state’s share of heating-degree-days and residential square footage. Next, we perform an 

additional aggregation to represent the state-level demands from this exercise into the nine 

regions represented in Supplementary Fig. 1. In the case of commercial ventilation, the annual 

service demands were estimated from the AEO as the product of the commercial square footage 

of a region multiplied by ventilation efficiency and ventilation energy consumption.   
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Supplementary Table 1. Annual service demand categories and units are drawn from the 

NREL Electrification Futures Study.  

Sector End-use Demand Units 

Commercial Space Cooling Tera-BTU 

Commercial Cooking Tera-BTU 

Commercial Lighting Giga-Lumen-Year 

Commercial Refrigeration Tera-BTU 

Commercial Space Heating Tera-BTU 

Commercial Ventilation1 Trillion-Cubic Feet/min-hours 

Commercial Water Heating Tera-BTU 

Commercial Other – Gas2 Million-BTU 

Commercial Other – Electricity2 Million-BTU 

Commercial Other – Diesel2 Million-BTU 

Residential Space Cooling Million-BTU 

Residential Refrigeration Mega-Cubic Feet 

Residential Lighting Giga-Lumen-Year 

Residential Space Heating Million-BTU 

Residential Water Heating Million-BTU 

Residential Clothes Drying Giga-Pound 

Residential Dishwashing Giga-Cycle 

Residential Freezing Mega-Cubic Feet 

Residential Cooking Million-BTU 

Residential Other – Electricity3 Million-BTU 
 

1Service demand estimated from Annual Energy Outlook as commercial regional square footage × ventilation 

efficiency × ventilation energy consumption.2 The commercial other category in our databases aggregates the 

service demands reported by Electrification Futures Study, for the categories: 'Commercial Other,’ 'District 

Services,' 'Office Equipment (NON-P.C.),' and 'Office Equipment (P.C.).'3 The residential other category in the 

aggregates the service demands reported by EFS for the categories: 'Televisions and related,' 'Computers and 

related,' 'residential other uses,' and 'residential furnace fans.' BTU – British thermal units.  

The EFS study provides state-level projections of hourly electricity demands for a subset of the 

subsectors listed above. These load profiles were developed by NREL using the outputs of other 

models such as ResStock/ComStock and other data (e.g., from metering studies) for a range of 

future scenarios. The resulting load profile from the 'High-Electrification and Rapid End-use 

Technology Advancement' scenario is selected as the load profile for electric end-uses in our 

database as it incorporates the largest share of total service demands. In cases where the hourly 

profile of an end-use demand is not available, we assume the service demands to be constant 

throughout the year.  

The load profiles for space heating and cooling are combined into a single profile in the EFS 

data. However, we are interested in separating these two profiles to represent these demands 

distinctly and allow for technological choice in the model. We use population-weighted heating 

and cooling degree hour (hdh/cdh) data to separate the heating and cooling profiles.20 This data is 

available at the hourly timescale for the year 2010. We first calculate an average hourly hdh (and 
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cdh) fraction for each hour of 2010 within a given model region. Next, the combined heating 

(/cooling) load taken from EFS is multiplied by these fractions to estimate each hour's heating 

(/cooling) load.  

Demand Technology Specification: The characteristics of the demand technologies in the 

residential and commercial sectors in the OEO database are based on the Residential Demand 

Module (RDM) and Commercial Demand Module (CDM) of the National Energy Modeling 

System (NEMS) - Updated Buildings Sector Appliance and Equipment Costs and Efficiency. In 

our database, we incorporate 1) technology-specific efficiencies, 2) fixed and variable operations 

and maintenance costs, 3) investment costs, 4) lifetimes, and 5) typical capacities based on 

contract reports prepared by Navigant Consulting, Inc. for the U.S. Energy Information 

Administration. We represent a diverse set of equipment classes/types capable of servicing 

different parts of the building sector. For example, the technologies capable of meeting 

residential cooling demand include room air conditioners, central air conditioners, and heat 

pumps. Three types of heat pumps are represented for residential cooling: air-source, ground-

source, and natural gas heat pumps. We use this dataset to adjust the heat pump coefficient of 

performance (COP) to reflect more regionally appropriate values. Other work has estimated a 

linear relationship between COP and outside temperature for various heat pumps.21 Our work 

assumes that the indoor temperatures stay constant at 70ºF, and we use the slope of this linear 

relationship to adjust heat pump COPs at the regional level using state-level population-weighted 

temperatures. 

Along with diversity in technology representations, we also incorporate the changes in the 

techno-economic parameters for residential and commercial equipment from 2020 to 2050 in 5-

year increments based on projections incorporated in NEMS. In most cases, two versions of a 

given technology are included in our database: 1) a standard version and 2) a high-efficiency 

version. For example, the heating seasonal performance factor (HSPF) for a typical air-source 

heat pump of a 2020 vintage is 8.6, whereas a high-efficiency version has an HSPF of 9.0. The 

costs and lifetimes may also vary across these different technology options. The techno-

economic parameters of a given technology are assumed to be region agnostic, except heat pump 

COPs as described above. 

