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S1. PARTIAL COHERENT LIGHT ANALYZERS (PCLA): ARCHITECTURE AND LEARNING

ALGORITHM

In this section, we describe the architecture and learning procedure for partial coherent light ana-

lyzers (PCLA). We first focus on classical light fields described by a coherency matrix ρ.

A. Background on coherency matrix

In the following, we consider N “channels” of input light, denoted by a N -dimensional vector

x. These channels can describe different spatial, polarization, or even spectral modes of light

with partial coherence described by the density (also known as coherency) matrix ρ, such that

ρij = ⟨xix∗j⟩ [1]. The matrix ρ is by definition Hermitian and semi-positive. This can be proved

by considering a complex vector y:

y†ρy =
∑
ij

yiρijy
∗
j

=

〈∣∣∣∣∣∑
i

xiyi

∣∣∣∣∣
2〉

≥ 0.

As a direct consequence, one can write ρ = UDU †, where U is unitary and D is a diagonal of

positive values Dii = λi ≥ 0.

We now describe how linear photonic transformations can modify the density matrix. We consider

a linear transformation (coupling operator) M which maps a given input x to output y according

to y =Mx. The linear transformation M also transforms the density matrix according to [2]:

ρ′ =MρM †, (S1)

where ρ′ is the output density matrix. We can already see that by picking M = U †, one “diagonal-

izes” the coherency matrix, such that ρ′ = D.
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B. Self-configuring arrays of Mach-Zehnder interferometers (MZI)

PCLAs rely on self-configuring photonic networks. For concreteness, we consider self-configuring

arrays of Mach-Zehnder interferometers (MZI) [3]. Several architectures exist for self-configuring

MZI arrays [4], such as cascades of “diagonal lines” [3, 5], which taken together can form a

triangular array [6], cascaded binary trees [5], and combinations of these [4].

Self-configuring networks have a few key properties that are essential to the design of PCLAs:

1. Cascaded architecture. Self-configuring networks consist of cascaded self-configuring

layers. Self-configuring layers have one particular output port that is connected through the

2 × 2 blocks to each input port by only one path [4]. (We have called this output port the

“top” output port in the main text for the sake of definiteness, though it may not physically

be in that geometrical position). When illuminated by one coherent light beam over possibly

all the inputs, self-configuring MZI layers can automatically “learn” settings, for instance, to

route all input light to their output port [3], in a completely progressive algorithm (hence the

“self-configuring” name). In self-configuring networks, the output at port k only depends

on self-configuring layers 1 to k and is independent of self-configuring layers with index

j > k.

2. Decreasing dimensionality. The dimensionality of the self-configuring layers in the cas-

cade decreases with the cascade depth; the first self-configuring layer contains N − 1 MZIs,

the second layer contains N − 2 MZIs, ..., and the last layer (index N − 1) contains 1 MZI.

(This behavior is self-evident in triangular MZI arrays [6], but it applies to self-configuring

networks of other architectures also [4].) The total number of degrees of freedom still allows

one to implement an arbitrary unitary matrix over N degrees of freedom; the number of ad-

justable elements (e.g., phase shifters) in these networks is essentially equal to the number

of real numbers required to specify the corresponding arbitrary complex unitary matrix.

3. Orthogonality. Self-configuring networks exhibit orthogonality between their self-

configuring layers. Let us consider an input light field x to the self-configuring network.

The network is configured to route all light from the input to the output of a given layer k.

Then, if one now sends input light field y ⊥ x to the same network (without reconfiguring its

parameter weights), the output light field will be distributed over output channels k′ ̸= k [3].
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C. PCLA learning algorithm

In the case of a fully coherent light beam that shines on possibly all the inputs, there is a straight-

forward algorithm that allows us to proceed completely progressively, MZI by MZI, through a

self-configuring layer, minimizing power in the “drop” port of the MZI as we adjust first ϕ and

then θ in that MZI. (The “drop” port is the output from an MZI that is connected to the next layer; it

is not, therefore, connected to another MZI in the same layer.) In that case, the power in the “drop”

port of the MZI ends up as zero, and all the power then passes progressively as needed through the

