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Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
Authors: Gitschlag et al. 
Manuscript Title: "Multiple distinct evolutionary mechanisms govern the dynamics of selfish 
mitochondrial genomes" 
Tracking #: NCOMMS-24-06482-T 
 
Summary: 
This is a very nice analysis of multilevel selection on five mtDNA deletions in C. elegans using 
theoretical and empirical approaches. The authors use empirical data on intra- and inter-individual 
selection to model the frequency distribution of mtDNA deletions. The analysis suggests that the 
frequency distribution of mtDNA deletions in a population can depend primarily on frequency-
dependent intra-individual selection, inter-individual selection and a combination of the two. The 
manuscript is clear and well-written for the most part (but see Minor Comments). The findings are 
noteworthy given a central gap in basic fundamental understanding of mitochondrial evolutionary 
dynamics and population biology despite their widespread used as molecular markers in molecular 
systematics. 
 
 
Major Comments: 
 
I have some questions about experimental procedures and how they might influence the results. 
 
1. In the Methods, intra-individual selection appears to be estimated across a single generation by 
comparing the mutant mtDNA frequency in a parent to that of a pooled sample of three offspring. 
The stated purpose is that it reduces the effect of drift on the parent-offspring comparison. Could 
that influence the estimates of N, the mtDNA bottleneck since the strength of genetic drift is a 
function of N? Maybe I missed how the analysis corrects for the sample size in estimating N but it 
should be made clear. 
 
2. In the selection experiment, the population sample is pooled and lyzed together. How is the 
frequency of the deletion measured in these samples if they are not performed on individuals? If 
this analysis tracks changes in the frequency of the deletion in pooled samples rather than changes 
in the frequency of individuals carrying the deletion, then the results reflect both intra- and inter-
individual selection. What happens to mtDNA copy number under selection? Doesn’t using pooled 
samples ignore any potential consequences in changes in mtDNA copy number? For instance, if 
individuals with a high intracellular frequency of an mtDNA deletion upregulate mtDNA copy 
number during the course of the experiment, could these individuals skew the results towards 
higher frequency of the mtDNA deletion in competition? 
 
3. Could the authors provide more details in the Methods section with respect to crossing scheme 
used to place the mtDNA variants in the Bristol nuclear background? No information on the number 



of generations of backcrossing is provided so it is hard to assess what proportion of the nuclear 
genome is expected to be wildtype. Also, how can the authors distinguish that progeny from a 
particular backcross are indeed from a hermaphrodite mating with a male, rather than a 
hermaphrodite selfing? 
 
Some Comments (not major): 
1. It is surprising that two of the deletions lack an apparent fitness cost in competition and also do 
not exhibit a detectable intra-individual advantage. Can these deletions be characterized as 
selfish? 
 
2. It might be helpful to have a definition of N (the intra-individual bottleneck) in the legend of Figure 
2. It is defined in the text but some readers might confuse it with individual population size out of 
habit. 
 
3. Throughout the manuscript, the authors use the term “organismal selection.” This can be 
confusing because it could also refer to “within-individual” or “intra-individual” selection. Care 
must be taken to delineate “intra-individual” versus “inter-individual” selection (or “within-
individual and “between-individual” selection). It would be preferable if the authors use “inter-
individual” or “between-individual” in lieu of “organismal.” 
 
The following are more minor points. 
Minor Comments: 
• Abstract, line 23 “Genetic drift” might be a better choice of phrase in lieu of “neutral drift.” 
• Introduction, line 65. Grammatical error. Correct “on one hand” to “on the one hand.” 
• Introduction, line 78. Replace “population genetic” with “population-genetic.” 
• Results, line 95. Replace “population genetic” with “population-genetic.” 
• Results, line 95. “Evolutionary dynamics” might be more appropriate than just “dynamics.” 
• Results, lines 98 and 128. Clarification. Do the authors mean “inter-organismal” level when they 
say “organismal?” 
• Results, lines 129 and 130. Clarification. Do the authors mean “inter-organismal selection” when 
they say “intra-organismal selection?” It is not clear here if they are referring to (i) both selection 
and drift within an individual or (ii) selection between individuals and drift within an individual. 
• Results, line 141. Replace “population genetic” with “population-genetic.” 
• Results, lines 153-154. The sentence “Thus, intra-organismal selection constitutively mutant 
frequency up into a range that elicits a strong organismal fitness cost (Fig. 2e)” is not making sense. 
Are the authors missing word(s)? 
• Results, lines 155, 160, 172. Clarification. For clarity, it might help to replace “organismal” with 
“inter-organismal” 
• Results, line 263. Replace “mid-size” with “mid-sized” 
• Results, line 322. Replace “evade” with “evades” 
• Results, line 335. Replace “closely related” with “closely-related.” 
• Methods, line 383. Replace “until being used” with “until use.” 
• Methods, line 445. How did the authors estimate a population size of 500 nematodes? 
• Methods, line 453 and 454. Replace “population genetic” with “population-genetic.” 



• The References section is very sloppily done. The reference list needs to be heavily edited for 
formatting issues given the lack of consistency. Some article titles are listed with each word starting 
in uppercase, others not. In many instances, species names are not italicized. 
• Figure 1 legend. The authors use the term “between-host.” For the sake of consistency, they ought 
to refer to this as the suggested “inter-individual.” 
• Through the manuscript, please italicize “N” when it is used to denote population size. 
• Figure 2. Please replace “neutral drift” with “random genetic drift” or “genetic drift.” 
 
 
 
Reviewer #3: 
Remarks to the Author: 
The authors investigate the different dynamics by which mtDNA mutations evolve in nematode 
populations and, by linking detailed experiments with a population genetic model, connect these 
dynamics to different evolutionary mechanisms. They find that different mechanisms can best 
explain observed behaviour for different mtDNA mutations, demonstrating an interesting range of 
possibilities for mtDNA evolution. 
 
I think this work is very interesting and a particularly nice demonstration of where modelling and 
detailed experiments can mutually reinforce to shed light on fundamental biology. This 
combination is a new approach for the particular question of selfish proliferation of mtDNA variants 
and the findings will have implications well beyond the particular study system. I have several 
comments about the implementation and one set of questions which to my eyes need resolving for 
full interpretation of the results. I'll lead with that (to me) most important point and follow up with 
some smaller-scale ones. NB -- this has turned out to be quite a long report, but please don't think 
the word count means there's a long list of issues. Most words are spent pinning down a quite 
technically involved set of questions about the statistics (which I do think are important, but may be 
down to my misunderstanding and/or may be easy to resolve). 
 
