Supporting Information for

REVIEW

Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression

Yunna Chen^{a,†}, Qianqian Zhou^{b,c,†}, Zongfang Jia^{b,c}, Nuo Cheng^{b,c}, Sheng Zhang^a, Weidong Chen^{b,c,*}, Lei Wang^{b,c,*}

^aKey Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China

^bMOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China

^cAnhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China

Received 22 March 2024; received in revised form 12 May 2024; accepted 24 May 2024

*Corresponding authors.

E-mail addresses: wdchen@ahtcm.edu.cn (Weidong Chen), wanglei@ahtcm.edu.cn (Lei Wang).

[†]These authors made equal contributions to this work.

Target	Nanomedicine	Classification	Advantage and unique characteristic	Mechanism	Cancer	Ref
	HA-PeiPLGA-MTX	Polymer	0	NF- κ B signaling was inhibited and M2	4T1 mouse	1
	NPs	nanoparticle	cells	TAMs shifted to M1 phenotype	model	
	PHNPs@DPA-S-S-B SA-MA@3-MA	Inorganic nanoparticle	GSH-responsive, targeted TAMs	Nanoparticles activate NF- κ B p65 and promote the polarization of TAMs into M1 type macrophages	MDA-MB -231 mouse model	2
	P/ML-NNG	Nanogel Layered	MMP2-responsive, targeted T cells, and targeted TAMs Endosomal escape, regulate	P/ML-NNG can release drugs to differenttargetsandsimultaneouslyinhibitPD-1/PD-L1and NF-κB pathway, therebyrepolarizing M2 TAMs to M1 TAMsLDH@155nanoparticleseffectively		3
TAMs	LDH@155 nanoparticles	double hydroxide nanoparticle		activated NF- κ B expression in TAMs, and induced polarization of TAMs towards M1 phenotype	TC-1 mouse model	4

 Table S1 Summary of nanomedicine overcoming tumor immunosuppression.

IL-12/α-TOS loaded TRN	Inorganic nanoparticle	in MDSCs. Good solubility, biocompatibility, degradability, and pH sensitivity	Microenvironment responsive nanocarriers release IL12 and promote the repolarization of TAMs into M1 phenotype.	4T1 mouse model	5
TNPs	Polymer nanoparticle	No toxicity and responsive release	The released IL-12 promoted the polarization of TAMs into M1 phenotype.	HepG2 mouse model	6
BLZ945/Sel NPs	Lipid nanoparticle	Stability,higherinternalizationinM2macrophages, and sustainedrelease	SupramolecularnanoparticlescontinuouslyinhibitbothCSF1RandMAPK signaling pathways, promoting therepolarizationof M2macrophages to theM1 phenotype.	4T1 mouse model	7
α-PDL1-CSF-LNPs	Lipid nanoparticle	Biocompatibility, antibody tethering, and efficient drug loading capacity	α -PDL1-CSF-LNPscansimultaneouslytarget and inhibit thePDL1 and CSF1Rpathways,therebypromotingthetransformation of M2phenotype into M1	B16/F10 mouse model	8

			phenotype.		
P/T@MM NPs	Polymer nanoparticle	Actively targeting the tumor site and immune escape	Biomimetic nanoparticles repolarises M2 macrophages into M1 macrophages by	breast cancer	9
R848@LNPs	Polymer nanoparticle	Targeted M2 macrophages, biocompatibility and biodegradability	altering their epigenetic properties R848@LNPs can target CD206 positive M2 like TAMs and convert them into anti-tumor M1 macrophages.	4T1 mouse model	10
Iron oxide nanoparticles	Inorganic nanoparticle	Hemolysis	Iron oxide nanoparticles differentiate M2 like TAMs into M1 phenotypes	LLC mouse model	11
MIX-NPs	Polymer nanoparticle	pH-responsive,core-shellseparation,selectivetargeting ofTAMs andcancer cells	Twin-like charge-switchable nanoparticles selectively silence MFN1, thereby inhibiting mitochondrial fusion in TAMs and promoting repolarization of TAMs from M2 to M1 phenotype.	4T1 mouse model	12
DMSN-PEI@125a	Inorganic nanoparticle	Large pore size, volume, high surface areas, and	DMSN-PEI@125a bind to the 3'- untranslated region of targeted mRNA and	TC-1 mouse	13

