# Supporting Information

## Atomistic Insights into Silicate Dissolution of Metakaolinite under Alkaline Conditions: Ab

# Initio Quantum Mechanical Investigation

Mohammadreza Izadifar<sup>1,\*</sup>, Neven Ukrainczyk<sup>1,\*</sup>, Eduardus Koenders<sup>1</sup>

<sup>1</sup>Institute of Construction and Building Materials, Technical University of Darmstadt, Franziska-Braun-Str. 3, 64287 Darmstadt, Germany

Corresponding authors: izadifar@wib.tu-darmstadt.de, ukrainczyk@wib.tu-darmstadt.de

## **Table of Contents**

### Tables

**Table S1:** Energy barrier ( $\Delta E_a$ ), and the energy change of reaction enthalpy ( $\Delta H$ ) computations with contribution of vdW interaction for models (1-4), hydrolysed by NaOH activator.

**Table S2:** Energy barrier ( $\Delta E_a$ ), and the energy change of reaction enthalpy ( $\Delta H$ ) computations without contribution of vdW interaction for models (1-4), hydrolysed by NaOH activator.

**Table S3:** Energy barrier ( $\Delta E_a$ ), and the energy change of reaction enthalpy ( $\Delta H$ ) computations with contribution of vdW interaction for models (1-4), hydrolysed by KOH activator.

**Table S4:** Energy barrier ( $\Delta E_a$ ), and the energy change of reaction enthalpy ( $\Delta H$ ) computations without contribution of vdW interaction for models (1-4), hydrolysed by KOH activator.

**Table S5:** Energy barrier ( $\Delta E_a$ ), and the energy change of reaction enthalpy ( $\Delta H$ ) computations with contribution of vdW interaction for models (1-4), hydrolysed by H<sub>2</sub>O activator.

### Figures

**Figure S1:** Minimum energy path for computation of energy barrier, along with the associated energy change in reaction enthalpy ( $\Delta H$ ) without contribution of vdW interaction for models (1-4) with NaOH absorbents.

**Figure S2:** Minimum energy path for computation of energy barrier, along with the associated energy change in reaction enthalpy ( $\Delta H$ ) without contribution of vdW interaction for models (1-4) with KOH absorbents.

| Models | $\Delta E_a$ (eV) | $\Delta E_a$ (kJ/mol) | <i>E</i> _reactant (eV) | <i>E_</i> transition state (eV) | <i>E_</i> product<br>(eV) | <i>∆H</i><br>(eV) | <i>∆H</i><br>(kJ/mol) |
|--------|-------------------|-----------------------|-------------------------|---------------------------------|---------------------------|-------------------|-----------------------|
| (1)    | 1.13              | 109.03                | -176.47                 | -175.34                         | -177.84                   | -1.37             | -132.18               |
| (2)    | 2.06              | 198.76                | -178.18                 | -176.12                         | -177.46                   | 0.72              | 69.47                 |
| (3)    | 1.18              | 113.85                | -191.61                 | -190.43                         | -191.54                   | 0.07              | 6.75                  |
| (4)    | 2.38              | 229.63                | -189.71                 | -187.33                         | -191.54                   | -1.83             | -176.56               |

**Table S1.** Results for four presented models with contribution of vdW interaction, hydrolysed by NaOH activator: energy barrier (activation energy) for hydrolysis reaction ( $\Delta E_a = E_{\text{transition state}} - E_{\text{reactant}}$ ), the energy change of reaction enthalpy ( $\Delta H = E_{\text{product}} - E_{\text{reactant}}$ ) obtained from first-principles based calculations.

| Models | $\Delta E_a$ (eV) | ∠ <i>La</i><br>(kJ/mol) | <i>E_</i> reactant (eV) | <i>E_</i> transition state (eV) | <i>E_</i> product<br>(eV) | <i>∆H</i><br>(eV) | <i>∆H</i><br>(kJ/mol) |
|--------|-------------------|-------------------------|-------------------------|---------------------------------|---------------------------|-------------------|-----------------------|
| (1)    | 1.35              | 130.25                  | -175.88                 | -174.53                         | -176.94                   | -1.06             | -102.27               |
| (2)    | 2.08              | 200.69                  | -177.46                 | -175.38                         | -176.71                   | 0.75              | 72.36                 |
| (3)    | 1.18              | 113.85                  | -190.65                 | -189.47                         | -190.70                   | -0.05             | 4.82                  |
| (4)    | 2.44              | 235.42                  | -188.81                 | -186.37                         | -190.70                   | -1.89             | -182.36               |

**Table S2.** Results for four presented models without contribution of vdW interaction, hydrolysed by NaOH activator: energy barrier (activation energy) for hydrolysis reaction ( $\Delta E_a = E_{\text{transition state}} - E_{\text{reactant}}$ ), the energy change of reaction enthalpy ( $\Delta H = E_{\text{product}} - E_{\text{reactant}}$ ) obtained from first-principles based calculations.