For transparency, I am Iain Johnston and I am happy for this review to be treated as public domain. 
To my eyes my most important shortcoming as a reviewer here is a lack of experience with 
nematode lab work; I cannot comment on the husbandry, feeding competition, and any worm-
specific physiological implications of these mutations. 
 
-- Lead-order questions 
 
I have several coupled questions about the modelling and bootstrapping. 
 
First, for positioning -- we are doing parameteric bootstrap internally within each sample, right? So, 
for example, in Fig 3b, is it the case that each red line is actually a collection of 100 traces (one 
collection for each of the n=8 datasets), each of which comes from a computational re-simulation 
of that system under the maximum likelihood parameterisation from the original data? 
If so -- I'm not sure of the connection between this and the task to "estimate our confidence in 
these parameter estimates" (l530). The within-sample parameteric bootstrap will give us a range of 



parameter values for each sample, but the scientific results (as in Table 1) seem to be inferences 
about these values across different samples. How do the cross-sample values in the table come 
from the within-sample values from e.g. Fig 3b? Wouldn't it be reasonable to bootstrap-resample 
the dataset as a whole to get more traditional bootstrap confidence intervals on the parameters of 
interest? 
Related -- do the bootstrap traces in the plots like 3def, 5a-l also correspond to sets of collections 
of within-sample resimulations, or is the approach here different? 
 
Second and perhaps most importantly, I'm confused by the level of support from the bootstrap 
analysis for some model structures. For example, although it seems from the code that the gamma 
parameter determining the ascending/descending nature of w_intra with z is allowed to vary from -
inf to +inf, we extremely rarely see ascending behaviour (a couple of traces in Fig. 5j) even when the 
data would seem quite ambiguous about the direction of the relationship. For example, in Fig. 5d, it 
is hard to see why increasing fitness with z wouldn't provide an equally good fit to the data -- and 
especially hard to see why no w_intra(z=0) values below ~2 are ever supported. Why not, for 
example, start at w_intra(0) = 0, ascend gently through the data around z = 0.8, and top out around 
3? 
 
I understand that the model is complex and multi-level, so that it may not be the case that the 
datapoints in these plots are the only observations contributing to the shape of the model fits. But if 
there are other observations that are constraining the fits towards these decreasing functional 
forms, it would be really nice to understand how this constraint works. To take that previous 
example, what is it about the mpt4 observations that mean lower w_intra(z=0) values are 
impossible? 
 
My pessimistic concern is that there's something about the numerical fitting process that is 
artificially favouring parameterisations with the decreasing w_intra(z) trend, and therefore providing 
undue support to that region of parameter space. This is why I below (**) ask some questions about 
the initial condition dependence of the optimiser -- we always start with a particular gamma value 
(1), and it would be good to know that this is not biasing the results. If we start instead with a value 
that corresponds to the null hypothesis (0), or one with the opposite sign (-1), does the optimiser 
always identify the same solutions? 
 
I appreciate that the model is validated with synthetic data -- but this doesn't in itself address the 
above, because if I am understanding correctly then all the synthetic data are generated to match 
this decreasing trend. Could the authors construct a synthetic set from a generator that has two 
alternatives -- (i) unchanging and (ii) increasing w_intra with z -- and show that the pipeline can 
equally well capture these behaviours? 
 
Third, the bootstrap sets for some model elements (Fig. 3e, 5k) look quite multimodal -- ie two or 
more dense ensembles of traces separated by a sparse region. Why is this? Is it related to my first 
question about (re)sampling within samples as opposed to over the full dataset? 
 
 



-- Smaller points 
 
I'm not sure I agree with the positioning of l70-73. Certainly different study organisms will have 
different specific influences on mtDNA behaviour. But if the goal is to draw general conclusions 
about such behaviour, the solution cannot be to focus on a specific model. Rather the opposite -- a 
range of models is essential so that the specific features of each can be characterised and 
accounted for, and what remains can be classed as general. Confusingly, this is what the 
manuscript seems to suggest in l66-67, where the shortcomings of a single model focus are 
described. 
 
Beginning l143, different mechanisms are outlined, illustrated in Fig. 2. The interplay between 
parameter requirements and resultant dynamics isn't super clear here. In the first one (l144-147) for 
example, we require organismal selection to be negligible below some frequency z*... but surely 
this is determined by the parameter choice for the selection function? Fig 2 would suggest this -- 
but the causality isn't clear. Is the story -- IF we are in this parameter regime THEN this mechanism 
holds? 
Unless I am misunderstanding, the requirements on model parameters for each of these 
mechanisms to exist would be important to include here. 
 
The mathematical methods section is, I think, pretty hard reading. It would help immeasurably to 
have a figure putting graphs and illustrations to the various expressions involved (and it'd help to 
label the equations!). e.g. how w_intra varies with gamma and epsilon, how w_org varies with alpha 
and beta. That could readily be an SI fig. How the various quantities involved (q, w_intra, etc) relate 
to observable quantities like mean heteroplasmies would also be very useful. This could readily be 
included via annotation (perhaps with some new content) in Fig 1c. l478-481 could be made much 
clearer by working with proportions rather than discrete numbers, i.e. setting z = i/N, 1-z = (N-i)/N. 
How w_intra influences the system isn't clear until we meet l478 -- perhaps the definition of q given 
inline in l481 could be promoted to where we first meet w_intra? 
 
Referring to equations by their line numbers, in Eqn 505 we have a noise term e_intra, which is 
normally-distributed. But this would seem to disrespect the constraints on the variable to which it 
contributes, which is constrained on [0,1]. Do we risk getting nonsensical behaviours here, and 
would a constrained noise term be more appropriate? 
 
I wasn't sure why a smoother -- particularly with a particular standard deviation -- was used on l519 
(and again on l540). In some cases N=10 for example -- smoothing the discrete distribution with 
kernel width 0.1 would seem to give some probability of getting negative observations. Doesn't the 
discrete distribution already give a tractable likelihood for discrete (and appropriately constrained) 
draws? 
 