Existing Capacity: We rely on two data sources to estimate existing capacity at the technology 

level in the buildings database: 1) NREL EFS service demands scaled using a derived utilization 

factor, which gives us the existing capacities of most of the existing electric technologies and 2) 

the MARKAL database, which gives us the existing capacities for technologies not included in 

1). The estimation method from the two data sources is briefly described below: 

1) NREL EFS: First, an end-use service demand-specific 'utilization factor' is calculated using 

the hourly load profile data published in the EFS. This is done by calculating the average 

demand across the 8,760 hours divided by the 95th percentile demand for each end-use service 

demand in each model region for which hourly load profiles are available. The existing capacity 

of the buildings sector technologies is then estimated as the service demand in 2017 from EFS 

scaled using the calculated utilization factors. 
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2) MARKAL database: We rely on existing capacity estimations from the U.S. EPA MARKAL 

database.22 MARKAL reports the existing capacities for most technologies listed in the EIA 

dataset for the nine census divisions. However, since our regional representation differs from the 

census divisions, we scale the reported existing capacities using U.S. Census state population 

data to obtain estimates of existing capacity in each U.S. state. Finally, we aggregate up to the 

regions shown in Supplementary Fig. 1 and estimate the existing capacities of the technologies 

represented. MARKAL estimates the existing capacity by multiplying the demand met (taken 

from AEO) in an end-use service sub-sector by the estimated market share of a technology 

contributing to the end-use service category. This value is then divided by a utilization factor to 

estimate the existing capacity of a certain technology in a given region.  

Transportation sector: 

The transportation sector models the following transport modes: light-duty vehicles, trucks, 

buses, rail passenger, rail freight, subways, aviation, marine, and off-highway. The demands, 

efficiencies, and costs for these transport modes are drawn from various data sources, including 

the MARKAL database, Princeton's Net-Zero America study, the National Renewable Energy 

Laboratory, and Argonne National Laboratory. 

The transportation sector in our database can be split into three categories: light-duty, medium-

duty, and heavy-duty vehicles. We represent seven light-duty vehicle-size classes. We 

exogenously constrain the percent of end-use demand met by each size class. As Temoa 

optimizes for the least-cost solution, the model would deploy only cheap, fuel-efficient minicars 

and compact cars without this constraint. We base size-class demand distributions using the 

MARKAL database. Medium-duty vehicles consist only of medium-duty trucks, corresponding 

to class 6 and 7 trucks. Heavy-duty vehicles include heavy trucks, buses, passenger and freight 

rail, aviation, marine vessels, and off-highway vehicles. Each transportation technology meets a 

separate, exogenously specified end-use demand. Depending on the technology, the demand may 

be in ton miles, passenger miles, or vehicle miles traveled. Temoa does not currently allow for 

modal switching. For example, a long-haul truck cannot meet the same freight demand as a train; 

the two have distinct exogenously defined demand profiles. Existing work shows that modal 

switching is one effective means of reducing transportation energy consumption, and future work 

will incorporate modal switching into the Temoa framework.23 

We define technology-specific discount rates, or hurdle rates, for some technologies. Hurdle 

rates allow the modeler to account for consumer preferences otherwise ignored in a least-cost 

optimization model.24 In the light-duty vehicle sector, we assume that conventional and hybrid 

gasoline-fueled vehicles (excluding plug-in hybrid vehicles) have a 5% hurdle rate, equal to the 

model's global discount rate, and all other powertrains have a 6% hurdle rate. For heavy-duty 

vehicles, conventional technologies have a 5% hurdle rate, and alternative-fueled vehicles have a 

10% hurdle rate. 
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Industrial Sector: 

The industrial sector in the OEO database is subdivided into the manufacturing and non-

manufacturing sectors. Their representation in the OEO database consists of two key 

components: 1) end-use service demands and 2) the demand technologies/processes used to meet 

those demands. 

Service Demands: End-use demands in the industrial sector of the database are aggregated based 

on the North American Industry Classification System (NAICS). Supplementary Table 2 shows 

the end-use demands represented, mapped to their NAICS codes. The sectors represented here 

account for approximately 99% of industrial energy consumption per the EIA. The demands for 

these industrial sub-sectors are represented in estimates of annual billion dollars of production 

shipment value, except cement manufacturing, where demands are instead represented in a 

million metric tons of cement production. These demands are derived from the Manufacturing 

Energy Consumption Survey (MECS) for the base year 2014 on a U.S. state-by-state basis. The 

state-based demands are then aggregated into the regions shown in Supplementary Fig. 1. 

Subsector-specific growth rates are applied to the end-use demands in the industrial sector. For 

example, growth in demand in the petroleum refining and the iron and steel mills and ferroalloys 

sub-sectors are assumed to be flat based on the refinery utilization and iron and steel 

manufacturing projections and in the AEO reference case. Based on other work, the demand for 

plastic and rubber products is assumed to increase by 3% annually from 2020 to 2050.25 The 

growth in demand for cement manufacturing is also taken from the AEO reference case. Finally, 

the growth rates of all other manufacturing and non-manufacturing sub-sectors are assumed to 

increase at an annual rate of 1%. 
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Supplementary Table 2: Annual service demand categories making up the Industrial 

Sector. 