MZIs in that layer to accumulate at the “top” output of that layer. In this way, with such a single

coherent input field, we can route all the power to the top output, forming a self-aligning beam

coupler [5]. (By setting succeeding MZIs in the layer temporarily to the necessary cross or bar

state to route the MZI power to the “top” output of the layer, we can also run this algorithm just

by maximizing the output power in the “top” port [5].) This is the basic self-configuring algorithm

for such a light field [3, 5]. If multiple orthogonal coherent inputs are present at once, and if each

can be identified by some “tone” that the power-minimizing or maximizing detector(s) for a given

layer can look for, then these beams can be automatically separated by the layers according to

those identifying tones [3, 7].

In this work, though, we are trying to find the orthogonal components from the entire input field,

so we do not have identifying tones. In this case, the simple “MZI-by-MZI” progressive algorithm

based on power minimization in the drop port of a given MZI in a given layer [5] will not work

in general. We can show this by counter example, and we have provided such a counter example

below in Section S5. Though it might seem that should not now describe these as self-configuring

layers, nonetheless, they still form the basis for our algorithm below. We can still define them

topologically in our network [4] as layers in which one “top” output of the layer is connected by

one and only one path through 2×2 (MZI) blocks to every input to the layer, and we can still

usefully factorize the overall network into a succession or cascade of such layers. These layers

will still self-configure, though now we use a global (multiparameter) optimization in each such

layer.

Specifically, if we run a multiparameter optimization in each self-configuring layer, maximizing

the output power in the “top” output port by adjusting all the phase shifters (i.e., ϕ and θ) in every

MZI in the layer, as we show below, we can automatically separate the mutually incoherent parts
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FIG. S1: Partial coherent light analyzer (PCLA) learning algorithm. a. In step 1 of the algorithm, the

average output power of the first self-configuring layer is optimized, yielding the largest eigenvalue of the

coherency matrix. b. In step 2 of the algorithm, the average output power of the second self-configuring

layer is optimized, keeping the first layer’s parameters fixed, yielding the second largest eigenvalue of the

coherency matrix, and so forth. c. The resulting PCLA, after sequential optimization, diagonalizes the

coherency matrix, and separating the input light field into its mutually incoherent parts.

of the inputs, which are the eigenfunctions of the matrix ρ. With this background, we now describe

the PCLA learning method for such partially coherent fields with such self-configuring networks.

We first provide a constructive proof and then a formal mathematical proof.

In the following, we consider input light characterized by coherency matrix ρin and a self-
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configuring network that can be parametrized to implement a unitary transformation UPCLA. For

simplicity, we assume that the eigenvalues of the coherency matrix are non-degenerate (which is

always the case in realistic physical settings). Degeneracy could be included in this demonstration

as in the usual demonstration of the min-max theorem [8].

Before moving on to the proof, let us consider the eigenvalue decomposition of the coherency

matrix:

ρin = UDU †, (S2)

where the columns of U correspond to the set of mutually incoherent eigenmodes of the light field,

and Dii = λi ≥ 0 is the average power in each such eigenmode. The eigenvalues of the coherency

matrix are indexed by increasing value λ1 ≥ . . . ≥ λN . This modal decomposition of the light

field allows us to find an upper bound on the power concentration into a single mode [2]. For

concreteness, we rederive this bound for a given output port k. The average power in the output

port is given by:

⟨Pk⟩ =
(
UPCLAρinU

†
PCLA

)
kk
, (S3)

where UPCLA is the unitary transformation imparted by the self-configuring network. This can be

rewritten in the form of a Rayleigh quotient:

⟨Pk⟩ = ⟨vk|ρin|vk⟩ ≤ λ1, (S4)

where vk is the k-th column of U †
PCLA. The inequality is a known result for Rayleigh quotient and

quadratic forms. This means that the maximal concentration of power is bounded by the largest

eigenvalue of the coherency matrix, corresponding to the power in one of the mutually incoherent

modes of the modal decomposition in Eq. S2. The optimal input field that reaches the bound is u1,

the eigenvector associated with the largest eigenvalue of ρin. This concentration bound allows us

to proceed with a proof of the PCLA learning algorithm.

