Grave-to-cradle Dry Reforming of Plastics via Joule Heating

Qing Ma, ^[a] Yongjun Gao, *^[a] Bo Sun^[b] Jianlong Du, ^[a] Hong Zhang^[a] and Ding Ma*^[b]

[a] Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China

[b] Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

*Corresponding author: Yongjun Gao (<u>yjgao@hbu.edu.cn</u>), Ding Ma (<u>dma@pku.edu.cn</u>)

Contents

Supplementary Methods	2
Transmission Electron Microscope (TEM) characterization	2
Scanning Electron Microscope (SEM) characterization and Energy-dispersive X-ray spectroscopy (EDS	5)2
Supplementary Figures	3
Supplementary Fig. 1 Infrared thermal image and optical image of experimental device. Reaction conditing PE, 44 mg CO ₂ , 4 A(6 Ω).	ions:14 3
Supplementary Fig. 2 SEM and Energy-dispersive X-ray spectroscopy (EDS) mapping images of fresh l heating wire.	FeCrA1 4
Supplementary Fig. 3 SEM images of carbon fibers a) before and b) after reaction. Experimental conditions mg PE, 44 mg CO ₂ , 15 min.	ons: 14 5
Supplementary Fig. 4 Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectra of	of solid
samples (PE reforming with CO_2 after different reaction time) at different reaction time. Reaction conditing PE, 44 mg CO_2 , 4 A(6 Ω).	ions:14 6
Supplementary Fig. 5 Mass spectrometric signals of pulse experiments. a The dehydrogenation of methods the CO ₂ reduction over unelectrified / electrified FeCrAl resistance wire. Experimental conditions:	hane. b Ar =10
mL/min, $CH_4 = 10 \text{ mL/min}$, $CO_2 = 10 \text{ mL/min}$.	7
Supplementary Fig. 6 Raman spectra of electrified FeCrAl wire at different reforming time	8
Supplementary Fig. 7 Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectra of I	FeCrAl
wire at different reaction time. Reaction conditions: 14 mg PE, 44 mg CO_2 , 4 A (6 Ω).	9
Supplementary Fig. 8 TEM image of residual carbon achieved in PE dehydrogenation. Reaction condition	ons: 14
mg PE, Ar, 4 A (6 Ω), 15 min.	10
Supplementary Fig. 9 SEM image of residual carbon achieved in PE dehydrogenation. Reaction condition	ions:14
mg PE, Ar, 4 A (6 Ω), 15 min.	11
Supplementary Tables	12
Supplementary Table 1. The detailed weight analysis from one practical experiment. ¹	12

Supplementary Table 2. The detailed products distribution, carbon balance and mass balance in the P	Έ
dehydrogenation1	.2
Supplementary Table 3. The detailed products distribution with carbon fiber as heating element in dry reformin	ıg
of PE1	.3
Supplementary Table 4. The quantitative analysis of various products from the large-scale reaction ¹	.3
Supplementary Table 5. Oxygen balance during the CO ₂ reduction	.3
Supplementary Table 6. Life cycle inventory (LCI) for LCA calculation model	.4
Supplementary Table 7. LCI of PV system (collected from Greet software 2022)1	.4
Supplementary Table 8. The higher heating values (HHV) of gaseous products and chemical energy of PE. 1	.6
Supplementary Table 9. The energy recovery efficiency of the reforming system powered by a photovolta	ic
power system (PV) utilizing solar irradiation or Chinese electricity grids	.7

Supplementary Methods

Transmission Electron Microscope (TEM) characterization

For TEM characterizations, the samples were dispersed in ethanol and dropped onto 300-mesh carboncoated copper grids. TEM characterizations were carried out on a FEI Tecnai G2 F20 S-TWIN transmission electron microscope.

Scanning Electron Microscope (SEM) characterization and Energy-dispersive X-ray spectroscopy (EDS)

A Zeiss Merlin high-resolution scanning electron microscope was used to characterize the surface morphology of the samples after PE dehydrogenation and FeCrAl heating wire. The surface elemental mapping analyses were carried out by EDS detector equipped on the SEM.

Supplementary Figures

Supplementary Fig. 1 Infrared thermal image and optical image of experimental device. Reaction conditions: 14 mg PE, 44 mg CO₂, 4 A(6 Ω).

Supplementary Fig. 2 SEM and Energy-dispersive X-ray spectroscopy (EDS) mapping images of fresh FeCrAl heating wire.

Supplementary Fig. 3 SEM images of carbon fibers a) before and b) after reaction. Experimental conditions: 14 mg PE, 44 mg CO₂, 15 min.