Sub-sector End-use demand 

Manufacturing Food and Beverage 

Manufacturing Pulp, Paper and Paperboard Mills 

Manufacturing Petroleum Refining 

Manufacturing Chemical Manufacturing 

Manufacturing Plastics and Rubber Products 

Manufacturing Cement Manufacturing 

Manufacturing Iron and Steel Mills and Ferroalloys 

Manufacturing Alumina and Aluminum 

Manufacturing All other manufacturing 

Non-Manufacturing Agriculture – Crops 

Non-Manufacturing Agriculture – Other 

Non-Manufacturing Coal Mining 

Non-Manufacturing Oil and Gas Mining 

Non-Manufacturing Metal and other Non-Metal Mining 

Non-Manufacturing Construction 

 

Demand Technology Specification: Due to the heterogeneous nature of the industrial sector, 

explicit end-use technology options with costs and efficiencies are not depicted for most 

subsectors. Instead, we consider the major energy consumed by common industrial processes to 

account for the heterogeneity across the industrial sector. These industrial processes include 1) 

process heating, 2) conventional boiler use, 3) combined heat and power or co-generation 

systems, 4) machine drives, 5) facility heating ventilation and air conditioning systems, 6) 

process cooling and refrigeration and 7) a catch-all 'other' energy use category. However, we 

incorporate technological choice in the case of new boiler use and process heat. We specify cost 

premiums for new conventional electric boilers (368 $2016/kW), electric process heating 

equipment (368 $2016/kW), hydrogen boilers (227 $2016/kW), and hydrogen process heating 

equipment (227 $2016/kW) across the industrial manufacturing sectors. We also set the fixed 

cost premiums at 0.6 $2018/kW for the entire lifetime of these boilers and process heating 

equipment (20 years). In our modeling approach, heavy industries, including cement, chemicals, 

iron and steel mills, ferro-alloys, petroleum refining, and plastics, are precluded from using 

hydrogen or electricity for process heat. However, we assume that all sectors can electrify 

conventional boilers. 
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Supplementary Methods 4: Inflation Reduction Act Representation 

We include the major provisions from the 2022 Inflation Reduction Act. The provisions we 

model include the investment and production tax credits for renewable electricity generators, 

carbon capture, and use/sequestration, the production tax credit for existing nuclear capacity, the 

clean hydrogen production tax credit, and tax credits for passenger and commercial vehicles. We 

provide details on each modeled provision below. 

Production Tax Credit (sections 45, 45Y): The production tax credit (PTC) provides 

$27.50/MWh over ten years of operation for qualified facilities (assuming labor requirements are 

met). Bonuses are available for domestic content and projects located in energy communities. 

Following modeling assumptions from the National Renewable Energy Laboratory, we assume 

the bonus credits start at an average rate of 5% in 2023, increase to 10% by 2028, and stay at 

10% until the credit expires in 2033. We also adjusted the tax credit to align with Temoa’s 5-year 

time periods. The IRA PTC begins in 2023, so it is available only in the last two years of 

Temoa’s first time period (2020-2024). We prorate the tax credit as necessary, given our 5-year 

model increment, ensuring that projects receive the equivalent of 10 years of tax credits. We 

represent the IRA’s extension of the existing PTC (section 45) and the newly introduced 

technology-neutral PTC (section 45Y) that allows any zero-emission generation to qualify. 

Under section 45, qualifying technologies are solar, onshore and offshore wind, geothermal, 

biomass, and hydropower. Section 45 is replaced with 45Y in 2025. 

Investment Tax Credit (sections 48, 45E): The investment tax credit (ITC) offers 30% of a 

project’s installed capital costs, plus bonuses for domestic content and energy community 

locations. Pre-IRA, an ITC of 26% was available. We model the ITC as a reduction in capital 

cost for qualifying technologies, which include solar, on and offshore wind, geothermal, and 

energy storage. In Temoa’s first time period, we assume new qualifying technologies could 

receive a 26% reduction in 2020 and 2021 and a 30% reduction for 2022-2024, for an average 

credit of 28.4%. Projects constructed in the model’s second time period are eligible for full 

credit. The ITC drops to 22.5% in 2034, after which it sunsets.  

Again, following the NREL convention, we assume a 5% bonus starting in 2023 that increases to 

10% by 2028, where it stays until the credit sunsets after 2034. We represent the IRA’s extension 

of the existing ITC (section 48) and the newly introduced technology-neutral ITC (section 48E) 

that allows any zero-emission generation to qualify.  