-- ** Computational implementation -- more detailed notes 
 
I had some questions about the computational implementation. I tried to run the Github code on 
the data provided in the review process, but as the manuscript system changed all the filenames of 



the attached datasets I couldn't run the code and explore things myself. My first questions though 
are about the maximum likelihood process. We have a very nonlinear and quite highly 
parameterised model to fit so I wanted to explore the behaviour of the fitting process. 
 
As far as I can see, the max_likelihood_values function is called twice, once from l528 and once 
from l331. On l331 it looks like the initial guess for the optimiser (the "itl" argument) is just the set of 
known parameter values (a, b, g, etc) that generated the synthetic data in the first place? And from 
l528 it looks like the same constant initial guess (1, 1, 1, etc) is used for every optimisation run? 
I may well be misunderstanding -- apologies if so. But if this is the case, my two questions are: 
1. If l331 is already passing the known true parameters as the initial guess to the optimiser, how can 
it be a fair test of the optimiser's ability to recover the true parameter values? Surely we should give 
it the same initial conditions as the "real-world" version (l528)? 
2. How much do the optimisation results on l528 depend on the initial conditions? 



Gitschlag et al., reviewer comments (italicized) with author responses (plain text) 
 

REVIEWER COMMENTS 
 

Reviewer #1 (Remarks to the Author): 
 

Authors: Gitschlag et al. 
Manuscript Title: "Multiple distinct evolutionary mechanisms govern the dynamics of selfish 
mitochondrial genomes" 
 
 
Summary: 
This is a very nice analysis of multilevel selection on five mtDNA deletions in C. elegans using 
theoretical and empirical approaches. The authors use empirical data on intra- and inter-individual 
selection to model the frequency distribution of mtDNA deletions. The analysis suggests that the 
frequency distribution of mtDNA deletions in a population can depend primarily on frequency- 
dependent intra-individual selection, inter-individual selection and a combination of the two. The 
manuscript is clear and well-written for the most part (but see Minor Comments). The findings are 
noteworthy given a central gap in basic fundamental understanding of mitochondrial evolutionary 
dynamics and population biology despite their widespread used as molecular markers in molecular 
systematics. 
 

We thank the reviewer for these helpful comments and their support for the importance of our 
contribution here. 

 
Major Comments: 
 
I have some questions about experimental procedures and how they might influence the results. 

 
1. In the Methods, intra-individual selection appears to be estimated across a single generation 
by comparing the mutant mtDNA frequency in a parent to that of a pooled sample of three 
offspring. The stated purpose is that it reduces the effect of drift on the parent-offspring 
comparison. Could that influence the estimates of N, the mtDNA bottleneck since the strength of 
genetic drift is a function of N? Maybe I missed how the analysis corrects for the sample size in 
estimating N but it should be made clear. 
 

We have clarified this issue in the revised manuscript and added additional validation to show that our 
statistical procedure can accurately estimate N, by applying it to simulated data where the ground truth 
is known. These results are shared in the new Supplementary Figure 6. 

 
The reviewer is absolutely correct that pooling the offspring reduces the variance in offspring allele 
frequency, which produces a better estimate of the form of intra-organismal selection but would 
produce a biased estimate of N if the variance in offspring mutant mtDNA frequency from this analysis 
were used naively. However, our inference procedure is not using the variance in mutant frequency 
from these parent-offspring comparisons to determine the strength of drift. Instead, the information 
about the strength of drift is coming from the shape of the stationary distribution of mtDNA frequencies. 
The deviations between the observed pooled offspring mtDNA frequencies and the expected 
frequencies due to intra-organismal selection are modeled phenomenologically by the error variance 
s2intra (original manuscript lines 506-507) which in the model is not explicitly a function of N. Although 



this approach leaves out the information from the parent-offspring comparisons in determining the 
strength of drift, our validation of our method on simulated data (Supplemental Figure 6) shows that our 
approach can accurately recover the ground-truth value, even though we are neglecting the information 
about drift from the parent-offspring comparisons. In the original manuscript, we included this validation 
for the other parameters but not for the validation for N. We apologize for this but have now included it 
in Supplementary Figure 6. 

 
In order to be doubly sure that our method is not providing biased estimates of N, in the revision we 
also took a second approach where we instead explicitly modeled the variance in the parent-offspring 
experiment as reflecting the strength of genetic drift and performed the appropriate correction as 
suggested by the reviewer to account for pooling of progeny (equation 9 in the revised Methods). This 
produced estimates of N that are similar to our original method when applied to our empirical 
data  (Supplementary Figure 7). We now include this additional validation (discussed in the Methods, 
lines 603-619 of the revised manuscript). 

 
2. In the selection experiment, the population sample is pooled and lyzed together. How is the 
frequency of the deletion measured in these samples if they are not performed on individuals? If 
this analysis tracks changes in the frequency of the deletion in pooled samples rather than 
changes in the frequency of individuals carrying the deletion, then the results reflect both intra- 
and inter-individual selection. What happens to mtDNA copy number under selection? Doesn’t 
using pooled samples ignore any potential consequences in changes in mtDNA copy number? 
For instance, if individuals with a high intracellular frequency of an mtDNA deletion upregulate 
mtDNA copy number during the course of the experiment, could these individuals skew the 
results towards higher frequency of the mtDNA deletion in competition? 
 

The reviewer raises a subtle yet important point related to the design of the competition experiment. We 
thank them for the opportunity to highlight this nuanced aspect in the updated manuscript. 

 
The methodology of quantifying population-wide mutant frequency from pooled lysates, as opposed to 
sampling individuals during selection, was validated in a previous study from our group (Gitschlag et al. 
2020 eLife), where we used both approaches on uaDf5 and showed that they provided consistent 
estimates of selection. We have now clarified that we are relying on this already established 
methodology in the revised manuscript (lines 484-486 of the revised manuscript). Nevertheless, the 
point raised is important enough that it is worth expanding on here and in the manuscript. 

 
While it is possible that the changes in mtDNA copy number in heteroplasmic animals can skew the 
heteroplasmy frequency in competed populations composed of heteroplasmic and homoplasmic 
wildtype animals, we account for this via the use of non-competed control populations. In essence, for 
each competition experiment that mixes heteroplasmic and wildtype animals, we also propagate non-
competing control populations consisting of only heteroplasmic animals. We then divide the mutant 
mtDNA frequency in the competed populations at each generation by that of the non-competed 
controls, which corrects for changes in mutant mtDNA frequency that arise for reasons other than the 
presence of wildtype animals (in practice these changes in frequency are quite small). We have 
clarified the logic of these non-competed controls (lines 478-489 of the revised manuscript), which was 
not specifically addressed in the original version. Again, we thank the reviewers for the opportunity to 
clarify this important point. 