Constructive sketch proof. The first step of the algorithm consists in optimizing (i.e., concentrat-

ing) the output power of the first self-configuring layer. The action of the self-configuring layer

is unitary. Given the eigenvalue decomposition of the partial coherent light field in Eq. S2, to

maximize the average power concentrated into output port 1 (the “top” port), the self-configuring

layer should map the mode corresponding to the largest eigenvalue of the coherency matrix u1 to

the first output port. This means that the first row of UPCLA is determined and is equal to u†1.
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Now, let us consider the second step of the optimization. The first self-configuring layer remains

fixed as per the first optimization step. Given the eigenvalue decomposition of the coherency

matrix in Eq. (S2), the largest average power available on the remaining subspace corresponds to

the second largest eigenvalue of the coherency matrix λ2 with eigenvector u2. Since the first self-

configuring layer is unitary, a linear superposition of the eigenmodes u2, . . . , un is sent into ports

2, . . . , N . In other words, we are back to the first step of the algorithm, except we have eliminated

a dimension of the problem, as well as reduced the number of available waveguide ports. The

average output power of the second self-configuring layer is λ2, which corresponds to setting the

second row of UPCLA to u†2.

Therefore, we proceed as follows with increasing step index, decreasing eigenvalue and corre-

sponding average power to concentrate into the single “top” output port of each successive layer.

By this process of successive power maximizations in the top port of each successive layer, the re-

sulting self-configuring network has learned the eigenvectors of the coherency matrix and directly

outputs its eigenvalues, corresponding to the average powers at each port. More specifically, we

get UPCLA = U †.

Formal proof. In the first step of the algorithm, we maximize the ensemble average over the first

output port, which only depends on the first row M1 of M = UPCLA:

maxM⟨P1⟩ = maxM1(MρinM
†)11

= maxx∈S1x
†ρinx

= λ1,

with S1 the unit sphere S1 = {x ; ||x||2 = 1}. The last equality was obtained by using a known

equality for Rayleigh quotients and quadratic forms. This bound is attained by x = u1, the eigen-

vector associated with the largest eigenvalue λ1 of ρ. Therefore, this first step of the optimization

corresponds to a quadratic optimization program over O(N) degrees of freedom. This optimiza-

tion sets the first row of M to M1 = u†1. In the context of linear unitary meshes, this would

correspond to constraining the optimization to the phase-shifters of the first self-configuring layer,

which maps all input ports to the first output port (this optimization also entails O(N) degrees of

freedom).

Now, we generalize this to the k-th step of the algorithm by using the Courant-Fischer theorem

(also known as the min-max or variational theorem of linear algebra). The k-th step consists in

8



optimizing ⟨Pk⟩:

maxM⟨Pk⟩ = maxMk(MρinM
†)kk

= maxx∈Sk
x†ρinx,

where Mk is the k-th row of M . In a self-configuring network, the parameters of the self-

configuring layer k map to a subspace Sk of dimension dim(Sk) = N − k + 1. Sk is a sub-

space of unitary vectors orthogonal to eigenvectors u1, ..., uk−1, which can also be written as

Sk = Span(uk, ..., un) To finalize the proof, we need to show the following:

maxx∈Sk
{x†ρinx} = minS maxx{x†ρinx ; x ∈ S, |x| = 1, dim(S) = N − k + 1} = λk. (S5)

The second equality comes from the min-max, variational, or Courant-Fischer theorem. The first

equality still has to be proven to conclude this proof, which we do in the following. First, since

dim(Sk) = N−k+1, and elements of Sk are unitary, maxx∈Sk
{x†ρinx} ≥ minS maxx{x†ρinx ; x ∈

S, |x| = 1, dim(S) = N−k+1}. Now we consider a subspace S such that dim(S) = N−k+1. S

has a non-zero intersection with Span(u1, ..., uk), so we consider x an element of their intersection.

We can write x = Σk
i=1αiui. We also consider y ∈ Sk and write y = ΣN

i=kβiui. We get the

following inequality:

y†ρiny =
N∑
i=k

|βi|2λi ≤ λk ≤
k∑

i=1

|αi|2λi = x†ρinx.