Carbon Capture (section 45Q): Credits for carbon capture vary depending on the source of the 

carbon dioxide and whether the captured carbon is sequestered or used. For post-combustion 

carbon capture, facilities earn $85/tonne for sequestered CO2 and $60/tonne for facilities that 

capture and use the CO2. For direct air capture facilities, the credits increase to $180/tonne for 

sequestration and $130/tonne for use. While we do not represent enhanced oil recovery, we 

credit facilities using CO2 to produce synthetic fuels. We assume all wage and apprenticeship 

requirements are met. The credit is available for new facilities for 12 years, and facilities must be 

in place by 2033. Like the PTC and ITC, we model the credit in the first and third time periods as 
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a weighted average to effectively prorate Temoa’s five-year time periods and the credit’s time 

horizon.  The credit is modeled as a negative variable cost.  

Existing Nuclear (section 45U): Existing nuclear technologies receive $30/MWh starting in 

2024 and sunsetting in 2032. We model this credit as a negative variable cost, with the first and 

third time periods receiving a weighted average credit of 1/5 and 3/5, respectively.   

Clean Hydrogen (section 45V): The clean hydrogen tax credit is tiered based on the carbon 

intensity of the production mechanism (see Supplementary Table 3). With the current average 

grid mix, electrolytic hydrogen is not eligible for even the lowest tier. We allow hydrogen 

produced by biomass with CCS or an electrolyzer fed with new zero-emission electric capacity 

to receive the full $3/kg H2 credit. The International Energy Association assumes an emission 

factor of 1.0 kg CO2/kg H2 for natural gas reforming with carbon capture, qualifying for the 

second tier of the tax credit ($1/kg H2). All credits are modeled as a negative variable cost.  

Supplementary Table 3: Hydrogen credits in the Inflation Reduction Act (IRA) by carbon 

intensity in kilograms of CO2 equivalents incurred by hydrogen production.26 

Carbon intensity 

 [kg CO2-eq / kg H2] 

IRA credit  

[$ / kg H2] 

> 4.0 0 

2.5 – 4.0 0.06 

1.5 – 2.5 0.075 

0.45 – 1.5 1.00 

< 0.45 3.00 

 

Passenger Vehicles (section 30D): Individuals purchasing a qualified plug-in electric vehicle 

(EV) or fuel cell vehicle (FCV) between 2023 and 2032 may be eligible for credit up to $7,500 

(segmented into two $3,750 credits). The credits are subject to several requirements, including 

limits on the vehicle’s manufacturer-suggested retail price (MSRP), the individual’s adjusted 

gross income, requirements for domestic battery assembly, critical mineral sourcing, and 

avoidance of entities of concern. The number of vehicles and individuals qualifying for the credit 

remains uncertain. Still, a recent report from the International Council on Clean Transportation 

(ICCT) and Energy Innovation Policy & Technology estimates the fraction of vehicle sales 

eligible for each. We use the report’s “moderate” scenario in our modeling. The study assumes 

that 100% of new EVs are eligible for the full $3,750 domestic battery assembly credit. In 2023, 

the study assumes 100% of new EVs meet the critical material requirements, dropping to 79% in 

2025 and 72% in 2030 as the requirements increase in stringency. In 2032, the study assumes 

78% of vehicles qualify. The report assumes that 87% of new EVs meet MSRP eligibility and 

50% meet the entities of concern provision. Finally, the study assumes that 68% of individuals 
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meet the adjusted gross income (AGI) requirements in 2023, rising to 77% in 2030. We model 

the provision as an average credit, implemented as a reduction in capital cost applied to all 

qualifying vehicles (all EVs and FCVs). Using the fractions outlined above, we calculate the 

average credit in a given year as follows: 

𝐶𝑇 =  𝐹𝑀𝑆𝑅𝑃𝐹𝐴𝐺𝐼𝐹𝐸𝐶[(𝐶𝐷𝐵𝐴𝐹𝐷𝐵𝐴) + (𝐶𝐶𝑀𝑆𝐹𝐶𝑀𝑆)] 

(8) 

Where 𝐶𝑇 is the total credit available, 𝐶𝐷𝐵𝐴 is the domestic battery assembly credit,  𝐶𝐶𝑀𝑆 is the 

critical mineral sourcing credit, and 𝐹𝑥 are the fractions of vehicles meeting the MSRP, AGI, 

entities of concern, domestic battery assembly, and critical minerals sourcing requirements. 

Supplementary Table 4 outlines the calculated credit values in each year and each Temoa time 

period. 
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Supplementary Table 4: Application of IRA vehicle credits. FCMS – fraction of vehicles 

meeting the critical minerals sourcing requirements, FMSRP – fraction of vehicles meeting 

the manufacturer-suggested retail price requirements, FAGI – fraction of vehicles meeting 

the adjusted gross income requirements, FEC – fraction of vehicles meeting the entities of 

concern requirements, CDBA – domestic battery assembly credit, CCMS – critical mineral 

sourcing credit, CT – total credit available.  