			protecting gene stability	repolarize TAMs.	model
	CuPP	Nanoenzyme		CuPP promotes the transition of M2 macrophages to M1 macrophages by increasing the O_2 level in TME.	4T1 mouse 14 model
	OX40L M1-exos	Exosomes	Immune evasion, participateinintercellularcommunication	OX40LM1-exospromotedthereprogrammingofTAMsintoM1macrophagesbyactivatingtheOX40/OX40L pathway	4T1 mouse 15 model
	PTEN mRNA NPs	Polymer nanoparticle	Protecting gene stability	PTEN mRNA nanoparticles promote the permeation of CD8 ⁺ T cells in tumor tissues and reverse TIME. The combination of biomimetic	B16-F10 mouse 16 model
۲ cells	Biomimetic nanoparticles	Inorganic nanoparticle	Homologous adhesion, crossing the blood-brain barrier	nanoparticles and PX reduced PD-1 and TIM-3 on T cells by downregulating TET2 expression, and inhibited GRK2 for stabilizing S1PR1 expression on T cells surface.	GL261 mouse 17 model

	FeS-GOx@PTX	Self-assembly nanoparticle	High tumor permeability and low toxicity	FeS-GOx@PTXcanpromoteTcellinfiltrationandcompletelyeliminateprimary tumors by inducedinfiltrationinfiltrationinfiltration	4T1 mouse model	18
	PLGA-ICG	Polymer nanoparticle	Biocompatible, biodegradable, low toxicity and sustained release	PLGA-ICG disrupts ECM by generating heat, thereby increasing the infiltration of CAR T cells.		19
	VNP _{siLdha}	Lipid nanoparticle	Protecting gene stability and preventing premature gene release	VNP _{siLdha} neutralize tumor acidity by reducing lactate production, thereby restoring T cells function.	B16-F10 and 4T1 mouse model	20
	CD-MnOx@CM	Inorganic nanoparticle		CD-MnOx@CM not only effectively activated CD8 ⁺ T cells, but also regulated ROS levels in TME by catalyzing the decomposition of H_2O_2 into O_2 within the tumor to promote T cell survival.	mouse	21
Tregs	Fluorine-assembled nanoparticles	Inorganic nanoparticle	Redox and photodynamic effect	Fluorine-assembled nanoparticles reversed Tregs mediated immunosuppression by		22

			alleviating hypoxia and reducing GSH content.		
tLyp1-CH NPs	Polymer nanoparticle	Stability and targeted Tregs	tLyp1 peptide coupled hybrid nanoparticles inhibited the phosphorylation of STAT3 and STAT5, reducing Tregs within the tumors.	B16 mouse model	23
Supramolecular photodynamic nanoparticles	Cyclodextrin inclusion complex	Reduce phototoxicity and responsive release	Supramolecular photodynamic nanoparticles can reduce Tregs levels and increase infiltration of CD8 ⁺ T cells in TME, thereby reversing TIME.	4T1 mouse model	24
LBL-hNPs	Polymer nanoparticle		LBL-hNPs reduced the inhibitory function of Tregs and improved the anti-tumor efficiency of PDT		25
Cur NPs	Polymer nanoparticle	High bioavailability and safety	CurcuminnanoparticlesinhibitedMEK/ERKsignalingandeffectivelyreduced the increase of Tregs in turns.	4T1 mouse model	26
UA liposomes	Liposome	Improve solubility, extend	UA liposomes can reduce tumor site Tregs	4T1 mouse	27