| Models | $\Delta E_a$ | $\Delta E_a$ | E_reactant | <b>E_transition</b> | <i>E</i> _product | ∆H    | $\Delta H$ |
|--------|--------------|--------------|------------|---------------------|-------------------|-------|------------|
|        | (eV)         | (kJ/mol)     | (eV)       | state (eV)          | (eV)              | (eV)  | (kJ/mol)   |
| (1)    | 1.04         | 100.34       | -176.63    | -175.59             | -178.17           | -1.54 | -148.58    |
| (2)    | 1.76         | 169.81       | -178.12    | -176.36             | -177.46           | 0.66  | 63.68      |
| (3)    | 1.26         | 121.57       | -192.20    | -190.94             | -191.25           | 0.95  | 91.66      |
| (4)    | 2.15         | 207.44       | -190.15    | -188.00             | -191.25           | -1.10 | -106.13    |

**Table S3.** Results for four presented models with contribution of vdW interaction, hydrolysed by KOH activator: energy barrier (activation energy) for hydrolysis reaction ( $\Delta E_a = E_{\rm transition}$  state –  $E_{\rm reactant}$ ), the energy change of reaction enthalpy ( $\Delta H = E_{\rm product} - E_{\rm reactant}$ ) obtained from first- principles based calculations.

| Models | $\Delta E_a$ (eV) | $\Delta E_a$ (kJ/mol) | <i>E_</i> reactant (eV) | <i>E_</i> transition state (eV) | <i>E_</i> product (eV) | ⊿ <i>H</i><br>(eV) | <i>∆H</i><br>(kJ/mol) |
|--------|-------------------|-----------------------|-------------------------|---------------------------------|------------------------|--------------------|-----------------------|
| (1)    | 1.06              | 102.27                | -175.83                 | -174.77                         | -177.32                | -1.49              | -143.76               |
| (2)    | 1.80              | 173.67                | -177.40                 | -175.60                         | -176.70                | 0.70               | 67.54                 |
| (3)    | 1.18              | 113.85                | -191.11                 | -189.93                         | -190.24                | 0.87               | 83.94                 |
| (4)    | 2.2               | 212.27                | -189.23                 | -187.03                         | -190.24                | -1.01              | -97.45                |

**Table S4.** Results for four presented models without contribution of vdW interaction, hydrolysed by KOH activator: energy barrier (activation energy) for hydrolysis reaction ( $\Delta E_a = E_{\text{transition state}} - E_{\text{reactant}}$ ), the energy change of reaction enthalpy ( $\Delta H = E_{\text{product}} - E_{\text{reactant}}$ ) obtained from first-principles based calculations.

| Models | $\Delta E_a$ (eV) | $\Delta E_a$ (kJ/mol) | <i>E_</i> reactant (eV) | <i>E_</i> transition state (eV) | <i>E_</i> product (eV) | <i>∆H</i><br>(eV) | <i>∆H</i><br>(kJ/mol) |
|--------|-------------------|-----------------------|-------------------------|---------------------------------|------------------------|-------------------|-----------------------|
| (1)    | 1.67              | 161.13                | -178.87                 | -177.20                         | -178.68                | 0.19              | 18.33                 |
| (2)    | 0.88              | 84.90                 | -178.58                 | -177.70                         | -178.71                | - 0.13            | -12.54                |
| (3)    | 1.62              | 156.30                | -193.42                 | -191.80                         | -193.20                | 0.22              | 21.22                 |
| (4)    | 0.71              | 68.50                 | -193.62                 | -192.91                         | -193.20                | 0.42              | 40.52                 |

**Table S5.** Results for four presented models with contribution of vdW interaction, hydrolysed by H<sub>2</sub>O activator: energy barrier (activation energy) for hydrolysis reaction ( $\Delta E_a = E_{\text{transition state}} - E_{\text{reactant}}$ ), the energy change of reaction enthalpy ( $\Delta H = E_{\text{product}} - E_{\text{reactant}}$ ) obtained from first-principles based calculations.



**Figure S1.** (A-D) Minimum energy path for computation of energy barrier (activation energy) of hydrolysis reaction ( $\Delta Ea$ ), along with the associated energy change in reaction enthalpy ( $\Delta H$ ) including (NaOH)<sub>1-4</sub> absorbents surrounded by hydration shell without contribution of vdW interaction as presented for four models (1-4), respectively.



**Figure S2.** (A-D) Minimum energy path for computation of energy barrier (activation energy) of hydrolysis reaction ( $\Delta Ea$ ), along with the associated energy change in reaction enthalpy ( $\Delta H$ ) including (KOH)<sub>1-4</sub> absorbents surrounded by hydration shell without contribution of vdW interaction as presented for four models (1-4), respectively.