Since this is true for all y ∈ Sk, we get maxy∈Sk
{y†ρiny} ≤ x†ρinx ≤ maxx{x†ρinx ; x ∈ S, |x| =

1, dim(S) = N − k + 1}. Since this is true for any S, we finally get: maxy∈Sk
{y†ρiny} ≤

minS maxx{x†ρinx ; x ∈ S, |x| = 1, dim(S) = N − k + 1}, which proves the above equality.

The result of step k of the algorithm is therefore Mk = u†k.

As highlighted in this formal proof, the degrees of freedom to be tuned at each step of the al-

gorithm have to enforce orthogonality of the rows of UPCLA. This is naturally enforced in the

self-configuring MZI arrays described in the previous section [3].

S2. NUMERICAL IMPLEMENTATION OF PCLA LEARNING ALGORITHM

In the following, we describe numerical simulations of the propagation of coherent and incoherent

light through a MZI array and implement the optimization algorithm from the previous section.
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A. Decomposition algorithm for triangular arrays

It is straightforward to calculate the required settings of self-configuring meshes to implement

desired unitary transforms. The mesh settings can be calculated directly by progressively con-

structing the mesh that generates the columns of the adjoint matrix when we imagine running the

mesh backwards [3], shining light into one “output” waveguide at a time, starting from the first

layer; this approach works for any mesh composed of self-configuring layers as defined topologi-

cally in Ref. [4]. Quite generally, the corresponding matrix representing the mesh is an appropriate

product of the 2× 2 matrices that represent the individual MZIs.

For the sake of definiteness, in the following we use the so-called “triangular” mesh [6], which can

be viewed as consisting of successive “diagonal line” self-configuring layers [3]. The conventions

we use are shown in Fig. 2b of the main text. Each node corresponds to a 2 × 2 unitary operator

between two adjacent nodes (j, j + 1) and written as:

T−1
j,j+1 =

 e−iϕ sin(θ) cos(θ)

e−iϕ cos(θ) − sin(θ)

 .
This operator can be implemented as a combination of a phase shifter (value ϕ) with a tunable

beamsplitter (ratio cos θ). The decomposition algorithm for this particular mesh of a matrix U

(size N ×N ) works as described in Ref. [6].

The decomposition algorithm multiplies the original matrix U on its right hand side by 2 × 2

unitary matrices:

Tj,j+1 =

 eiϕ sin(θ) eiϕ cos(θ)
cos(θ) − sin(θ)

 .
The resulting decomposition can be written as:

U = DT−1
N−1,N . . . T

−1
1,2 T

−1
2,3 . . . T

−1
N−1,N (S6)

= DτN−1 . . . τ1, (S7)

where D is a diagonal matrix of phases and τi is the action of the i-th self-configuring layer of

T−1
j,j+1’s. Since the self-learning algorithm runs over average power outputs, the diagonal of phases
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D is usually ignored. In the example of Fig. 2b of the main text for a 4× 4 unitary,

τ1 = T−1
1,2 T

−1
2,3 T

−1
3,4 corresponds to MZIs M1

τ2 = T−1
2,3 T

−1
3,4 corresponds to MZIs M2

τ3 = T−1
3,4 corresponds to MZIs M3

B. PCLA learning algorithm in triangular arrays

We now turn to the numerical implementation of the optimization algorithm described above for

partially coherent light in triangular MZI arrays. The optimization algorithm is a sequential power

optimization routine over ensemble (e.g., time) averaged outputs. Numerically, we simulate par-

tially coherent light using random variables and the following reparametrization for the fluctuating

fields x:

x = µ+Rϵ, (S8)

where µ is the mean field amplitude of x, ϵ is a vector of independent and identically distributed

(i.i.d.) (e.g., normal) random variables, andR is a square-root matrix of the desired coherency ma-

trix: RR† = ρin. In our numerical experiments, this reparametrization is essential to automatically

calculate gradients with respect to network parameters. Since calculating gradients with respect

to stochastic variables can be challenging [9], the reparametrization trick allows us to separate

stochasticity and functional variables (with respect to which gradients should be calculated) by

only using random variables with fixed distributions (here, ϵ). For simplicity, and without loss of

generality, in most numerical experiments we take µ = 0. In all numerical implementations, we

are using ADAM (gradient descent) [10] for optimization and TensorFlow’s automatic differenti-

ation methods, which are compatible with this reparametrization trick.