Year 𝑭𝑪𝑴𝑺 𝑭𝑴𝑺𝑹𝑷 𝑭𝑨𝑮𝑰 𝑭𝑬𝑪 𝑪𝑫𝑩𝑨 𝑪𝑪𝑴𝑺 𝑪𝑻 

Credit by time 

period, 2022 USD 

2020 0 0 0 0 0 0 $0.00 $3,000.00 

2021 0 0 0 0 0 0 $0.00 
 

2022 0 0 0 0 0 0 $0.00 
 

2023 1 1 1 1 $3,750 $3,750 $7,500.00 
 

2024 1 1 1 1 $3,750 $3,750 $7,500.00 
 

2025 0.79 0.87 0.68 0.5 $3,750 $3,750 $3,971.12 $4,059.41 

2026 0.698 0.87 0.698 0.5 $3,750 $3,750 $3,866.73 
 

2027 0.716 0.87 0.716 0.5 $3,750 $3,750 $4,008.49 
 

2028 0.734 0.87 0.734 0.5 $3,750 $3,750 $4,152.37 
 

2029 0.752 0.87 0.752 0.5 $3,750 $3,750 $4,298.36 
 

2030 0.72 0.87 0.77 0.5 $3,750 $3,750 $4,320.86 $2,637.73 

2031 0.75 0.87 0.77 0.5 $3,750 $3,750 $4,396.22 
 

2032 0.78 0.87 0.77 0.5 $3,750 $3,750 $4,471.58 
 

2033 0 0 0 0 0 0 $0.00 
 

2034 0 0 0 0 0 0 $0.00 
 

2035 0 0 0 0 0 0 $0.00 
 

 

Commercial Vehicles (section 45W): Commercial vehicles are not subject to the same 

restrictions as passenger vehicles. The IRA provides a tax credit equal to 30% of the vehicle's 

purchase price for qualifying light-, medium-, and heavy-duty vehicles. Light-duty commercial 

vehicles tax credits cannot exceed $7,500, and medium- and heavy-duty vehicles may not 

receive credits over $40,000. To implement this provision, we reduce the capital cost by 30%. If 

30% of the capital cost exceeds $7,500/$40,000, we reduce the capital cost by that value.   
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Stacked credits: Temoa’s technology-explicit representation enables us to represent distinct 

pathways in cases where a technology can qualify for one of multiple provisions.  Renewable 

energy project owners may receive either the PTC or ITC, but not both. Similarly, projects 

cannot qualify for both 45V and 45Q. We implement tax credits such that the model may choose 

one or the other, allowing it to optimize credit efficacy.  
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Supplementary Note 1: Temporal-resolution representation sensitivity 

Research has highlighted the importance of adequate representations of operation detail in 

capacity expansion models for the power system, particularly at higher renewable penetration 

levels.9,10 The incorporation of this operational detail comes with an additional computational 

burden. Depending on the computational resource available at an energy system modeler’s 

disposal, it may be possible to run optimization models (in a greenfield setting) of up to 96 

regions with 2-hourly time steps for a year for hundreds of scenarios in “reasonable” amounts of 

time.11 However, even highly detailed models produce outputs with uncertainty.12 Furthermore, 

researchers are required to balance between model resolution, uncertainty, and computational 

burden. 13  

Due to computational limits, the power system representation used in the MGA simulations in 

the current study relies on an aggregate representation of twelve time slices. Our aim with this 

analysis is to answer the question of uncertainty in capacity expansion across multiple decades 

for hundreds of net-zero futures. We are interested in capturing insights from multi-decadal 

pathway optimization for near cost-optimal futures instead of evaluating a highly detailed 1-year 

snapshot. Due to the need to create many future scenarios, we face a tradeoff between temporal 

resolution and computational burdens. While high-resolution models are necessary to assess finer 

points of implementation in energy transitions, they cannot provide the range of scenarios we 

explore in this analysis. The distribution of pathways enabled by hundreds of model runs with 

lower temporal resolution can and should be considered in tandem with high resolution analyses 

that offer few modeling runs. The feasibility space discussed in the main manuscript should also 

include an evaluation of power system reliability for each near-cost-optimal pathway.
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Supplementary Note 2: MGA iteration termination criteria 

The near-optimal decision space in energy system linear problems is typically vast. For example, in our 

model, there are numerous (1080 unique technologies) and diverse technologies represented. A 

comprehensive search of this space can pose challenges due to its multi-dimensional nature. Recent 

methods in literature employ strategies that attempt to identify all feasible design options within the 

convex hull of the MGA solution space.14 These methods use a subset of dimensions of interest, 

determined beforehand, in an algorithmic way with unit vectors to look for the decision boundaries of the 

near-optimal space. The current study employs a search function that weights the activities (or flow) 

through technologies in the model with a random weight sampled from a uniform distribution between -1 

and 1. Activities are used in the objective function as they represent the contribution of each technology 

towards meeting intermediate or end-use demands. Allowing both positive and negative weights resulted 

in a more expansive set of solutions relative to “one-sided” weights (example: [0, 1]). Overall, this 

approach allows for an agnostic inclusion of all technologies in the model to influence the search 

direction in the convex hull, which is the primary tradeoff with other approaches where a small subset of 

technologies (or technology groups) are chosen as axes to search on apriori.  