				half-life, and non-toxic		by inhibiting STAT5 phosphorylation and	model	
						IL-10 secretion.		
	Iron oxide	oxide	xide Inorganic	Biodegradation and	Iron oxide nanoparticles-mediated PTT can	4T1 mouse		
	nanoparticles	Oxide	nanoparticle	photothermal effect	ana	preferentially eliminate Tregs at the tumor	model	28
nanoparti	nanoparticies	nunopultione			sites.	mouer		
							B16F10	
MDS	Inorganic		HDL NPs significantly inhibited the activity	and				
Cs	MDS HDL NPs		nanoparticle	Targeted MDSCs		of MDSCs and inhibited tumor growth.	LLC	29
Co			nunopurtiere				mouse	
							model	
			Inorganic	Efficient drug loading, Th	ME	FIT NPs can enhance the efficacy of PTT	CT26	
FIT NPs	FIT NPs	'NPs	responsive, and Targe	eted	by inducing ICD and reducing the function	mouse	30	
	nanoparticle	MDSCs		of MDSCs.	model			

	IR780/Met NPs	Inorganic nanoparticle	Control release effect, large pore size, and produce O ₂	The nanoplatform overcomed tumor hypoxia by inhibiting mitochondrial respiration, thereby inhibiting the immunosuppressive function induced by MDSCs.	mouse	31
	R-mPDV/PDV/DOX/ siL	nanoparticle	Redox reaction, Lysosome escape, and targetability Extend half-life, reduce	R-mPDV/PDV/DOX/siL efficiently silence LDHA expression and induce ICD. LPPR can increase cytotoxic T cells	model	32
TAFs	LPPR	Polymer nanoparticle	toxicity, and improve stability	infiltration and reduce immunosuppressive cells recruitment by inhibiting TAFs activation <i>in vivo</i> .	4T1 mouse model	33
	DMSN@MIPs	Inorganic nanoparticle	Large pore size, volume, and high surface areas	DMSN@MIPs inhibited the activation of TAFs and increased the levels of immune cells (DCs, CD8 ⁺ T cells, and NK cells).	4T1 mouse model	34
	PMs-Ba	Polymer	Long cycle characteristics,	PMs-Ba increased cytotoxic T cells	4T1 mouse	35

na	anoparticle	low t	toxicity,	and	infiltration and stimulated the tumor	model	
		biocompati	ibility		immune microenvironment by inhibiting		
					TAFs activation.		
		T	1		PEG-SAB-Lip can remodel the tumor		
			le characteris		fibrotic microenvironment and increase the	4T1 mouse	0.6
PEG-SAB-Lip Li	iposome		toxicity,	and	infiltration of CD4 ⁺ , CD8 ⁺ T cells, and M1	model	36
		biocompatibility	macrophage.				
					The self-adaptive nanoregulator interfered	D 02	
			C		with tumor fibrosis and IDO1-kyurenine	Panc02	
	licella	Adjustable		and	axis induced T cells failure by delivering	and KPC	37
nanoregulator		ROS-respo	onsive release		TAFs inhibitor and indoleamine	mouse	
					2,3-dioxygenase 1 inhibitor.	model	
		Simultaneo	ously targe	eting	Biomimetic nanoparticles simultaneously		
Biomimetic So	olid lipid	cancer ce	ells and TA	AFs,	blocked the glycolysis of cancer cells and	4T1 mouse	
nanoparticles na		immune ev	vasion,		TAFs, reduced lactate production in TME,		38
	-	long-term circulation and tumor-homing capability	and activated immune responses.				

	Gal/IL-15@CaLN	Inorganic nanoparticle	Biocompatibility an acid-responsive release	I Gal/IL-15@CaLN enhance T cells immunity by activating NK cells.	CT26 mouse 39 model
	SCND-SIS3	Self-assembly nanoparticle	Bioavailability an biocompatibility	1	LLC mouse 40 model
NK	STING-LNPs	Lipid nanoparticle	Long-term circulation an biocompatibility	STING-LNPs kill metastatic cancer cells in the circulation by activating NK cells.	Renca 41 model
cells	SHP-1/Cbl siRNA LNPs	Lipid nanoparticle	Multi-targeting, hig specificity, and stability	1	42
	SeNPs	Inorganic nanoparticle	Biocompatibility, enzyme and ROS-responsive	The oxidative metabolites produced by SeNPs enhance tumor chemotherapy immunotherapy by activating NK cells.	MDA-MB -231 mouse model