 
3. Could the authors provide more details in the Methods section with respect to crossing 
scheme used to place the mtDNA variants in the Bristol nuclear background? No information on 
the number of generations of backcrossing is provided so it is hard to assess what proportion of 



the nuclear genome is expected to be wildtype. Also, how can the authors distinguish that 
progeny from a particular backcross are indeed from a hermaphrodite mating with a male, rather 
than a hermaphrodite selfing? 
 

We acknowledge the importance of addressing the backcrossing method and thank the reviewer for 
emphasizing that this could be clarified in our manuscript. To ensure that our analysis was not 
confounded by variation in the nuclear genome, we completely exchanged the nuclear genome of each 
heteroplasmic strain with the nuclear genome of wildtype (Bristol strain) C. elegans, using a previously 
published unigametic inheritance method (Artiles, Fire, & Frokjaer-Jensen, 2019 Dev Cell). This method 
enables the complete replacement of the nuclear genome within two generations, by leveraging the 
activity of gpr-1, which encodes a G-protein regulator that regulates the forces exerted on the 
microtubules during mitosis. Over-expression of gpr-1 increases the pulling forces on the pronuclei 
during prometaphase, resulting in the segregation of the paternal and maternal genomes into separate 
embryonic cell lineages. The germline of the hermaphrodite consequently inherits the nuclear genome 
of only one parent, allowing us to bypass the need for multiple generations of backcrossing. Thus, all 
heteroplasmic strains used in this study have identical nuclear backgrounds. 

 
Briefly, each heteroplasmic strain was crossed to the gpr-1 over-expression strain PD2220 following 
Mendelian genetics. Next, hermaphrodites of the stable gpr-1 over-expression heteroplasmy strains 
were crossed to wildtype males. Non-Mendelian hermaphrodite progeny from these crosses, in which 
the paternal nuclear background is unigametically inherited in the germline cell lineage (determined by 
pharyngeal mosaic patterning), were individually propagated. Stock strains were established from the 
progeny of these animals, as they have a complete wildtype nuclear genomic background and retain 
the given heteroplasmy. This gpr-1-based strategy is in many ways superior to the repeated 
backcrossing strategy because it allows for a complete and clean swap of the nuclear genome. In 
contrast, with the repeated backcrossing strategy, there is a small possibility of retaining small 
fragments of the paternal nuclear genome. We have revised the Methods section (lines 380-386) to 
clarify this point. 

 
Some Comments (not major): 
1. It is surprising that two of the deletions lack an apparent fitness cost in competition and also 
do not exhibit a detectable intra-individual advantage. Can these deletions be characterized as 
selfish? 
 

Although the empirical data (Figure 4) show no significant intra- or inter-organismal fitness effects for 
two of the five mutant mtDNA genotypes featured in this study, as the reviewer rightly notes, we argue 
in lines 331-333 of the revised manuscript that the maintenance of the heteroplasmic state is unlikely 
given a complete absence of any selfish advantage. This is because a genome with only neutral fitness 
effects would be expected to drift to fixation or extinction, rather than be stably maintained and co-
transmitted alongside wildtype mtDNA. Consistent with this expectation, we further note in lines 333-
335 that the maximum-likelihood results show a weak intra-organismal advantage when the mutant 
genomes are present in the low to mid frequency ranges. Finally, we note that although a deleterious 
impact on host fitness is a common feature, it is not a necessary characteristic of a selfish genetic 
element. In particular, the ability to ‘selfishly’ outcompete the wildtype genome, as well as the ability of 
the wildtype genome to regain an advantage as mutant frequency rises, do not necessarily require 
multilevel selection and may instead represent dynamics that occur entirely at a singular level, e.g. the 
intra-organismal level in the case of selfish mtDNA. This is consistent with prior reporting in other 
systems, in which the proliferation of ‘cheater’ entities is often limited by frequency-dependent 
selection. We cite reference 12 in lines 344-345 to highlight this point. 

 



2. It might be helpful to have a definition of N (the intra-individual bottleneck) in the legend of 
Figure 2. It is defined in the text but some readers might confuse it with individual population 
size out of habit. 
 

Thank you for the suggestion. We have added the definition to the legend. 
 
3. Throughout the manuscript, the authors use the term “organismal selection.” This can be 
confusing because it could also refer to “within-individual” or “intra-individual” selection. Care 
must be taken to delineate “intra-individual” versus “inter-individual” selection (or “within-
individual and “between-individual” selection). It would be preferable if the authors use “inter-
individual” or “between-individual” in lieu of “organismal.” 
 

Thank you for pointing out the confusion that can be caused due to the use of terminology. For better 
clarity, we have switched our terminology to “inter-organismal selection” and “organism-level fitness.” 

 
The following are more minor points. 
Minor Comments: 
• Abstract, line 23 “Genetic drift” might be a better choice of phrase in lieu of “neutral drift.” 
• Introduction, line 65. Grammatical error. Correct “on one hand” to “on the one hand.” 
• Introduction, line 78. Replace “population genetic” with “population-genetic.” 
• Results, line 95. Replace “population genetic” with “population-genetic.” 
• Results, line 95. “Evolutionary dynamics” might be more appropriate than just “dynamics.” 
• Results, lines 98 and 128. Clarification. Do the authors mean “inter-organismal” level when 
they say “organismal?” 
• Results, lines 129 and 130. Clarification. Do the authors mean “inter-organismal selection” 
when they say “intra-organismal selection?” It is not clear here if they are referring to (i) both 
selection and drift within an individual or (ii) selection between individuals and drift within an 
individual. 
• Results, line 141. Replace “population genetic” with “population-genetic.” 
• Results, lines 153-154. The sentence “Thus, intra-organismal selection constitutively mutant 
frequency up into a range that elicits a strong organismal fitness cost (Fig. 2e)” is not making 
sense. Are the authors missing word(s)? 
• Results, lines 155, 160, 172. Clarification. For clarity, it might help to replace “organismal” with 
“inter-organismal” 
• Results, line 263. Replace “mid-size” with “mid-sized” 
• Results, line 322. Replace “evade” with “evades” 
• Results, line 335. Replace “closely related” with “closely-related.” 
• Methods, line 383. Replace “until being used” with “until use.” 
• Methods, line 445. How did the authors estimate a population size of 500 nematodes? 
• Methods, line 453 and 454. Replace “population genetic” with “population-genetic.” 
• The References section is very sloppily done. The reference list needs to be heavily edited for 
formatting issues given the lack of consistency. Some article titles are listed with each word 
starting in uppercase, others not. In many instances, species names are not italicized. 
• Figure 1 legend. The authors use the term “between-host.” For the sake of consistency, they 
ought to refer to this as the suggested “inter-individual.” 
• Through the manuscript, please italicize “N” when it is used to denote population size. 
• Figure 2. Please replace “neutral drift” with “random genetic drift” or “genetic drift.” 
 