To illustrate that the number of MGA iterations from which statistics are drawn is sufficient, we provide 

the change in statistics as a function of iterations for the quantities of interest covered in the manuscript. 

There is little change in the distributions in almost all cases after 300-400 iterations. However, in a multi-

dimensional space such as the one in consideration here, even an extended number of iterations may not 

be sufficient to capture all energy system configurations of interest. It is possible that the structure of the 

search function (objective function) in the current study is unable to find certain configurations of the 

energy system. Adoption of this approach comes with a tradeoff of not having complete assurance of a 

comprehensive search in the near-optimal decision space. Applying the weighting factors directly to 

activity variables, however, ensures a broad response in the model. In our formulation of MGA, we see 

more than 95% of activities vary, with 75% of activities respond showing a coefficient of variation larger 

than 20% in response to different weighting factors, illustrating the breadth of the solution space that is 

being explored. This shows that our approach is capturing a wide range of possible futures within the 

solution space. 
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Supplementary Figure 2: Convergence in statistics of parameters discussed in the manuscript as a 

function of MGA iteration (up to 1,100 iterations). The different colors in each panel show the 10th, 

25th, 50th, 75th, and 90th percentile values for the different parameters. The plot presents the 

convergence of primary energy use of fossil fuels (a, b, c, d), electricity use by sector (e, f, g, h), 

electric capacity (i, j, k, l, m, n), and carbon mitigation technologies (o, p, q, r). Primary energy is in 

exajoules (EJ), electricity use is in terawatt-hours (TWh), electricity capacity is in gigawatts (GW) 

and carbon mitigation technologies is in million tons of CO2 (Mt CO2). BECCS – Bio-energy with 

carbon capture and sequestration; DAC – Direct Air Capture. Source data are provided as a 

Source Data file. 
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Supplementary Note 3: Sensitivity to input parameters 

In this section we discuss the influence of uncertain inputs to the model: 1) the fuel prices, 2) cost of 

renewables and 3) demand projections in the residential, commercial, transportation and industrial 

sectors. The sensitivity of these input parameters is assessed against a subset of the major outputs from 

the model: 1) electric capacity, 2) electricity generation, 3) electricity use by sector, 4) energy system 

wide hydrogen production, 5) total primary energy use and, 6) the use of carbon management 

technologies in Figures S3-S5. For an ideal parametric uncertainty assessment of the model, advanced 

methods such as the Method of Morris should be employed. These methods are capable of 

comprehensively evaluating the influence of model parameters.  

Sensitivity to renewable prices trajectories: Supplementary Figure 3 shows the model results when the 

cost of renewables is perturbed from the “Moderate” market scenario as projected by the Annual 

Technology Baseline (ATB, Table 1). The ATB also publishes “Conservative” and “Advanced” market 

scenarios. Supplementary Figure 3 demonstrates that, under a net-zero emissions constraint, these higher 

and lower cost perturbations result in minor changes in the deployment of electric capacity and generation 

resources over the modeling horizon. In the scenario with higher renewable costs, nuclear generation 

increases slightly, whereas it decreases in the scenario with lower renewables cost. Additionally, the 

higher renewables cost scenario results in reduced hydrogen production. Conversely, the lower 

renewables cost case results in an increase in hydrogen production.  
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Supplementary Figure 3: Sensitivity of model results to renewable price trajectories. Sensitivity of 

renewable price trajectories as observed in: a) electric capacity in gigawatts (GW), b) electric 

generation in terawatt-hours (TWh), c) electricity use by sector in TWh, d) hydrogen production 

pathways in petajoules (PJ), e) energy system wide primary energy use in exajoules (EJ), and f) 

carbon management technologies in tons of CO2. The left bar represents the results with the 

moderate renewable cost assumptions (Net-Zero, presented as the least-cost net-zero pathway in the 

manuscript), the middle bar represents a high renewable cost scenario (High Ren), and the right 

bar represents a low renewable cost scenario (Low Ren). NG Steam Methane Reforming – Natural 

Gas Steam Methane Reforming; CCS – Carbon Capture and Sequestration. Source data are 

provided as a Source Data file. 

Sensitivity to fossil fuel price trajectories: Supplementary Figure 4 shows model results obtained by 

perturbing the fossil fuel prices from the “Reference” scenario projected by the Annual Energy Outlook 

(AEO, Table 1). The AEO also publishes “Low” and “High” fuel price scenarios. Supplementary Figure 4 

shows that these price profiles result in some notable changes across the modeling horizon. Electrification 

in the transportation sector is sensitive to petroleum prices, with a slower rate of electrification noted 

when petroleum prices are lower and a faster rate when prices are higher. By 2050, the total electricity use 

in the transportation sector is slightly higher in the scenario with higher petroleum prices compared to 
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other scenarios. The high oil price scenario leads to substantial hydrogen production 2025 to 2050. In this 

scenario, the expensive transportation fuels are displaced by synthetic fuels created via the Fischer-

Tropsch process, using hydrogen in their synthesis. The primary energy panel in Supplementary Figure 4 

also highlights the difference in petroleum utilization across the sensitivity scenarios in response to the 

price profiles. 