	Pem/Se	Inorganic nanoparticle	Safety and ROS-responsive	The selenite produced by Pem/Se can activate NK cells <i>via</i> inhibiting HLA-E.	A549 mouse	44
DCs	CC-6td NP	Self-assembly nanoparticle	Carrier-free, no adverse immune reactions, and	CC-6td NP can simultaneously regulate the anti-tumor cascade immune response initiated by DCs.	model MC38 mouse model	45
	mHMnO-Dox	Inorganic nanoparticle	Homologous targeting and biocompatibility	The release of Mn2 ⁺ from mHMnO-Dox promotes DCs maturation and induces anti-tumor immune response by activating cGAS-STING.		46
	aDCM@PLGA/RAP A	Polymer nanoparticle	Homologous adhesion, cros sing the blood-brain barrier.	aDCM@PLGA/RAPA stimulate the maturation of DCs and activate the infiltration of T cells, thereby inducing anti-tumor immunity.	C6-LUC mouse model	47
	PAG/BTZ	Polymer nanoparticle	pH-responsive, high loading content, and prolonging the blood circulation time	TheBTZreleasedbyPAG/BTZisresponsiblefor inducingICD, whileAGisresponsiblefor promoting the maturationof	4T1 mouse model	48

DCs, thereby better inducing anti-tumor immune responses.

	RNA-NPs	Composite nanoparticle	CondenseRNAandpenetratethenegativelycharged cellmembrane	RNA-NPs promote the maturation of DCs to initiate anti-tumor immune responses.	CT26 mouse model	49
	Ru@ICG BLZ NPs	Inorganic nanoparticle	Responsive release and low toxicity	Ru@ICG-BLZ NPs can repolarize TAMs into M1 phenotype and eliminate tumor cells through phototherapy.	CT26 mouse model	50
Non-s pecific targete d	Cur-CSNPs	Inorganic nanoparticle	ROS-responsive and NIR-responsive	Cur-CSNPs downregulate the expression of HIF-1 and promote polarization of M2 macrophages towards M1 macrophages.		51
	Lipo Zol/IR NPs	Lipid nanoparticle	Targeting the tumor site, large pore size, volume, and high surface areas	Lipo Zol/IR NPs release Zol in TEM and were selectively engulfed by TAMs, causing them to repolarize from the immunosuppressed M2 phenotype to the		52

				immunostimulated M1 phenotype.		
	IL@H-PP	Inorganic nanoparticle	Stability and high	IL@H-PP can induce an increase in ROS in	4T1 mouse	
			photothermal conversion	TAMs by releasing copper ions, thereby		53
			efficiency	repolarizing them to an M1 phenotype.		
			Low toxicity, high drug			
	LT-NPs	Self-assembly nanoparticle	loading rate, and	LT-NPs can effectively stimulate the	CT26	54
			specififically cleaved in	maturation of DCs and initiate anti-tumor	mouse	
			tumor cells	immune responses.	model	
	iPS-MnO ₂ @Ce6	Inorganic nanoparticle	Biocompatibility and high photo/thermal stability	iPS-MnO ₂ @Ce6 promote the maturation of	Lewis	
				DCs, thereby activating T cells and NK	mouse	55
				cells, and inducing immune responses	model	
	^{LY} iCluster _{siRNA}	Polymer nanoparticle	pH-responsive and avoiding gene degradation	^{LY} iCluster _{siRNA} significantly increased the	Panc02	
				permeation of CD8 ⁺ T cells and inhibited	mouse	56
				tumor growth	model	