Supplementary Fig. 4 Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectra of solid samples (PE reforming with CO₂ after different reaction time) at different reaction time. Reaction conditions:14 mg PE, 44 mg CO₂, $4 \text{ A}(6 \Omega)$.

Supplementary Fig. 5 Mass spectrometric signals of pulse experiments. a The dehydrogenation of methane. b the CO₂ reduction over unelectrified / electrified FeCrAl resistance wire. Experimental conditions: Ar =10 mL/min, CH₄ =10 mL/min, CO₂ =10 mL/min.

Supplementary Fig. 6 Raman spectra of electrified FeCrAl wire at different reforming time.

Supplementary Fig. 7 Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectra of FeCrAl wire at different reaction time. Reaction conditions: 14 mg PE, 44 mg CO₂, 4 A (6 Ω).

Supplementary Fig. 8 TEM image of residual carbon achieved in PE dehydrogenation. Reaction conditions: 14 mg PE, Ar, 4 A (6 Ω), 15 min.

Supplementary Fig. 9 SEM image of residual carbon achieved in PE dehydrogenation. Reaction conditions:14 mg PE, Ar, $4 \text{ A} (6 \Omega)$, 15 min.

Supplementary Tables

Conditions	Part	Weight $(g)^2$
	PE	0.0140
Before reaction	\mathbf{A} (Porcelain boat + wire)	9.3547
	B	
	(Quartz tube)	44.9872
After reaction	C (Porcelain boat + wire + quartz tube)	54.3544

Supplementary Table 1. The detailed weight analysis from one practical experiment.¹

1 Reaction conditions: 14 mg PE, Ar, 4 A (6 Ω), 15 min.

2 All involved mass was weighted by a balance, and the mass of carbon was calculated by the following formula:

$$nc(\text{mmol}) = \left(\frac{C - A - B}{12}\right) * 10^3 \tag{1}$$

Supplementary Table 2. The detailed products distribution, carbon balance and mass balance in

the PE dehydrogenation.

Reaction	n _{H2}	n co	n co2	n CH4	n c2+	n solid	Carbon	Mass
time(min)	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	balance (%)	balance (%)
15	1.003	0.000468	0.000430	0.0137	0.000759	1.05	106.5	106.2

$$carbon \ balance = \frac{n_{CO} + n_{CO_2}(on \ GC) + n_{CH_4} + 2n_{C_2H_x} + 3C_3H_x + \frac{m_{solid}}{12}}{\frac{m_{PE}}{14} + n_{CO_2}(original)} \times 100\%$$
(2)

mass balance =
$$\frac{2n_{H_2} + 28n_{CO} + 44n_{CO_2}(on \ GC) + 16n_{CH_4} + 30n_{C_2H_6} + 28n_{C_2H_4} + 44C_3H_8 + m_{solid}}{m_{PE} + m_{CO_2}(original)} \times 100\%$$
(3)

Supplementary Table 3. The detailed products distribution with carbon fiber as heating element in dry reforming of PE.

Reaction	n H2	n co	n co2	n CH4	$N_{\rm C2^+}$	n solid	Carbon balance
time(min)	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	of reaction (%)
15	0.57	1.18	0.26	0.018	0.003	0.29	87

Supplementary Table 4. The quantitative analysis of various products from the large-scale reaction ¹

Desetion		10			10	m	Carbon
Keaction	II H2	II CO	II CO2	II CH4	II C2+	solid	balance
time(min) (mi	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	(mg)	(%)
30	45.3	101.4	110	2.5	1.7	480	99

1 Reaction conditions: 1g PE, 3.3g CO₂, 18Ω, 30min.

Suppler	nentary 🛛	Fable 5.	Oxygen	balance	during	the CO ₂	reduction
	•						

Reaction	n _{CO2}	n _{co}	Increased Mass of	Increased moles of O in
time(min)	(mmol)	(mmol)	heating wire (mg)	heating wire (mmol)
1	0.93	0.06	0.6	0.0375
3	0.91	0.08	0.8	0.0500
6	0.62	0.26	2.2	0.1354
9	0.30	0.62	2.6	0.1625
15	0.26	0.67	10.3	0.6417

Item	Category	Quantity			
Raw materials consumption	Polyethylene (PE)	0.014 g			
	Waste CO_2^1	0.044 g			
Energy consumption	Electricity ²	0.024 kwh			
Total product: Syngas (0.0493 g)					

Supplementary Table 6. Life cycle inventory (LCI) for LCA calculation model

Supplementary Table 7. LCI of PV system (collected from Greet software 2022)