In Algorithm 1, we can either maximize or minimize the time-averaged power output, which

corresponds to finding the eigenvalues of the coherency matrix in decreasing or increasing order,

respectively. As discussed in Section S1, the result of this optimization routine is UPCLA = U †, the

Hermitian conjugate of the matrix that diagonalizes ρin, and the time-averaged power output of the

network maps to the eigenvalues of ρin.

To characterize the quality of the solution of this optimization problem, we calculate the fidelity
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Algorithm 1 PCLA learning algorithm for partially coherent light
1: Initialize network parameters (θ, ϕ) to random values.

2: Network input is fluctuating field (random variable) x described by coherency matrix ρin.

3: for ind_opt← 1 to N − 1 do

4: Maximize (or minimize) time-averaged power at output index ind_opt using phases from matrices

in τind_opt. Time-averaged power is simulated by averaging NS samples from the distribution as defined

in Eq. S8: ⟨|(UPCLAx)k|2⟩.

5: Update (θ, ϕ) in τind_opt accordingly.

6: end for

of the PCLA to the ground truth eigenmodes of the coherency matrix, normalized by the phases:

F = ⟨|UPCLAU |,1⟩HS, (S9)

where ⟨·⟩HS is the Hilbert-Schmidt dot product, defined as:

⟨A,B⟩HS =
Tr(A†B)√

Tr(A†A)Tr(B†B)
. (S10)

A fidelity of one means that UPCLA = U †, up to a diagonal matrix of phases eiφj . Results for a

10× 10 coherency matrix ρ are shown in Fig. 2 of the main text.

S3. ANALYSIS OF QUANTUM OPTICAL MIXTURES WITH PCLA

We now generalize the algorithm from the previous section to processing of partially coherent

quantum light, namely incoherent mixtures of single photons propagating in an integrated photonic

network.

A. Background on density matrix

We consider a quantum optical state |ψ⟩which can be imparted an arbitrary unitary operator UPCLA

with an array of MZI: a single photon spatially delocalized over N ports |i⟩. The output of the

MZI network is |ψ′⟩ = UPCLA |ψ⟩ where UPCLA is the classical unitary transformation imparted

to light, as described in the previous sections. Let us consider an incoherent mixture of M such
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single photon pure states, described by a density matrix ρin =
∑M

j=1 pj |ψj⟩ ⟨ψj|. The input-output

relationship of the density matrix also holds in the case of an incoherent mixture [11].

Unlike the classical case considered in the previous section, stochasticity in the quantum system

arises from incoherence of the mixture and projective measurements. Specifically, if the state to

be measured is decomposed on the canonical basis as |ψi⟩ =
∑

j Aij |j⟩, we get the following

expression for the density matrix:

ρ =
∑
jk

(∑
i

AjiA
∗
ki

)
|j⟩ ⟨k| . (S11)

We can now derive the expression for our power maximization method, for instance on the output

port labelled |1⟩:

⟨P1⟩ = Tr (P1ρout) (S12)

= Tr
(
P1UPCLAρoutU

†
PCLA

)
, (S13)

= ⟨U1
PCLA|ρ|U1

PCLA⟩ , (S14)

where U1
PCLA is the first row of UPCLA. This yields the following relationship:

maxUPCLA ⟨P1⟩ = maxU1
PCLA
⟨P1⟩ = λ1, (S15)

where λ1 is the largest eigenvalue of ρin. This process is therefore formally equivalent to classical

incoherence modeled as field fluctuations, as in Section S2. By applying the same sequential

power optimization, one can diagonalize (and analyze) the density matrix of such quantum optical

systems in self-configuring networks.

B. PCLA algorithm for quantum optical system

The sequential power optimization algorithm is similar to that used of classical partially coherent

light in Section S2, given the analogy between density and coherency matrices highlighted in the

previous section. The main difference in its practical implementation is the way the stochasticity

is parametrized, now on the output measurement side. We need to use another reparametrization

trick to be able to calculate gradients with automatic differentiation, which we describe in the

algorithm below (Algorithm 2).