PHNPs@DPA-S-S-BSA-MA@3-MA, 3-MA loaded porous hollow iron oxide nanoparticles modified with mannose; IL-12/α-TOS loaded TRN, TME-responsive nanocarriers loaded with IL-12 or α-TOS; TNPs, tumor-responsive therapeutic nanoparticles for co-delivery of IL-12 and doxorubicin; BLZ945/Sel NPs, BLZ945 and selumetinib loaded supramolecular nanoparticles; P/T@MM NPs, TMP195 loaded macrophage membrane-coated biomimetic nanoparticles; R848@LNPs, R848@LNPs labeled with 5(6)-carboxyfluorescein; MIX-NPs, twin-like

charge-switchable nanoparticles; tLyp1-CH NPs, tLyp1 peptide coupled hybrid nanoparticles; Cur NPs, curcumin nanoparticles; IR780/Met NPs, IR780 and metformin loaded nanoplatform; SHP-1/Cbl siRNA LNPs, lipid-based nanoparticles for SHP-1 and Cbl siRNA delivery

References

- Cavalcante RMS, Ishikawa U, Silva ES, Silva AA, Araújo AA, Cruz LJ, et al. STAT3/NF-κB signalling disruption in M2 tumour-associated macrophages is a major target of PLGA nanocarriers/PD-L1 antibody immunomodulatory therapy in breast cancer. *Brit J Pharmacol* 2021;**178**:2284-304.
- 2. Li K, Lu L, Xue CC, Liu J, He Y, Zhou J, et al. Polarization of tumor-associated macrophage phenotype porous hollow iron nanoparticles for tumor immunotherapy *in vivo*. *Nanoscale* 2020;**12**:130-44.
- 3. Liu Y, Liang S, Jiang DD, Gao T, Fang YX, Fu SL, et al. Manipulation of TAMs functions to facilitate the immune therapy effects of immune checkpoint antibodies. *J Control Release* 2021;**336**:621-34.
- 4. Yang LN, Sun J, Liu Q, Zhu RR, Yang QN, Hua JH, et al. Synergetic functional nanocomposites enhance immunotherapy in solid tumors by remodeling the immunoenvironment. *Adv Sci* 2019;**6**:1802012.
- 5. Wan YF, Yu WJ, Li JM, Peng N, Ding X, Wang YL, et al. Multi-functional carboxymethyl chitin-based nanoparticles for modulation of tumor-associated macrophage polarity. *Carbohyd Polym* 2021;**267**:118245.
- 6. Li TS, Liu ZH, Fu X, Chen YQ, Zhu SL, Zhang J. Co-delivery of interleukin-12 and doxorubicin loaded nano-delivery system for enhanced immunotherapy with polarization toward M1-type macrophages. *Eur J Pharm Biopharm* 2022;**177**:175-83.
- 7. Ramesh A, Brouillard A, Kumar S, Nandi D, Kulkarni A. Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. *Biomaterials* 2020;**227**:119559.

- 8. Ramesh A, Malik V, Ranjani HA, Smith H, Kulkarni AA. Rational combination of an immune checkpoint inhibitor with CSF1R inhibitor-loaded nanoparticle enhances anticancer efficacy. *Drug Deliv Transl Re* 2021;**11**:2317-27.
- 9. Yue YL, Li FF, Li Y, Wang YZ, Guo XJ, Cheng ZX, et al. Biomimetic nanoparticles carrying a repolarization agent of tumor-associated macrophages for remodeling of the inflammatory microenvironment following photothermal therapy. *Acs Nano* 2021;**15**:15166-79.
- 10. Figueiredo P, Lepland A, Scodeller P, Fontana F, Torrieri G, Tiboni M, et al. Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. *Acta Biomater* 2021;**133**:231-43.
- 11. Costa da Silva M, Breckwoldt MO, Vinchi F, Correia MP, Stojanovic A, Thielmann CM, et al. Iron induces anti-tumor activity in tumor-associcated macrophages. *Front Immunol* 2017;**8**:1479.
- 12. Zhao M, Li J, Liu JW, Xu MX, Ji HR, Wu SW, et al. Charge-switchable nanoparticles enhance cancer immunotherapy based on mitochondrial dynamic regulation and immunogenic cell death induction. *J Control Release* 2021;**335**:320-32.
- 13. Yang LN, Li F, Cao YS, Liu Q, Jing GX, Niu JT, et al. Multifunctional silica nanocomposites prime tumoricidal immunity for efficient cancer immunotherapy. *J Nanobiotechnol* 2021;**19**:328.
- 14. Zeng WW, Yu M, Chen T, Liu YQ, Yi YF, Huang CY, et al. Polypyrrole nanoenzymes as tumor microenvironment modulators to reprogram macrophage and potentiate immunotherapy. *Adv Sci (Weinh)* 2022;**9**:2201703.
- 15. Yu YK, Li TX, Ou MT, Luo R, Chen HZ, Ren H, et al. OX40L-expressing M1-like macrophage exosomes for cancer immunotherapy. *J Control Release* 2024;**365**:469-79.
- 16. Lin YX, Wang Y, Ding JX, Jiang AP, Wang J, Yu MA, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles

enhances antitumor immunity in preclinical models. Sci Transl Med 2021;13:eaba9772.

- Wang TT, Zhang H, Han YB, Zheng Q, Liu HH, Han MX, et al. Reversing T cell dysfunction to boost glioblastoma immunotherapy by paroxetine-mediated GRK2 inhibition and blockade of multiple checkpoints through biomimetic nanoparticles. *Adv Sci* 2023;10:e2204961.
- 18. Ren H, Yong JH, Yang QQ, Yang Z, Liu ZY, Xu Y, et al. Self-assembled FeS-based cascade bioreactor with enhanced tumor penetration and synergistic treatments to trigger robust cancer immunotherapy. *Acta Pharm Sin B* 2021;**11**:3244-61.
- 19. Chen Q, Hu QY, Dukhovlinova E, Chen GJ, Ahn S, Wang C, et al. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. *Adv Mater* 2019;**31**:e1900192.
- 20. Zhang YX, Zhao YY, Shen JZ, Sun X, Liu Y, Liu H, et al. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. *Nano Lett* 2019;**19**:2774-83.
- 21. Lu Y, Li LH, Du JW, Chen JL, Xu XY, Yang XF, et al. Immunotherapy for tumor metastasis by artificial antigen-presenting cells *via* targeted microenvironment regulation and T-cell activation. *Acs Appl Mater Inter* 2021;**13**:55890-901.
- 22. Li ZT, Deng YY, Sun HH, Tan CX, Li HM, Mo FY, et al. Redox modulation with a perfluorocarbon nanoparticle to reverse Treg-mediated immunosuppression and enhance anti-tumor immunity. *J Control Release* 2023;**358**:579-90.
- 23. Ou W, Thapa RK, Jiang LY, Soe ZC, Gautam M, Chang JH, et al. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. *J Control Release* 2018;**281**:84-96.
- 24. He SQ, Wang LL, Wu DX, Tong F, Zhao H, Li HM, et al. Dual-responsive supramolecular photodynamic nanomedicine with activatable

immunomodulation for enhanced antitumor therapy. Acta Pharm Sin B 2024;14:765-80.