Item	Category	Quantity
PV electric system	Copper Wire	3867.6386 kg
	Brass	7.5034 g
	Zinc	15.0068 kg
	Steel	290.3213 kg
	Nylon 6	86.2892 kg
	High-Density Polyethylene	3727.5248 kg
	Polyvinyl Chloride	235.5171 kg
	Polycarbonate	0.7503 kg
	Liquid Epoxy	0.7503 kg
PV mounting	Aluminum	6.2511 lb
	High-Density Polyethylene	1.4033 g
	High-Impact Polystyrene Resin	7.0167 g
	Steel	1.4999 kg
	Copper wire	0.1000 kg
	Polyurethane Rigid Foam	60 g
	Electricity ²	14.9500 Wh
Inverter	Aluminum	894 kg
	Steel	9792 kg
	Polypropylene	150 kg
	Electricity ²	15196 MJ

	Diesel For Non-Road Applications	90MJ
	Natural Gas	5112 MJ
	Tin	3.8371 kg
	Magnet	13.9720 kg
	Copper wire	2277 kg
	Nylon 6	485 kg
	Polyethylene Terephthalate (PET)	300 kg
	Acrylic Acid	150 kg
PV module treatment	Electricity ²	189.8491 Btu
	Diesel For Non-Road Applications	30.7151 Btu
	Electricity ²	0.1113 kwh
	Diesel For Non-Road Applications	64.8315 kJ
Tot	al product: Solar PV system (1 item)	

¹In the actual experimental status, CO₂ compressed gas is used.

²The electricity power consumption in all models is China mix which can be selected in the GREET

2022 (Greenhouse gases, Regulated Emissions, and Energy use in Technologies).

Chemicals	HHV ¹ (KJ/mol)	Chemical Energy (MJ/kg)
H ₂	286	
СО	283	
CH ₄	889	
C_2H_4	1418	
C_2H_6	1560	
C ₃ H ₆	2220	
PE		45.9 ²

Supplementary Table 8. The higher heating values (HHV) of gaseous products and chemical energy of PE.

Supplementary Table 9. The energy recovery efficiency of the reforming system powered by a photovoltaic power system (PV) utilizing solar irradiation or Chinese electricity grids.

Chemicals/electricity	n (mmol)	Chemical energy (KJ)	Output energy (KJ)	Input energy (KJ)	Energy recovery efficiency ³ (%)	
					Electricity grids	Solar PV system
H ₂	0.71	0.2031	0.6912	-	0.60	107.5
СО	1.70	0.4811		-		
CH ₄	0.00672	0.0060		-		
C ₂ H ₄	0.0004487	0.00064		-		
C ₂ H ₆	9.868E-05	0.00015		-		
C ₃ H ₆	7.74884E- 05	0.00017		-		
PE	1 (14 mg)			0.6426		
Electricity	-	-		115.2		

The chemical energy of gaseous products was calculated according to the moles and the HHV or chemical energy listed in Supplementary Table 7. For example, the chemical energy of H₂ achieved in the optimal reaction can be achieved as follow:

$$0.71 \times 10^{-3} mol \times 286 KJ / mol = 0.2031 KJ$$
⁽⁴⁾

The output energy is the sum of the chemical energy of all products.

The input energy in the optimal reaction powered by electricity grids includes the chemical energy of PE and the electricity consumption that was measured by a coulombmeter. According to the coulombmeter, 0.032 KWh of electricity was consumed in an optimal reaction, which corresponds to the energy of 115.2 kJ.

The energy recovery efficiency in an optimal reaction powered by electricity grids was calculated according to the following formula:

Energy recovery efficiency = output energy / (PE chemical energy + electricity energy) \times 100 % (5) However, the energy recovery efficiency of a reaction powered PV system under solar irradiation was calculated according to the following formula: Energy recovery efficiency= output energy / (PE chemical energy) \times 100 % (6)

Supplementary References

- 1. <u>https://www.liquisearch.com/heat_of_combustion/heat_of_combustion_tables.</u>
- 2. Splitstone PL, Johnson WH. The enthalpies of combustion and formation of linear polyethylene. *Journal of Research of the National Bureau of Standards Section A, Physics and Chemistry* **78**, 611 (1974).
- 3. Luo J, *et al.* Leveraging CO₂ to directionally control the H₂/CO ratio in continuous microwave pyrolysis/gasification of waste plastics: Quantitative analysis of CO₂ and density functional theory calculations of regulation mechanism. *Chem. Eng. J.* **435**, 134794 (2022).