 

 

Supplementary Figure 4: Sensitivity of model results to fuel price trajectories. Sensitivity of fuel 

price trajectories as observed in: a) electric capacity in gigawatts (GW), b) electric generation in 

terawatt-hours (TWh), c) electricity use by sector in TWh, d) hydrogen production pathways in 

petajoules (PJ), e) energy system wide primary energy use in exajoules (EJ), and f) carbon 

management technologies in tons of CO2. The left bar represents the results presented as the least-

cost net-zero pathway in the manuscript (Net-Zero), the middle bar represents a high fuel price 

scenario (High Oil), and the right bar represents a low fuel price scenario (Low Oil). NG Steam 

Methane Reforming – Natural Gas Steam Methane Reforming; CCS – Carbon Capture and 

Sequestration. Source data are provided as a Source Data file. 
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Sensitivity to exogenously specified demands: Supplementary Figure 5 shows model results obtained by 

perturbing the exogenously specified demands for all service demands in the model by 10%. The service 

demands are sector-specific, and Supplementary Method 3 provides details on the underlying assumptions 

for each of these demands. Supplementary Figure 5 shows that nearly all of the displayed model outputs 

respond to perturbations in the demand across the modeling horizon. Notably, electricity demand is not 

exogenously specified but instead responds to changes in service demands from the buildings, 

transportation, and industrial sectors. Lower service demands in these sectors translate to a reduced need 

for electricity, and vice versa. Hydrogen production follows this trend as well. In terms of primary energy, 

solar, wind and nuclear resources show the most variation across the scenarios. Finally, carbon 

management technologies are relatively stable by 2050, though they exhibit some variation earlier in the 

modeling horizon. 

 

 

Supplementary Figure 5: Sensitivity of model results to exogenous demand assumptions. Sensitivity 

of exogenously specified demands as observed in: a) electric capacity in gigawatts (GW), b) electric 

generation in terawatt-hours (TWh), c) electricity use by sector in TWh, d) hydrogen production 

pathways in petajoules (PJ), e) energy system wide primary energy use in exajoules (EJ), and f) 
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carbon management technologies in tons of CO2. The left bar represents the results presented in the 

least-cost net-zero pathway in the manuscript (Net-Zero), the middle bar represents a high service 

demand scenario (High Dem), and the right bar represents a low service demand scenario (Low 

Dem). NG Steam Methane Reforming – Natural Gas Steam Methane Reforming; CCS – Carbon 

Capture and Sequestration. Source data are provided as a Source Data file. 

Uncertain input parameters have the potential to influence modeling results in a significant way. Here, we 

demonstrate that substantial variation in the model inputs results in model results that are fully 

encompassed in the range of results obtained from the MGA model runs. While this does not guarantee 

that all parametric tests or more stringent tests on the studied parameters will be inclusive of the MGA 

results, it does demonstrate that the MGA approach is identifying near-cost-optimal results that include 

and extend beyond those from the standard parametric sensitivity analysis.  
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Supplementary Note 4: Technology Choices with Varied Availability of Nascent 

Technologies 

This section explores technology/energy carrier choices when technologies that are still in nascent stages 

for large-scale use are either abundant or scarcely available. We analyzed subsets of the MGA runs, 

including the top 10% or the bottom 10% regarding the use of: 1) hydrogen, 2) DAC, 3) synthetic fuels, 

and 4) BECCS. 

Low and high hydrogen: Supplementary Figure 6 shows that scenarios with higher hydrogen use greatly 

reduce coal consumption relative to low hydrogen use scenarios through the modeling horizon. However, 

coal is eliminated across both scenarios by 2050. Low hydrogen scenarios also result in a narrowing of 

natural gas use outcomes. Scenarios with low hydrogen availability create a lower ceiling for BECCS. 

These scenarios are also associated with higher DAC use to accommodate the loss of a low/zero carbon 

energy carrier. 

 

Supplementary Figure 6: Comparison of fossil fuel use in low/high hydrogen production pathways. 

Primary energy in near cost-optimal net-zero pathways with low hydrogen production as defined 

by the lowest 10th percentile of all 1100 MGA iterations (thus representing results from 110 MGA 

runs) of coal (a, b), natural gas (c, d), and petroleum (e, f). Primary energy of the highest 10th 

percentile of hydrogen production pathways, of coal (g, h), natural gas (i, j), and petroleum (k, l). 

The solid line shows the deterministic least-cost net-zero pathway, while the dashed lines 

depict the least-cost current-policy pathway. All values are presented in exajoules (EJ). Source 

data are provided as a Source Data file. 

