Supporting Information of

Correlation between Na-Cs Ion Exchange Properties in the Alkaline Form and Acid Strength in the Proton Form of Zeolite

Naonobu Katada¹*, Hayato Tamura², Takuya Matsuda¹, Yuya Kawatani¹, Yu Moriwaki¹, Manami Matsuo¹ and Ryota Kato¹

1 Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University,

4-101 Koyama-cho Minami, Tottori 680-8552, Japan

2 Tottori University Junior High School, 4-101 Koyama-cho Minami, Tottori 680-0945, Japan

*: Corresponding author, katada@tottori-u.ac.jp

Contents:

Table S1: Parameters showing pore and cavity sizes.

Figure S1: Compositions of solvent and zeolite at equilibrium.

Figure S2: Ion exchange isotherms. (A) shows the whole plot, and (B) shows the enlarged area at low Cs concentration in the solvent. The symbols show the observed results, and the curves show the

isotherms calculated by
$$y = 1 + \frac{x-1}{1+(K-1)x}$$
, where $x = \frac{c_{Cs^+(aq)}}{c_{Na^+(aq)} + c_{Cs^+(aq)}}$ and $y = \frac{c_{Cs^+(Z)}}{c_{IES(Z)}}$, based on

the estimated K and $c_{\text{IES}(Z)}$.

Framework	Number of oxygen atoms in major rings forming	Maximum diameter of a sphere: / nm*	
type	micropores (<i>n</i> in <i>n</i> -ring)	that can be included	that can diffuse
FAU	12	1.124	0.735
LTA	8	1.105	0.421
MFI	10	0.636	0.446
YFI	8 and 12	0.797	0.618
MOR	8 and 12	0.67	0.645

Table S1: Parameters showing pore and cavity sizes.

*: Taken from the International Zeolite Association (IZA) structure database⁴⁹

Figure S1: Compositions of solvent and zeolite at equilibrium.

(A)

Figure S2: Ion exchange isotherms. (A) shows the whole plot, and (B) shows the enlarged area at low Cs concentration in the solvent. The symbols show the observed results, and the curves show the

isotherms calculated by
$$y = 1 + \frac{x-1}{1+(K-1)x}$$
, where $x = \frac{c_{Cs^+(aq)}}{c_{Na^+(aq)} + c_{Cs^+(aq)}}$ and $y = \frac{c_{Cs^+(Z)}}{c_{IES(Z)}}$, based on

the estimated K and $c_{\text{IES}(Z)}$.

Figure S2: Ion exchange isotherms. (A) shows the whole plot, and (B) shows the enlarged area at low Cs concentration in the solvent. The symbols show the observed results, and the curves show the

isotherms calculated by $y = 1 + \frac{x-1}{1+(K-1)x}$, where $x = \frac{c_{Cs^+(aq)}}{c_{Na^+(aq)} + c_{Cs^+(aq)}}$ and $y = \frac{c_{Cs^+(Z)}}{c_{IES(Z)}}$, based on

the estimated K and $c_{\text{IES}(Z)}$.