This algorithm effectively works as follows:
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Algorithm 2 Sampling routine for projective measurements from quantum mixtures
1: Given output wavefunction samples |ψout⟩, output port |i0⟩, and number of samples NS

2: Pick wavefunction from mixture. Pick NS states from mixture |ψs(j)⟩ according to categorical distri-

bution parametrized by the mixture probabilities.

3: Simulate projective measurements. Calculate NS corresponding projective measurement probabili-

ties | ⟨ψs(j)|i0⟩ |2

4: Draw sample ϵ ∼ N (0, 1) from a normal distribution

5: Measured power on output port is Pi0 = ϵσ + µ, where σ and µ are defined below.

1. First, draw NS states |ψs(j)⟩ from the incoherent mixture, according to the mixture’s proba-

bilities. Here, s(j) ∈ {0, . . . ,M − 1} for j ∈ {1, . . . , NS}

2. Second, draw a random number from a Bernouilli distribution with probability parameter

| ⟨ψs(j)|i0⟩ |2.

3. These two operations are averaged over NS samples to yield the average power (in units of

number of single-photon “clicks”).

To perform automatic differentiation, we need to rely on a reparametrization trick based on a

modified version of the central limit theorem. The mean number of clicks at port |i0⟩ is a sum of

random variables:

X =
1

NS

NS∑
j=1

Xj, (S16)

withXj drawn from a Bernouilli distribution (binary outcome 0 or 1) with parameter | ⟨ψs(j)|i0⟩ |2.

In the limit of many samples, this distribution can be approximated as:

X ∼ µ+ σϵ, (S17)

where σ = 1
NS

√∑
j pj(1− pj) and µ = 1

NS

∑
j pj , and ϵ is a random variable following a normal

distribution. This generalized version of the central limit theorem (where the random variables in

the sum have different means) is sometimes referred to as Lindeberg’s theorem [12]. The Lya-

punov condition, necessary to its application, is verified in our case. Another advantage of this

method is that it “smoothens” the measurement function which, in principle, is the sum of many

binary inputs (drawn from Bernouilli distributions), whose discrete nature would make calculating

gradients problematic. Alternative methods could leverage recent work in automatic differentia-

tion of stochastic binary variables [9].
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C. Influence of losses

We now evaluate the influence of losses on the accuracy of the PCLA algorithm in reconstructing

the density matrix of incoming light.

We assume that losses are uniform across channels and elements of the mixture, such that we can

write

|ψi⟩ →
√
1− α2UPCLA |ψi⟩+ α2 |vac⟩ , (S18)

where 1 > α > 0 is the uniform loss rate, and |vac⟩ is the vacuum state (resulting from the

loss of a single photon propagating through the PCLA). This model can account for various loss

mechanisms throughout the network (scattering, absorption, non-ideal detection efficiency, etc.)

as long as they are uniform across modes. The resulting output density matrix is given by:

ρout,α = (1− α2)UPCLAρinU
†
PCLA (S19)

+
∑
i

piα
√
1− α2

(
UPCLA |ψ⟩ ⟨vac|+ U †

PCLA |vac⟩ ⟨ψ|
)
+ piα

2 |vac⟩ ⟨vac| . (S20)

Only the first term contributes to the average power measured at output port k, therefore the PCLA

will still find the corresponding eigenvector of the density matrix:

argmaxUPCLA
(ρout,α)kk = argmaxUPCLA

(ρout,no loss)kk . (S21)

The corresponding eigenvalues are rescaled by the loss factor 1−α2. In practical settings, the loss

can be measured and used to estimate the eigenvalues of the density matrix.

S4. CONNECTION TO OTHER MODAL REPRESENTATIONS AND MEASUREMENT METH-

ODS OF PARTIAL COHERENT LIGHT

In this section, we highlight connections between the modal representation of partial coherent light

discovered by the PCLA and other decompositions found in the literature.