Low and high DAC: Supplementary Figure 7 shows that scenarios with lower DAC use are associated 

with higher hydrogen use. These lower DAC scenarios were also associated with fewer instances of low 

BECCS. This relationship has also been observed in other work.15 Unsurprisingly, scenarios with high 

DAC are associated with increased natural gas consumption compared to low DAC scenarios.  
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Supplementary Figure 7: Comparison of carbon management technologies in low/high direct air 

capture use pathways. The box plots show the deployment of bio-energy with carbon capture and 

storage (BECCS) (a, g), coal power with carbon capture and storage (coal CCS) (b, h), natural gas 

steam methane reforming with carbon capture and storage (natural gas SMR with CCS) (c, i), total 

carbon capture and storage (CCS) as the sum of BECCS, coal CCS, and natural gas CCS, (d, j),  

direct air capture (DAC) (e, k), and total geologic sequestration (f, l). For each category, the left 

panel shows pathways with low DAC use as defined by the lowest 10th percentile of all 1100 MGA 

iterations (thus representing results from 110 MGA runs). The panel on the right represents the 

same but for the highest 10th percentile of DAC use pathways. The solid line shows the 

deterministic least-cost net-zero pathway, while the dashed lines depict the least-cost 

current-policy pathway. All values are in in million tons of CO2/year (Mt CO2/year). Source 

data are provided as a Source Data file. 

Low and high synthetic fuel use: Supplementary Figure 8 shows that scenarios with high synthetic fuel 

use result in the narrowing of outcomes from the power sector compared to low synthetic fuel use 

scenarios. High synthetic fuel use scenarios result in the elimination of coal CCS plants. While DAC 

levels by 2050 were comparable across the scenarios, the deployment of DAC starts earlier in the high 

synthetic fuel use scenarios. Unsurprisingly, hydrogen use in these high scenarios is also higher. 
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Supplementary Figure 8: Comparison of power sector characteristics in low/high synthetic fuel use 

pathways. Near cost-optimal pathways in the power sector where box plots show total electricity 

use across the entire energy system (a, g), electricity generation from solar (b, h), electricity 

generation from wind (c, i), electricity generation from nuclear (d, j), electricity generation from 

natural gas (e, k) all in terawatt-hours (TWh). Panels f and l show the battery capacity in gigawatts 

(GW) deployed in the near cost-optimal decarbonization pathways as presented in the manuscript. 

For each category, the left panel shows pathways with low synthetic fuel use as defined by the 

lowest 10th percentile of all 1100 MGA iterations (thus representing results from 110 MGA runs). 

The panel on the right represents the same but for the highest 10th percentile of synthetic fuel use 

pathways. The solid line shows the deterministic least-cost net-zero pathway, while the 

dashed lines depict the least-cost current-policy pathway. Source data are provided as a 

Source Data file. 

Low and high BECCS: Supplementary Figure 9 shows that scenarios with increased BECCS use see more 

coal consumption across the modeling horizon. As in the case of the high and low hydrogen use 

comparisons, coal is eliminated across both scenarios by 2050. Petroleum and natural gas largely show 

the same range of outcomes across the two scenarios.   
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Supplementary Figure 9: Comparison of fossil fuel use in low/high bio-energy with carbon capture 

and storage pathways. Primary energy in near cost-optimal net-zero pathways with low bio-energy 

with carbon capture and sequestration (BECCS) use as defined by the lowest 10th percentile of all 

1100 MGA iterations (thus representing results from 110 MGA runs) of coal (a, b), natural gas (c, 

d), and petroleum (e, f). Primary energy of the highest 10th percentile of BECCS use, of coal (g, h), 

natural gas (i, j), and petroleum (k, l). All values are presented in exajoules (EJ). The solid line 

shows the deterministic least-cost net-zero pathway, while the dashed lines depict the least-

cost current-policy pathway. All values are in exajoules (EJ). Source data are provided as a 

Source Data file. 
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Supplementary Figures: 

 

 
 

Supplementary Figure 10: Electric capacity in near cost-optimal pathways. Near cost-

optimal pathways showing capacity in the power sector for a) total capacity, b) solar, c) 

wind, d) nuclear, e) coal, and f) natural gas in net-zero CO2 pathways. All values are in 

gigawatts (GW). The solid line shows the deterministic least-cost net-zero pathway, while 

the dashed lines depict the least-cost current-policy pathway. Source data are provided as a 

Source Data file. 
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Supplementary Figure 11: Fraction of renewables in near cost-optimal pathways. Fraction 

of electricity generation in each time period from only renewables (green) and renewables 

+ nuclear (dark green) in the near cost-optimal decarbonization pathways. Source data are 

provided as a Source Data file. 
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Supplementary Figure 12: Electricity use across the energy system. Electricity use for the 

a) total energy system, b) commercial, c) residential, d) industrial, and e) transport sectors 

in terawatt-hours (TWh) across the near cost-optimal net-zero pathways. The solid line 

shows the deterministic (least-cost) net-zero scenario, while the dashed lines distinguish the 

current-policy deterministic run. All values are in terawatt-hours (TWh). Source data are 

provided as a Source Data file.  
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