- 25. Ou W, Jiang L, Thapa RK, Soe ZC, Poudel K, Chang JH, et al. Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy. *Theranostics* 2018;**8**:4574-90.
- 26. Hossain DMS, Panda AK, Chakrabarty S, Bhattacharjee P, Kajal K, Mohanty S, et al. MEK inhibition prevents tumour-shed transforming growth factor- β -induced T-regulatory cell augmentation in tumour milieu. *Immunology* 2015;**144**:561-73.
- 27. Zhang N, Liu SN, Shi SY, Chen YT, Xu FW, Wei XH, et al. Solubilization and delivery of Ursolic-acid for modulating tumor microenvironment and regulatory T cell activities in cancer immunotherapy. *J Control Release* 2020;**320**:168-78.
- 28. Chen HW, Luan X, Paholak HJ, Burnett JP, Stevers NO, Sansanaphongpricha K, et al. Depleting tumor-associated Tregs *via* nanoparticle-mediated hyperthermia to enhance anti-CTLA-4 immunotherapy. *Nanomedicine-Uk* 2020;**15**:77-92.
- 29. Plebanek MP, Bhaumik D, Bryce PJ, Thaxton CS. Scavenger receptor type B1 and lipoprotein nanoparticle inhibit myeloid-derived suppressor cells. *Mol Cancer Ther* 2018;**17**:686-97.
- 30. Zhang T, Xiong HG, Ma XB, Gao Y, Xue P, Kang YJ, et al. Supramolecular tadalafil nanovaccine for cancer immunotherapy by alleviating myeloid-derived suppressor cells and heightening immunogenicity. *Small Methods* 2021;**5**:e2100115.
- 31. Zuo HQ, Hou YC, Yu YJ, Li ZQ, Liu HX, Liu C, et al. Circumventing myeloid-derived suppressor cell-mediated immunosuppression using an oxygen-generated and -economized nanoplatform. *Acs Appl Mater Inter* 2020;**12**:55723-36.
- 32. Xia CY, Li M, Ran GY, Wang XH, Lu ZZ, Li T, et al. Redox-responsive nanoassembly restrained myeloid-derived suppressor cells recruitment through autophagy-involved lactate dehydrogenase A silencing for enhanced cancer immunochemotherapy. *J Control Release*

2021;335:557-74.

- Zhang HY, Chen LY, Zhao Y, Luo NC, Shi JB, Xu SJ, et al. Relaxin-encapsulated polymeric metformin nanoparticles remodel tumor immune microenvironment by reducing CAFs for efficient triple-negative breast cancer immunotherapy. *Asian J Pharm Sci* 2023;18:100796.
- 34. He Y, Wu SY, Yuan YB, Sun YC, Ai QJ, Zhou RQ, et al. Remodeling tumor immunosuppression with molecularly imprinted nanoparticles to enhance immunogenic cell death for cancer immunotherapy. *J Control Release* 2023;**362**:44-57.
- 35. Zheng F, Luo YJ, Liu YQ, Gao YY, Chen WY, Wei K. Nano-baicalein facilitates chemotherapy in breast cancer by targeting tumor microenvironment. *Int J Pharmaceut* 2023;**635**:122778.
- 36. Chen YN, Hu MR, Wang SW, Wang Q, Lu HY, Wang F, et al. Nano-delivery of salvianolic acid B induces the quiescence of tumor-associated fibroblasts *via* interfering with TGF-β1/Smad signaling to facilitate chemo- and immunotherapy in desmoplastic tumor. *Int J Pharm* 2022;**623**:121953.
- 37. Pan JX, Lai Y, Zhang SA, Zhang HJ, Shan YM, Huang LJ, et al. Self-adaptive nanoregulator to mitigate dynamic immune evasion of pancreatic cancer. *Adv Mater* 2023;**35**:e2305798.
- 38. Zang SY, Huang KX, Li JX, Ren KB, Li T, He X, et al. Metabolic reprogramming by dual-targeting biomimetic nanoparticles for enhanced tumor chemo-immunotherapy. *Acta Biomater* 2022;**148**:181-93.
- 39. Sun XS, Xu XX, Wang J, Zhang XY, Zhao ZT, Liu XC, et al. Acid-switchable nanoparticles induce self-adaptive aggregation for enhancing antitumor immunity of natural killer cells. *Acta Pharm Sin B* 2023;**13**:3093-105.

