Intrinsic proteolytic activities from cancer cells are sufficient to activate alkoxyamine prodrugs and induce cell death

Marion Filliâtre^{1,+}, Seda Seren^{2,+}, Ange W. Embo-Ibouanga¹ Ange, Jean-Patrick Joly¹; Véronique Bouchaud², Ines Kelkoul², Sylvain R. A. Marque¹, Gérard Audran¹, Pierre Voisin², Philippe Mellet^{2,3,*}

¹ Aix-Marseille University, CNRS, UMR 7273, 13007 Marseille, France.

² Magnetic Resonance of Biological Systems, UMR 5536 CNRS-University of Bordeaux, 33076 Bordeaux, France.

³ INSERM, 33076 Bordeaux, France.

+ These authors contributed equally

*Correspondence: philippe.mellet@rmsb.u-bordeaux.fr

Characterization of alkoxyamines alkoxyamines 1.c-a and 2.c-a:

1-C ¹ H, ¹³ C, DEPT 135 AND HRMS	3
2-c ¹ H, ¹³ C, DEPT 135 AND HRMS	5
1-в ¹ Н, ¹³ С, DEPT 135 AND HRMS	7
2-в ¹ Н, ¹³ С, DEPT 135 and HRMS	9
1-A ¹ H, ¹³ C, DEPT 135 AND HRMS	11
2-A ¹ H, ¹³ C, DEPT 135 AND HRMS	13
HPLC TRACES OF PGLU-GLY-LYS-ANILIDE-TEMPO 1.A AND PGLU-GLY-ARG-ANILIDE-TEMPO 2.A	15
Kinetic Analysis of Alkoxyamine Bond Homolysis	15
Proof for the inactivity of MMP-2 on suc-AAPV-Anilide-TEMPO	16

Figure S1: 1-c (¹H NMR)

Figure S3: 1-c (¹³C DEPT NMR)

Figure S6: 2-c (¹³C NMR)

Figure S8: 2-c (HRMS)

855.5013

1: TOF MS ES+ 1.96e6

Figure S9: 1-b (¹H NMR)

Figure S10: 1-b (¹³C NMR)

Figure S12: 1-b (HRMS)

Figure S13: 2-b (¹H NMR)

Figure S14: 2-b (13C NMR)

Figure S15: 2-b (¹³C DEPT 135 NMR)

Figure S16: 2-b (HRMS)

Figure S17: 1-a (¹H NMR)

Figure S18: 1-a (¹³C NMR)

Figure S19: 1-a (¹³C DEPT 135 NMR)

Figure S20: 1-a (HRMS)

Figure S21: 2-a (¹H NMR)

Figure S22: 2-a (¹³C NMR)

Figure S23: 2-a (¹³C DEPT 135 NMR)

Figure S24: 2-a (HRMS)

1: TOF MS ES+ 6.02e6

Figure S25: HPLC traces of pGlu-Gly-Lys-Anilide-TEMPO 1.a (Black) Succinyl-Ala-Ala-pro-Val-anilide-TEMPO (blue) pGlu-Gly-Arg-Anilide-TEMPO 2.a (green) for purity check. Detection at 214 nm. Column x-bridge BEH C-18 46x50 mm. Gradient: Solvent A (0.05% TFA in water) to solvent B (0.05% TFA in acetonitrile) in 20 minutes.

Kinetic Analysis of Alkoxyamine Bond Homolysis.

The kinetic homolysis for peptide-alkoxyamines reported in Table 1 was recorded in EPR using water as solvent. Table S1. Experimental temperatures (T), homolysis rate constants k_d , activation energies E_a in H₂O for peptidealkoxyamine **1a** and **2a**.

Peptide-Alkoxyamine	T (∘C) ª	<i>k</i> _d (10 ^{−4} s ^{−1}) ^{a,b,c}	E _a (KJ.mol⁻¹) ^{b,d}
1a	95	4.6	124.8
2 a	95	2.7	126.5

^oIn water ^bValues measured for a mixture of diastereosisomers. ^cGiven by Equation (1). ^dGiven by Equation (2), and an averaged frequency factor was used A = 2.4.10⁻¹⁴ s⁻¹, R = 8.314 J.K⁻¹.mol⁻¹, k_d, and T are given in columns 2, 3 in Table 1.

The growth of nitroxide was recorded in the presence of an alkyl radical scavenger, i.e., O_2 here, to suppress the back reaction (k_c in Scheme 1), as already reported [1].

$$\begin{array}{c} R_1 \\ R_2 \end{array} \xrightarrow{R_3} \underbrace{k_d}_{k_c} \\ R_c \end{array} \begin{array}{c} R_1 \\ R_2 \end{array} \xrightarrow{R_1} N - 0 \cdot + \cdot R_3 \end{array}$$

Scheme S1. Dynamic covalent bond in alkoxymines: k_d stands for the homolysis rate constant and k_c stands for the re-formation reaction.

Homolysis rate constants kd are given by Equation S1 ([nitroxide] ∞ = [alkoxyamine]0 = 0.1 mM), and the subsequent activation energy values Ea are given by Equation S2, as follows [1]:

$$ln\left(\frac{[nitroxide]_{\infty} - [nitroxide]_{t}}{[nitroxide]_{\infty}}\right) = -k_{d} \cdot t \tag{1}$$
$$E_{a} = -RTln\left(\frac{k_{d}}{A}\right) \tag{2}$$

Figure S26: Proof for the inactivity of MMP-2 on suc-AAPV-Anilide-TEMPO.

Activity of MMP-2 sample was first verified by incubation the enzyme overnight at 37°C with a commercial substrate (M-1855, BACHEM) and running reverse phase HPLC:

The HPLC trace shows complete hydrolysis of the substrate.

Then suc-AAPV-Anilide-TEMPO was incubated overnight at 37 °C in the presence or absence of MMP-2.

No significant loss of the alkoxyamine is visible thus showing that MMP-2 does not hydrolyze the peptide from the prodrug.

References

[1] T. Reyser, T. To, C. Egwu, L. Paloque, M. Nguyen, A. Hamouy, J-L. S. gliani, C. Bijani, J-M. Augereau, JP. Joly, J. Portela, J. Havot, S.R.A. Marque, J. Boissier, A. Robert, F. Benoit-Vical, G. Audran, Alkoxyamines Designed as Potential Drugs against Plasmodium and Schistosoma Parasites. *Molecules*, **2020**, *25*, 3838.