We thank the reviewer for the thorough reading and for these detailed suggestions. We have 
incorporated all the recommended changes. 



 
Reviewer #2 (Remarks to the Author): 

 
The authors investigate the different dynamics by which mtDNA mutations evolve in nematode 
populations and, by linking detailed experiments with a population genetic model, connect these 
dynamics to different evolutionary mechanisms. They find that different mechanisms can best 
explain observed behaviour for different mtDNA mutations, demonstrating an interesting range 
of possibilities for mtDNA evolution. 

 
I think this work is very interesting and a particularly nice demonstration of where modelling and 
detailed experiments can mutually reinforce to shed light on fundamental biology. This 
combination is a new approach for the particular question of selfish proliferation of mtDNA 
variants and the findings will have implications well beyond the particular study system. I have 
several comments about the implementation and one set of questions which to my eyes need 
resolving for full interpretation of the results. I'll lead with that (to me) most important point and 
follow up with some smaller-scale ones. NB -- this has turned out to be quite a long report, but 
please don't think the word count means there's a long list of issues. Most words are spent 
pinning down a quite technically involved set of questions about the statistics (which I do think 
are important, but may be down to my misunderstanding and/or may be easy to resolve). 
 
For transparency, I am Iain Johnston and I am happy for this review to be treated as public 
domain. To my eyes my most important shortcoming as a reviewer here is a lack of experience 
with nematode lab work; I cannot comment on the husbandry, feeding competition, and any 
worm-specific physiological implications of these mutations. 
 

We appreciate the reviewer’s transparency! We also thank them for these supportive and helpful 
comments, especially about the integration of modeling and laboratory experiments to shed light on 
fundamental biological questions, as showing the feasibility of this type of approach was one of the key 
motivations of our study. 

 
-- Lead-order questions 

 
I have several coupled questions about the modelling and bootstrapping. 

 
First, for positioning -- we are doing parameteric bootstrap internally within each sample, right? 
So, for example, in Fig 3b, is it the case that each red line is actually a collection of 100 traces 
(one collection for each of the n=8 datasets), each of which comes from a computational re-
simulation of that system under the maximum likelihood parameterisation from the original data? 
 

We apologize that we have confused the reviewer about the overall structure of the bootstrapping 
scheme, and this has also led to some confusion about the interpretation of the bootstraps.  

 
Figure 3 may be the root of this confusion because results of the parametric bootstrap are only shown 
in Fig 3e-f. The lines in 3a and 3b are least-squares fits to the individual experimental replicates. The 
idea is that 3a-c shows the “raw” data and then Fig 3e-f shows the inferred model and the 
bootstraps.  We have clarified this in the Figure 3 caption of the revised manuscript. More generally, the 
bootstraps are not generated within each biological replicate but rather each bootstrap sample consists 
of newly sampled data for the entire set of experiments associated with any mitochondrial mutation. 

 



If so -- I'm not sure of the connection between this and the task to "estimate our confidence in 
these parameter estimates" (l530). The within-sample parameteric bootstrap will give us a range 
of parameter values for each sample, but the scientific results (as in Table 1) seem to be 
inferences about these values across different samples. How do the cross-sample values in the 
table come from the within-sample values from e.g. Fig 3b? Wouldn't it be reasonable to 
bootstrap-resample the dataset as a whole to get more traditional bootstrap confidence intervals 
on the parameters of interest? 
Related -- do the bootstrap traces in the plots like 3def, 5a-l also correspond to sets of 
collections of within-sample resimulations, or is the approach here different? 
 

Again, we are absolutely re-sampling the data as a whole. Specifically, we infer the parameters of a 
generative model by maximum likelihood to produce a point estimate of the model parameters. We then 
sample new datasets, using the maximum-likelihood parameters, and rerun the inference on those 
resampled data to assess our confidence in the parameter estimates. These bootstrap samples show 
the distribution of model fits that would be produced under the assumption that our best fit model is 
accurate. Because maximum-likelihood estimation is consistent, in the large data limit our point 
estimates will converge to the true value and our bootstrap results will converge to the confidence 
intervals that would be calculated based on the Fisher Information under the standard asymptotic 
theory of maximum-likelihood inference. However, the parametric bootstrap provides a more accurate 
view of model performance outside the large data limit where the assumptions of asymptotic normality 
of parameter estimates may not hold (because we are simulating the inference under other plausible 
datasets rather than relying on normality assumptions that may not be true). 

 
One question that may be in the back of the reviewer’s mind is why we are doing a parametric 
bootstrap rather than some of the other types of bootstrap in common use (resampling data, resampling 
residuals, etc.). The main reason we are using the parametric bootstrap is because of the complexity of 
the experimental data, which includes the joint analysis of experiments with completely different 
designs and replication structures. Should we be resampling replicates, time points, reads within time 
points, etc.? The parametric bootstrap provides an elegant way to cut through this complexity. 

 
Second and perhaps most importantly, I'm confused by the level of support from the bootstrap 
analysis for some model structures. For example, although it seems from the code that the 
gamma parameter determining the ascending/descending nature of w_intra with z is allowed to 
vary from -inf to +inf, we extremely rarely see ascending behaviour (a couple of traces in Fig. 5j) 
even when the data would seem quite ambiguous about the direction of the relationship. For 
example, in Fig. 5d, it is hard to see why increasing fitness with z wouldn't provide an equally 
good fit to the data -- and especially hard to see why no w_intra(z=0) values below ~2 are ever 
supported. Why not, for example, start at w_intra(0) = 0, ascend gently through the data around 
z = 0.8, and top out around 3? 
 