A. Coherence tomography

Partial polarization is a form of partial coherence of light. In polarization optics, it is known that

a combination of projective measurements can reconstruct the full Stokes vector (or, equivalently,
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the polarization coherency matrix), which represents a partially polarized light field [13]. Each

projective measurement takes the form

Pi = ⟨s|Πi|s⟩ , (S22)

where Πi is a projector on a state of the Poincaré sphere Πi = |i⟩ ⟨i| and |s⟩ is the Stokes vector

to be measured. By combining several Pi’s taken on orthogonal polarization states, one can fully

reconstruct |s⟩.

This projective measurement method can be generalized to coupled degrees of freedom describing

more complex forms of partial coherence [14] by using projectors acting jointly on the multiple

degrees of freedom of interest (e.g., spatial and polarization). Since these methods are all based on

projective measurements, they are intrinsically lossy and require further processing to reconstruct

the full coherency matrix. Additionally, one distinctive advantage of our method is that it separates

the field into its mutually incoherent components, which can then be used for further processing

in “natural modes” basis [15, 16].

B. Karhunen-Loève expansions

Modal representations of partially coherent light field have been proposed by Wolf [15, 16]. These

representations rely on Karhunen-Loève expansions of stochastic processes [17]. We first repro-

duce the main elements of Wolf’s theory below before drawing a connection with the spectral

decomposition of the coherency matrix.

We consider a stochastic process xi(t) where i is an index encoding a degree of freedom of the

light field, for instance the spatial location at which the field is measured. Assuming that stochastic

process is stationary, we define the autocorrelation of the field:

Γij(τ) = ⟨xi(t)x∗j(t+ τ)⟩t, (S23)

which is an ensemble average over different temporal realizations of the stochastic process.

In the numerical examples of our work, we consider white noise processes, which means that

the cross-spectral density – the Fourier transform of the field autocorrelation – is independent of

frequency and takes the form:

Wij =
1

2π
⟨xix∗j⟩, (S24)
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where the xi’s are i.i.d. random variables. More generally, Wolf showed that there exists a set of

monochromatic oscillations that provide a representation of the cross-spectral density as an ensem-

ble average in frequency domain [15]. This definition of the cross-spectral density is equivalent to

the coherency matrix of the light field used in this paper.

Using Mercer’s theorem, the cross-spectral density may be expanded as [15]:

Wij =
∑
n

λnUinU
∗
jn, (S25)

where U is an orthogonal basis and λn ≥ 0. This is formally equivalent to the spectral decompo-

sition of the coherency matrix we use in this paper:

(ρin)ij =
(
UDU †)

ij
=
∑
n

λnUinU
∗
jn. (S26)

S5. DISCUSSION OF SELF-CONFIGURING ALGORITHM FOR A LAYER WITH PARTIALLY

COHERENT LIGHT

With a fully coherent input field, we know that with sets of MZIs or equivalent controllable beam-

splitters, we can proceed sequentially, minimizing the power at the “drop” port of each one (ac-

tually to zero) to maximize the overall output from a set or layer of interferometers in a self-

configuring topology [3–5]. In the case of partially coherent fields, though we can still establish

the eigenvectors of the coherency matrix by maximizing the output power in such layers, we can-

not guarantee to do this by minimizing the power at each such drop port. We can prove this by

counter example.

Consider the three beamsplitters as in Fig. S2. These beamsplitters can be MZIs, but for simplicity

of discussion we show them as cube beamsplitters. We imagine we have two different source

beams that are fully mutually incoherent. One such beam from a source A shines with a power

P1 = 2 (in arbitrary units) on the input to “beamsplitter” BS1. A second source, B, which is fully

mutually incoherent with source A, generates two beams that are fully coherent with one another

– one with power P2 = 1 on BS2, and a second with power P3 = 3 on BS3.

Note, first, that, if we have two fully incoherent beams incident on the two input ports of a beam

splitter, such as the P1 on the left of BS1 and the P2 on the top of BS1, the choice of reflectivity

R2 that minimizes the “dropped” power PT2 is simply to choose to route all of the larger power
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FIG. S2: Conceptual apparatus for counter-example proof. a. A schematic conceptual drawing of three

beamsplitters, one after another in a row, for use in our “thought experiment” proof by counter example.