- 40. Lian GY, Wan Y, Mak TS, Wang QM, Zhang J, Chen J, et al. Self-carried nanodrug (SCND-SIS3): a targeted therapy for lung cancer with superior biocompatibility and immune boosting effects. *Biomaterials* 2022;**288**:121730.
- 41. Nakamura T, Sasaki S, Sato Y, Harashima H. Cancer immunotherapy with lipid nanoparticles loaded with a stimulator of interferon genes agonist against renal tumor lung metastasis. *Pharmaceutics* 2023;**16**:31.
- 42. Biber G, Sabag B, Raiff A, Ben-Shmuel A, Puthenveetil A, Benichou JIC, et al. Modulation of intrinsic inhibitory checkpoints using nano-carriers to unleash NK cell activity. *EMBO Mol Med* 2022;**14**:e14073.
- 43. Wei ZY, Yi Y, Luo Z, Gong XY, Jiang YX, Hou DY, et al. Selenopeptide nanomedicine activates natural killer cells for enhanced tumor chemoimmunotherapy. *Adv Mater* 2022;**34**:e2108167.
- 44. Pan SJ, Li TY, Tan YZ, Xu HP. Selenium-containing nanoparticles synergistically enhance Pemetrexed&NK cell-based chemoimmunotherapy. *Biomaterials* 2022;**280**:121321.
- 45. Qin XH, Zhang MZ, Zhao ZP, Du Q, Li Q, Jiang Y, et al. A carrier-free photodynamic nanodrug to enable regulation of dendritic cells for boosting cancer immunotherapy. *Acta Biomater* 2022;**147**:366-76.
- 46. Wang P, Wang YF, Li HM, Wang MM, Wang Y, Wang XF, et al. A homologous-targeting cGAS-STING agonist multimodally activates dendritic cells for enhanced cancer immunotherapy. *Acta Biomater* 2024;**177**:400-13.
- 47. Ma XY, Kuang L, Yin Y, Tang L, Zhang Y, Fan Q, et al. Tumor-antigen activated dendritic cell membrane-coated biomimetic nanoparticles with orchestrating immune responses promote therapeutic efficacy against glioma. *ACS Nano* 2023;**17**:2341-55.
- 48. Xu XD, Wang R, Li DD, Xiang JJ, Zhang W, Shi XY, et al. Guanidine-modified nanoparticles as robust BTZ delivery carriers and

activators of immune responses. J Control Release 2023;357:310-8.

- 49. Su LH, Pan W, Li XX, Zhou XY, Ma XP, Min YZ. Utilizing chemotherapy-induced tumor RNA nanoparticles to improve cancer chemoimmunotherapy. *Acta Biomater* 2023;**158**:698-707.
- 50. Liu YN, Wen YY, Chen X, Zhu XF, Yu QQ, Gong YC, et al. Inflammation-responsive functional Ru nanoparticles combining a tumor-associated macrophage repolarization strategy with phototherapy for colorectal cancer therapy. *J Mater Chem B* 2019;7:6210-23.
- 51. Zhang LJ, Huang R, Shen YW, Liu J, Wu Y, Jin JM, et al. Enhanced anti-tumor efficacy by inhibiting HIF-1*α* to reprogram TAMs core-satellite upconverting nanoparticles with curcumin mediated photodynamic therapy. *Biomater Sci-Uk* 2021;**9**:6403-15.
- 52. Jian H, Wang XB, Song PP, Wu XQ, Zheng RX, Wang YJ, et al. Tumor microcalcification-me diate d relay drug delivery for photodynamic immunotherapy of breast cancer. *Acta Biomater* 2022;**140**:518-29.
- 53. Tong F, Hu HL, Xu YY, Zhou Y, Xie R, Lei T, et al. Hollow copper sulfide nanoparticles carrying ISRIB for the sensitized photothermal therapy of breast cancer and brain metastases through inhibiting stress granule formation and reprogramming tumor-associated macrophages. *Acta Pharm Sin B* 2023;**13**:3471-88.
- 54. Choi J, Shim MK, Yang S, Hwang HS, Cho H, Kim J, et al. Visible-light-triggered prodrug nanoparticles combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. *ACS Nano* 2021;**15**:12086-98.
- 55. Liu YL, Yang JX, Liu B, Cao W, Zhang JP, Yang YM, et al. Human iPS cells loaded with MnO2-based nanoprobes for photodynamic and simultaneous enhanced immunotherapy against cancer. *Nanomicro Lett* 2020;**12**:127.
- 56. Wang Y, Gao ZX, Du XJ, Chen SB, Zhang WC, Wang JL, et al. Co-inhibition of the TGF- β pathway and the PD-L1 checkpoint by

pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy. *Biomater Sci-Uk* 2020;**8**:5121-32.