The key insight is that the stationary distribution of mutant mtDNA frequencies also gives information 
about the nature of intra-organismal selection. Intuitively, the model can rule out patterns of selection 
that would produce stationary distributions whose shape is very different than the ones we observe. 

 
In the case of models where intra-organismal fitness starts low (near or below neutrality) and increases 
with frequency, these produce stationary distributions that are qualitatively inconsistent with what we 
observe in the natural heteroplasmies (we now illustrate this point with the new Supplementary Figure 
5r,u of the revised manuscript). Intuitively, a positive frequency-dependent intra-organismal fitness 
advantage means that heteroplasmic lineages with high mutant mtDNA frequency quickly show a 
substantial organismal fitness cost and are removed from the population by inter-organismal selection. 



This results in stationary distributions that are peaked at low frequencies, contrary to what we observe 
in the empirical data (with perhaps the exception of mptDf3, where we do also see a negative value of 
gamma in one of the bootstraps). 

 
I understand that the model is complex and multi-level, so that it may not be the case that the 
datapoints in these plots are the only observations contributing to the shape of the model fits. 
But if there are other observations that are constraining the fits towards these decreasing 
functional forms, it would be really nice to understand how this constraint works. To take that 
previous example, what is it about the mpt4 observations that mean lower wintra(z=0) values are 
impossible? 
 

In order to address the reviewer’s point, in the revised manuscript we have added a supplemental 
figure to display the behavior of the model under a wider array of parameter values (Supplementary 
Figure 5), including examples similar to mpt4 but with lower values of wintra(z=0) (Supplementary Figure 
5p to 5u). We can see that these models show a completely different shape of stationary distribution 
than observed for mpt4. 

 
My pessimistic concern is that there's something about the numerical fitting process that is 
artificially favouring parameterisations with the decreasing w_intra(z) trend, and therefore 
providing undue support to that region of parameter space. This is why I below (**) ask some 
questions about the initial condition dependence of the optimiser -- we always start with a 
particular gamma value (1), and it would be good to know that this is not biasing the results. If 
we start instead with a value that corresponds to the null hypothesis (0), or one with the 
opposite sign (-1), does the optimiser always identify the same solutions? 
 

Our optimizer is only conducting local optimization, and so we agree with the reviewer’s concern that 
the initial condition could potentially be getting stuck in local optima. We have implemented the 
reviewer’s suggestion, and for our empirical data we have rerun our maximum-likelihood inference 
procedure initialized at each qualitatively different solution from Supplementary Figure 5a, to ensure 
that we are not missing any important regions of parameter space, and used the parameter values from 
the highest likelihood achieved under any initialization. In addition, we have implemented some 
improvements to our optimizer (detailed below) in order to ensure that our optimization procedure is 
robust. None of these changes have changed the qualitative nature of our maximum-likelihood fits or 
our overall results and conclusions. 

 
I appreciate that the model is validated with synthetic data -- but this doesn't in itself address the 
above, because if I am understanding correctly then all the synthetic data are generated to 
match this decreasing trend. Could the authors construct a synthetic set from a generator that 
has two alternatives -- (i) unchanging and (ii) increasing w_intra with z -- and show that the 
pipeline can equally well capture these behaviours? 
 

We have implemented this suggestion, and for each qualitatively different alternative scenario in our 
new Supplementary Figure 5a, we also now show that our inference pipeline can recover the ground-
truth parameters (Supplementary Figure 5d to 5u). 

 
Third, the bootstrap sets for some model elements (Fig. 3e, 5k) look quite multimodal -- ie two 
or more dense ensembles of traces separated by a sparse region. Why is this? Is it related to 
my first question about (re)sampling within samples as opposed to over the full dataset? 
 



The multimodality is indicating that a subset of bootstrap samples support a qualitatively different 
selective mechanism than the maximum-likelihood estimate. Being able to display this type of 
multimodality is one of the strengths of the parametric bootstrap over confidence intervals based on 
asymptotic normality. Taking the example of uaDf5 (Fig. 3e) that the reviewer mentions, the 
multimodality indicates that the empirical data (Fig. 3b) are consistent with either a gradual or abrupt 
loss of organism fitness among animals with high heteroplasmic mutant mtDNA frequency, since both 
scenarios correspond to a similar mean organism fitness and produce a similar stationary distribution of 
mutant mtDNA frequencies. We have revised the manuscript to address this multimodality (lines 213-
217 of the revised manuscript). 

 
-- Smaller points 

 
I'm not sure I agree with the positioning of l70-73. Certainly different study organisms will have 
different specific influences on mtDNA behaviour. But if the goal is to draw general conclusions 
about such behaviour, the solution cannot be to focus on a specific model. Rather the opposite -
- a range of models is essential so that the specific features of each can be characterised and 
accounted for, and what remains can be classed as general. Confusingly, this is what the 
manuscript seems to suggest in l66-67, where the shortcomings of a single model focus are 
described. 
 

We agree and have clarified this passage. Our main point here is simply that studying several 
heteroplasmies together in a single species and with a single modeling framework can provide insights 
that are complementary to those gained by the sustained focus on uaDf5 or studying heteroplasmies 
that are in different species and hence not as directly comparable. We appreciate the importance of 
taxonomic diversity in mitochondrial biology that the reviewer mentions, and have revised the 
introductory section to better clarify the motivation for our study. 

 
Beginning l143, different mechanisms are outlined, illustrated in Fig. 2. The interplay between 
parameter requirements and resultant dynamics isn't super clear here. In the first one (l144-147) 
for example, we require organismal selection to be negligible below some frequency z*... but 
surely this is determined by the parameter choice for the selection function? Fig 2 would 
suggest this -- but the causality isn't clear. Is the story -- IF we are in this parameter regime 
THEN this mechanism holds? 
Unless I am misunderstanding, the requirements on model parameters for each of these 
mechanisms to exist would be important to include here. 
 