The first “beamsplitter” BS1 is actually just a fully reflecting mirror at 45º, but beamsplitters BS2 and BS3

can have chosen reflectivities R2 and R3 respectively. We also allow for a chosen phase delay on the input

to BS3, given by a phase plate of a chosen thickness. A beam of power P1 = 2 units from a source A shines

on BS1. Source B, which is fully mutually incoherent with source A, generates two mutually coherent

beams, one with power P2 = 1 on BS1, and a second with power P3 = 3 on BS2.

to the right. In this case, since P1 > P2, the choice of R2 that minimizes PT2 is to make R2 = 0.

This transmits P1 = 2 to the right into BS3, and transmits P2 = 1 to become PT2. Now BS3

also has two mutually incoherent inputs, with P3 = 3 being the larger one, so now the choice that

minimizes PT3 is to make R3 = 1. So Pout = P3 = 3 (and, incidentally, all of P1 and P2 have

been discarded). However, this is not the choice of reflectivities that maximizes Pout. We can show

this by finding another solution with Pout > 3. Specifically, choose R2 = 1, reflecting all of P2

into BS3. Now, because the two beams P2 and P3 are mutually coherent, there is a choice of R3

and the phase plate thickness that allows us to combine both these powers fully, therefore giving

Pout = 4, which is greater than what we obtain by successive minimization of PT2 and PT3, which

was Pout = 3.

Hence, adjusting reflectivities (and possibly phase plate thicknesses) to successively minimize the

“drop-port” powers PT2 and PT3 does not guarantee the maximum possibly value of Pout. This

completes our proof by counter example. (Note, incidentally, that we are not computing the setting

that overall gives the largest output power, though we could readily do so. It is sufficient for this
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proof that we have found some settings that give Pout > 3.)

Hence, the algorithm that maximizes the power at the output will in general have to be a global

one within this “layer” of the system. It is still true, however, that we can optimize each successive

layer separately and sequentially.

S6. EXPERIMENTAL CONSIDERATIONS

In this section, we further elaborate on experimental realizations of PCLAs and their potential

applications.

A. Experimental proposal

First, we include a concrete example of partially coherent light sources that could be analyzed with

our device. The special case we chose is that of a set of mutually incoherent sources placed in the

far field of the PCLA. Light propagation between the source plane and the input plane of the chip

results in a partially coherent light field at the input, which can be processed by the PCLA using

the method we propose in our work (see Fig. S3).

We also include in Fig. S4 a schematic of an experimental setup to analyze partially coherent light

with the PCLA, for instance that generated by an array of incoherent LEDs in the far field, as in

Fig. S3. Upon free space propagation, the light field acquires spatial partial coherence, and is then

coupled into the PCLA chip with a lenslet array and a set of grating couplers. With this simple

proof-of-concept experiment, one could already tune the input coherency matrix and see how the

PCLA learns its modal representation for various distances between the LED array and the input

plane of the chip.

B. Influence of additional sources of noise on fidelity

We now analyze the influence of additional sources of noise (that are not due to fluctuations of

the input fields) on the fidelity of the learned matrix by the PCLA, shown in Fig. S5. We consider

the case of detection noise of a given signal-to-noise ratio (SNR) for various random matrices of
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FIG. S3: Concrete example of PCLA application. a. Envisioned experimental configuration: a set of

mutually incoherent sources are placed in the far field of the PCLA and coupled to its input plane via

coupling operator G. b. Example geometry with 7 sources and receivers. The field distribution of the

mode with the largest singular value is shown (multiplied by z where z is the distance to the source plane).

c. Corresponding ground truth eigenvalues of the input coherency matrix and reconstructed values from

PCLA.
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FIG. S4: Experimental setup for PCLA. Schematic of the experimental setup for a proof-of-concept

experiment: an array of incoherent LEDs emits a light field that displays spatial partial coherence after

a certain distance (due to the van Cittert-Zernike theorem). That spatially partially coherent light field is

coupled into the chip with a set of lenslets and grating couplers. The PCLA analyzes the in-coupled light

according to the algorithm presented in this manuscript.

size N = 5 and condition numbers. We also show that with relatively small numbers of iterations

(n_epochs = 20) and SNR on the order of 1, the learned fidelities are > 0.9. This illustrates the

robustness of the PCLA to additional sources of noise.
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