We appreciate the need for clarity on this point and have revised the Figure 2 legend accordingly. The 
three mechanisms we describe are different a priori hypotheses for how a heteroplasmy could be 
maintained and do not depend on the specific choice of parameterization that we use for our inference. 
Essentially, a stable heteroplasmy can be maintained by (i) the intra-organismal dynamics having a 
stable fixed point 0<z*<1, (ii) inter-organismal selection opposing intra-organismal selection, or (iii) both 
mechanisms can be at play. 

 
The mathematical methods section is, I think, pretty hard reading. It would help immeasurably to 
have a figure putting graphs and illustrations to the various expressions involved (and it'd help 
to label the equations!). e.g. how w_intra varies with gamma and epsilon, how w_org varies with 
alpha and beta. That could readily be an SI fig. How the various quantities involved (q, w_intra, 
etc) relate to observable quantities like mean heteroplasmies would also be very useful. This 
could readily be included via annotation (perhaps with some new content) in Fig 1c. l478-481 
could be made much clearer by working with proportions rather than discrete numbers, i.e. 



setting z = i/N, 1-z = (N-i)/N. How w_intra influences the system isn't clear until we meet l478 -- 
perhaps the definition of q given inline in l481 could be promoted to where we first meet 
w_intra? 
 

We have added a figure (the new Supplementary Figure 1) showing how the model parameters 
influence the form of the intra- and inter-organismal selection functions. We have also added numbers 
to the equations, as the reviewer suggested. The reviewer’s suggestion for working with the continuous 
quantity z rather than i/N is certainly a good way to think about the model, but technically we need 
discrete indices i and j to indicate entries in the matrix M.  

 
Referring to equations by their line numbers, in Eqn 505 we have a noise term e_intra, which is 
normally-distributed. But this would seem to disrespect the constraints on the variable to which it 
contributes, which is constrained on [0,1]. Do we risk getting nonsensical behaviours here, and 
would a constrained noise term be more appropriate? 
 

In the revised manuscript we have implemented an alternative noise term which is constrained on [0,1] 
and show that it results in very similar parameter estimates for the empirical heteroplasmies (new 
Supplementary Figures 7-8). However, calculating this new noise term is too computationally intensive 
for our bootstrapping strategy (the likelihood for homoskedastic normal errors is extremely fast to 
calculate in terms of the sum of squared errors, whereas the more principled error requires a separate 
computation for each parent-offspring pair at each step of the optimizer), and so we retain the normally 
distributed errors for our main analysis. More broadly, while assuming normally distributed errors on 
frequencies means that our error model is necessarily misspecified, inference assuming normally 
distributed errors behaves similarly to fitting by least squares, which provides sensible behavior under a 
wide range of circumstances, and we show that it can accurately recover ground-truth parameters 
under simulation. 

 
I wasn't sure why a smoother -- particularly with a particular standard deviation -- was used on 
l519 (and again on l540). In some cases N=10 for example -- smoothing the discrete distribution 
with kernel width 0.1 would seem to give some probability of getting negative observations. 
Doesn't the discrete distribution already give a tractable likelihood for discrete (and 
appropriately constrained) draws? 
 

In the revised manuscript we have better explained the role and design of the smoother. Our 
experimental measurements of mutant mtDNA frequencies are continuous quantities whereas our 
model of genetic drift is based on a finite population size and hence produces a discrete distribution. 
The choice of bandwidth equal to the spacing of the discrete grid is a standard trick, in that narrower 
bandwidths produce smoothed densities that oscillate in the interior of the grid while wider bandwidths 
spill out further over the boundaries of the grid. For illustration, here is the performance of the smoother 
on the uniform distribution with N=50: 

 



 
Uniform probability density function (black line) for N=50, obtained by summing N normal distributions (colored lines) spaced 
apart in increments of 1/N. 

 
This is a reasonable approximation to the function that is 1 on [0,1] and zero elsewhere, and the 
bandwidth is optimal in the sense that narrower bandwidths result in a density that oscillates in the 
interior of the grid whereas wider bandwidths produce more spillover outside [0,1]. Although assigning 
probabilities to observations that cannot occur means that our model is necessarily misspecified, this 
misspecification is especially minor in our case because the stationary densities we are trying to 
estimate do not have much weight near either 0 or 1. This is because the stationary density is 
necessarily 0 at frequency 1 (all the mtDNA mutations we study eliminate at least one essential protein 
subunit of the electron transport chain) and stationary distributions with substantial mass near zero 
would result in a high rate of de novo loss of the heteroplasmy via genetic drift and hence would not be 
able to be maintained as heteroplasmic stocks. Finally, we have conducted extensive simulations 
showing that our procedure is sufficiently accurate to recover ground-truth values for a wide range of 
biological scenarios (Supplementary Figures 5-6). 

 
-- ** Computational implementation -- more detailed notes 

 
I had some questions about the computational implementation. I tried to run the Github code on 
the data provided in the review process, but as the manuscript system changed all the 
filenames of the attached datasets I couldn't run the code and explore things myself. My first 
questions though are about the maximum likelihood process. We have a very nonlinear and 
quite highly parameterised model to fit so I wanted to explore the behaviour of the fitting 
process. 

 
As far as I can see, the max_likelihood_values function is called twice, once from l528 and once 
from l331. On l331 it looks like the initial guess for the optimiser (the "itl" argument) is just the 
set of known parameter values (a, b, g, etc) that generated the synthetic data in the first place? 
And from l528 it looks like the same constant initial guess (1, 1, 1, etc) is used for every 
optimisation run? 
I may well be misunderstanding -- apologies if so. But if this is the case, my two questions are: 
1. If l331 is already passing the known true parameters as the initial guess to the optimiser, how 
can it be a fair test of the optimiser's ability to recover the true parameter values? Surely we 
should give it the same initial conditions as the "real-world" version (l528)? 



 
2. How much do the optimisation results on l528 depend on the initial conditions? 
 

In the revised manuscript we consider the question of the initialization of the optimizer in more depth. 
For the point estimates of the empirical example, we initialize the optimizer at conditions corresponding 
to a wide variety of biological scenarios (the same intra-organismal fitness models in Supplementary 
Figure 5a). While many of these converge to the same values, for some initializations the optimizer 
does become stuck in local optima. In addition, we run the optimizer in a manner that updates the 
initializations. Specifically, for each step (corresponding to each value of N in the search space), the 
optimizer is initialized on both a neutral point (gamma=0, delta=2, epsilon=0), and also on the 
maximum-likelihood values from the previous step, and we use whichever optimization produced the 
higher likelihood. We then identify the overall maximum-likelihood parameters as those with the highest 
likelihood obtained from all approaches and initializations, which consistently corresponded to the 
values obtained by this latter recursive method, for all five genotypes. 

 
For the bootstrapping procedure it is not feasible to consider a large number of initializations, and so we 
initialize the bootstrap replicates at the optimum from the empirical data. This increases the robustness 
of the calculation because the optimizer is already starting in a reasonable region of parameter space. 
While it is possible that the global optimum for any particular bootstrap replicate cannot be obtained 
from this initialization, the parametric bootstrap we are using is superior in this regard to the standard 
asymptotic maximum likelihood theory, since the parametric bootstrap relaxes the assumption of the 
asymptotic theory that the parameter estimates have a multivariate normal distribution around their true 
value. 
 

Reviewer #3 (Remarks on code availability): 
 

I have reviewed the code but could not get it to run on the data provided during the review 
process. This is not the authors' fault! The manuscript handling system renamed the datafiles to 
its own system -- serving no important purpose that I can see -- and the code relies on the 
original filenames for functionality. I hope the editor(s) can look into this as it is a substantial 
inconvenience for reviewing computational work. 

 
I have therefore only been able to review the code by eye. If it is possible to provide the original 
datafiles (e.g. by email iain.johnston@uib.no<mailto:iain.johnston@uib.no>) -- under strict 
understanding of confidence of course -- I would be happy to look at it further. 

 
(NB I have deliberately given my email address here as I have also signed my review) 

 
We apologize that the code did not run, likely due to the renaming of the datafiles by the manuscript 
handling system as the reviewer points out. We have taken additional care in this resubmission to 
increase the likelihood that the file renaming by the submission website does not interfere with the 
ability of the reviewer to run the code. 
 
Overall, we thank the reviewer for the thorough read of our manuscript and for putting in the effort to 
carefully think through the modeling. It has helped us improve the rigor and readability of the 
manuscript significantly. 



Reviewers' Comments: 
 
 
 
Reviewer #2 
 
(Remarks to the Author) 
Thanks very much for your explanations and for including this new material. This has cleared up all 
my questions about the methods and form of the fitting results and (I think) made some important 
details of the model rather clearer. I think the new Supp Figs 1 and 5 are particularly helpful for 
people who want to understand the range of behaviours the model *could* support and hence the 
subset of model behaviours most compatible with biological observation. I can't see that any other 
points need addressing and am happy to recommend this interesting and powerful study for 
publication. IJ 
 
(Remarks to the Editor) 
 
 
Reviewer #3 
 
(Remarks to the Author) 
1) The authors have made compelling arguments for their estimation of N in their analyses and have 
validated their method on simulated data. The procedure does not consider the variance in mutant 
frequency across generations in the first place, and therefore the sample size for parent-offspring 
comparison is not an issue. However, the authors also took a second approach where the parent-
offspring variance was considered and obtained similar estimates of N. 
 
2) The authors clarify the use of a pooled population and note that they normalise competed 
(heteroplasmic and homoplasmic WT) against non-competed (heteroplasmic only) populations in 
their analysis. Although this may not entirely correct for inaccurate heteroplasmy quantification in 
the samples (owing to changes in mtDNA copy in a manner dependent on heteroplasmy in 
individuals), it is practically realistic and I am satisfied with the explanation. 
 
3) The authors provide sufficient detail in their Methods section on the use of unigametic 
inheritance method. 
 
(Remarks to the Editor) 
I believe the authors have done a good job in addressing the comments of Reviewer 1. 
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REVIEWER COMMENTS 
 

Reviewer #2 (Remarks to the Author): 
 
Thanks very much for your explanations and for including this new material. This has cleared up 
all my questions about the methods and form of the fitting results and (I think) made some 
important details of the model rather clearer. I think the new Supp Figs 1 and 5 are particularly 
helpful for people who want to understand the range of behaviours the model *could* support 
and hence the subset of model behaviours most compatible with biological observation. I can't 
see that any other points need addressing and am happy to recommend this interesting and 
powerful study for publication. IJ 
 

We thank the reviewer immensely for their valuable feedback, and for their support for our contribution 
with this study. 

 
Reviewer #2 (Remarks on code availability): 
 
I reviewed the code in some depth in the last round and the authors have addressed the points 
that arose. The authors have made the data available so the repo is now self-contained. It does 
not work out of the box because there is a path placeholder on l59 that doesn't exist on the 
user's machine: I suggest replacing this with 
dir = '.' 
so the code by default runs in the current working directory, while retaining the option for the 
user to change this. 
 
I haven't in-depth stress-tested the code or reproduced every figure, but the code is running 
(after that edit) and producing what looks like sensible output. IJ 
 

We appreciate the reviewer’s concern to ensure that the code works out of the box. We have revised 
line 59 of the code to incorporate the reviewer’s suggestion and have ensured that the code can be run 
from command line using the source data files available on our Github repository (linked in the Data 
Availability and Code Availability sections). 

 
Reviewer #3 (Remarks to the Author): 
 
1) The authors have made compelling arguments for their estimation of N in their analyses and 
have validated their method on simulated data. The procedure does not consider the variance in 
mutant frequency across generations in the first place, and therefore the sample size for parent-
offspring comparison is not an issue. However, the authors also took a second approach where 
the parent-offspring variance was considered and obtained similar estimates of N. 
 
2) The authors clarify the use of a pooled population and note that they normalise competed 
(heteroplasmic and homoplasmic WT) against non-competed (heteroplasmic only) populations 
in their analysis. Although this may not entirely correct for inaccurate heteroplasmy 
quantification in the samples (owing to changes in mtDNA copy in a manner dependent on 
heteroplasmy in individuals), it is practically realistic and I am satisfied with the explanation. 
 



3) The authors provide sufficient detail in their Methods section on the use of unigametic 
inheritance method. 

 
We greatly appreciate the favorable feedback from Reviewer 3, especially given their thorough read of 
our manuscript and the prior correspondence with other reviewers. 
 
Overall, we have made diligent effort to ensure that all criticisms and questions raised by all reviewers 
have been rigorously and thoroughly addressed. We thank all reviewers once more for their helpful 
feedback and we are confident that incorporating their feedback has strengthened the findings of this 
study. 
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